You are here : Home > Scientific production > Behavior and toxicity of novel hyper-virulent strains of Pseudomonas aeruginosa

Émeline Reboud

Behavior and toxicity of novel hyper-virulent strains of Pseudomonas aeruginosa

Published on 12 October 2017


Thesis presented on October 12, 2017

Abstract:
Pseudomonas aeruginosa is an opportunistic pathogen responsible for nosocomial diseases. It provokes acute or chronic infections due to several virulence factors acting in concert. The most aggressive strains possess a Type III Secretion System (T3SS), injecting toxins directly into the cytoplasm of eukaryotic cells thanks to a nano-needle. Recently, a hyper-virulent clinical strain, called CLJ1, was isolated from a patient suffering of hemorrhagic pulmonary infection, at the intensive care unit of Grenoble University Hospital. This strain lacks a T3SS but secretes a pore-forming toxin, ExlA, not previously identified. ExlA is a 172-kDa protein, forming 1.6-nm pores in the plasma membrane of several cell types, except erythrocytes. The pore causes the retraction of host cells and eventually induces necrotic cell death. We showed that CLJ1 belongs to a recently-discovered and highly divergent clade of P. aeruginosa, whose members possess the exlA gene instead of the genes coding for the T3SS and its effectors. The strains we collected worldwide originate from human infections and environmental samples. Their cytotoxicity on various human cells and mouse models of infection was correlated with ExlA secretion levels. In addition to membrane toxicity, exlA-positive strains displayed high proteolytic activities targeting VE and E-cadherins, two intercellular-junction adhesive proteins required for endothelium and epithelium integrity. We thus investigated the mechanisms of ExlA-induced cadherin cleavage. We demonstrated that ExlA pore formation in the eukaryotic membrane induces a massive and rapid entry of calcium into the cytosol. This calcium influx enables the maturation and activation of ADAM10, an eukaryotic protease located at the cell membrane. ADAM10 activation induces the cleavage of its natural substrates: the VE- and E-cadherins. ExlA is related to other toxins, including ShlA from Serratia marcescens, and altogether they constitute a family of pore-forming toxins with unique properties. We demonstrated that ShlA uses the same mechanism as ExlA to induce the cleavage of the cadherins. In conclusion, exlA- and shlA-positive strains hijack a natural mechanism of the host to induce the loss of tissue integrity.

Keywords:
Pseudomonas aeruginosa, infection, pore-forming toxin, adherens junction

Download this thesis.