

Scientific Newsletter

SUMMER 2023

At the front page of IRIG

Indium phosphide quantum dots see red and infrared

Indium phosphide quantum dots are semiconductor nanostructures used to improve the color rendering of television screens, as they emit intense fluorescence throughout the visible spectrum. Beyond this, the nearinfrared range is used for applications as biomedical such imaging, photodetectors and solar cells.

For in vivo imaging the use use of infrared enhances the signal-to-noise ratio, by minimizing absorption and scattering by the biological medium enabling more in-depth analysis of tissues (Fig. left).

Capturing photons over an extended range from the visible to the near infrared enhances the efficiency of solar cells. (Fig. right).

Contact: Peter REISS SyMMES

Molecular Systems and nanoMaterials for Energy and Health

REFERENCE

Yadav R. Kwon Y. Rivaux C. Saint-Pierre C. Ling WL and Reiss P

Narrow Near-Infrared Emission from InP QDs Synthesized with Indium(I) Halides and Aminophosphine

Journal of the American Chemical Society 2023

The main advantage of quantum dots is that their optical Thanks to the development of their optical properties, indium properties can be adjusted down to a few nanometers in size. The phosphide quantum dots are becoming a promising material band gap that separates the valence band from the conduction band in indium phosphide (InP) is 1.35 eV; this energy "gap' corresponds to a light wavelength of around 920 nm.

Until now processes enable InP quantum dots to be synthesized only to a maximum size of 6 nm limiting the emission wavelength to around 630 nm (red).

For the past fifteen years, researchers at IRIG [collaboration] have been working on the synthesis of new types of quantum dots free from toxic heavy metals. They have succeeded in synthesizing InP quantum dots largerer than 10 nm, in order to achieve infrared luminescence up to 730 nm (infrared). The process involves the use of a new indium precursor wich acts both as a source of indium and as a reductant for the precursor (of aminophosphine type). Another advantage is the narrower luminescence line width in the near infrared, as it is less sensitive to size variations.

in the visible and infrared ranges. These heavy-metal-free nanoparticles are used in preference to cadmium selenide and lead sulfide which contain toxic elements restricted by the European RoHS (Restriction of Hazardous Substances) directive.

Collaboration

MEM for structural analysis. These results were obtained as part of an ANR project (18-CE09-0039-01 FLUO), involving the LPCNO Laboratory of Physics & Chemistry of Nano-Objects at INSA Toulouse, and the ALEDIA company in Grenoble.

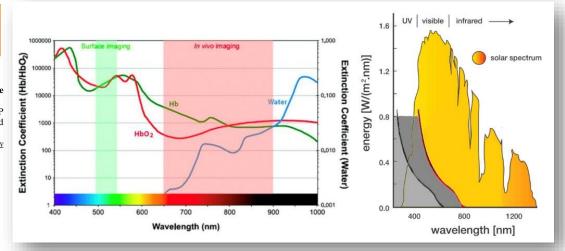


Figure on the left: for in vivo imaging, the reduced absorption between 650 and 900 nm makes this spectral range particularly suitable, notably due to the reduced absorption of hemoglobin (Hb, green), oxyhemoglobin (HbO2, red) and water (blue). Figure on the right: overlap between the solar emission spectrum (yellow) and the absorption spectra of InP quantum dots: threshold at 630 nm for sizes up to 6 nm according to the classical synthesis (light grey) and according to the Irig synthesis, the threshold increases to 730 nm for 10 nm quantum dots (dark grey).

Elucidation of the trigger of infection of bacteria by their viruses

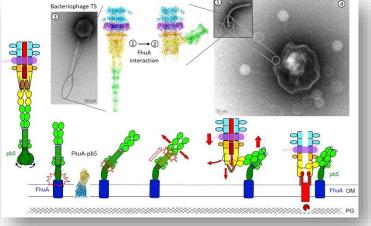
Pathogenic bacteria are becoming increasingly resistant to antibiotics. Alternatives must be found and validated to avoid falling back into the pre-antibiotic era. The use of bacteriophages, natural enemies of bacteria, is one of the most promising alternatives, both in agriculture/veterinary medicine and in human health. Sixty percent of known phages consist of a capsid protecting the viral DNA and a long flexible tail, which serves to recognise the host via one or more receptor binding proteins (RBPs) located at the tip of the tail. The RBPreceptor interaction triggers the infection: opening of the capsid, perforation of the bacterial wall and injection of the viral DNA into the host cytoplasm. Once injected, the viral DNA takes control of the bacterium and converts it into a phage factory; the cycle ends with the explosion of the bacterium and the release of hundreds of new virions

In this study, researchers at IRIG unveiled the infection of the bacterium E. coli by bacteriophage T5. This infection is initiated by the irreversible binding of T5 (RBP pb5) to its bacterial receptor FhuA, an E. coli outer membrane iron transporter. Thanks to advanced electron microscopy, both in terms of microscopes and cameras, as well as in software for the analysis of the images obtained, the scientists were able to determine the structure of T5 tail tip before and after interaction with FhuA reconstituted in a small membrane patch (nanodisc), as well as the structure of the FhuA-pb5 complex. These structures at atomic resolution allowed to understand how the interaction between pb5 and FhuA, i.e. the recognition of the host by the phage triggers the infection process. Moreover, it details the molecular mechanisms involved in the different steps, from the interaction between the phage and its bacterial receptor, to the perforation of the host's external membrane, including the opening of the phage tail and its anchoring to the membrane.

These studies will contribute to better control and use in health biotechnology etc..., of these fascinating bacteriophage nanomachines.

REFERENCES

Linares R. Arnaud CA. Effantin G. Darnault C. Epalle NH. Boeri Erba E. Schoehn G and Breyton C


Structural basis of bacteriophage T5 infection trigger and E. coli cell wall perforation.

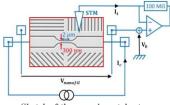
Science Advances 2023

Degroux S. Effantin G. Linares R. Schoehn G and Breyton C

Deciphering Bacteriophage T5 Host Recognition Mechanism and Infection Trigger. Journal of Virology 2023

Contact: Cécile BREYTON IBS Institut de Biologie Structurale

Molecular mechanism of the trigger of infection of E. coli by bacteriophage **T**5


Structures of phage T5 tail tip before (1) and after (2) interaction with FhuA are shown in ribbon. On either side, negative stain images of phage T5 isolated (3) and interacting with a minicell (4). (5): T5 phage tail interacting with FhuA in a nanodisc.

Below are detailed the steps of the molecular mechanism, indicated in red or by arrows, from the recognition of the host by the phage to the opening of the phage tail, its anchorage to the membrane and the perforation of the latter

OM: Outer-membrane,

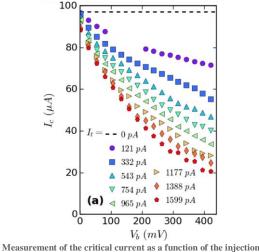
Dynamics of electrons in a superconductor nanowire

weakening of such as Qbits or, on the contrary, be used to make photon detectors.

Sketch of the experimental set-up The nanowire is in the center of the image (red box). The tip of the STM (blue triangle) is used to inject electrons without contact into the nanowire by tunnel effect. The critical current of the nanowire is detected simultaneously.

> Contact: Claude CHAPELIER Pheliqs Ouantum Photonics, Electronics and Engineering

electrons pair up to form so-called quasiparticles using a scanning tunneling microscope (STM) Cooper pairs. The temperature, a operating at very low temperature near absolut zero (0.050 magnetic field, an electric current or an K). The STM makes it possible to locally inject electrons incident photon can break these pairs to into a device by controlling both their energy by the restore single electrons also called electrical voltage, and the flux of injection by the tunneling quasi-particles. The presence of quasi- current. Each injected electron then transfers its energy to particles is therefore the sign of a the superconductor either by Coulomb interaction with the superconducting Cooper pairs, or via a phonon, i.e. a vibration of the atomic properties, which can harm the proper lattice. Each broken Cooper pair thus releases two very functioning of superconducting circuits energetic quasi-particles which will in turn break other Cooper pairs. This cascade leads to the formation of a cloud of quasi-particles, thus creating a hot spot which can limit the critical current that a superconducting device is able to transport by superconductivity.


> The scientists studied the injection of quasi-particles into a niobium nanowire 300 nm wide and 2 µm long. They simultaneously measured the critical current of about a hundred micro-amperes that could have been greatly weakened by the tunneling current a million times weaker. The attenuation is proportional to the product current multiplied by the voltage. It is therefore mainly due to a heating effect well described by a thermal model.

REFERENCE

Jalabert T. Driessen EFC. Gustavo F. Thomassin JL. Levy-Bertrand F and Chapelier C Thermalization and dynamics of high-energy quasiparticles in a superconducting nanowire probed by scanning critical current microscopy. Nature Physics 2023.

In the ground state of a superconductor, Researchers at IRIG have studied the dynamics of Moreover, by examining small deviations from the thermal model measured for different values of the tunneling current, we were able to model the dynamics of formation of the cloud of quasiparticles and determine a relaxation time of their energy of the order of 40 ps.

> This information is fundamental for optimizing the performance of photon detectors or protecting Qubits from quasiparticle poisoning.

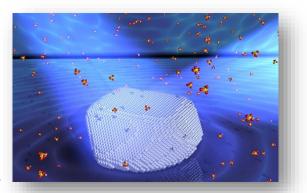
voltage for different tunnel currents. The dotted horizontal line indicates the value of the critical current without quasi-particles injected.

PG: Peptidoglycan

How the facets of a platinum nanoparticle control catalytic properties

Nanoparticles offer a significant advantage over solid materials: their nanometric di-mension consid-erably surfaces, increases contact thus enhancing their catalytic activity and selectivity. This ena-bles chemical processes to be carried out using fewer reagents, reducing energy consumption and therefore costs. However, as these particles are highly complex, it has not been possible to charac-terize them individually until now. Average measurements were carried out on at least hundred nanoparticles. а Information on their structural properties and the respective contributions of their vari-ous catalytic sites was therefore only known on average.

Thanks to the extremely high resolution and brilliance of the ESRF synchrotron's X-rays, it has become possible to characterize a single platinum nanoparticle with a resolution of just a few nanometers. Researchers at IRIG, in collaboration with CNRS-LEPMI and ESRF, were able to determine the precise structure, shape and nature of the facets, as well as the distribution of deformations, via the displacement of atoms. What's more, the use of a brillant beam at ESRF enabled these measurements to be carried out during the catalytic activity of the nanoparticle, under electrochemical conditions, which had never been done before in a liquid medium. These studies revealed that, contrary to what was previously thought, the deformation induced by catalytic reactions propagates very heterogeneously throughout the volume of the platinum nanoparticle and not just on its surface, particularly at the edges, corners and facets. In fact, the deformation of a particle is closely linked to catalytic activity and has a positive influence on the reaction.


REFERENCE

Contact : Marie-Ingrid RICHARD Clément ATLAN MEM Modeling and Exploration of Materials

Atlan C. Chatelier C. Martens I. Dupraz M. Viola A. Li N. Gao L. J. Leake S. Schülli TU. Eymery J. Maillard F and Richard M-I Imaging the strain evolution of a platinum nanoparticle under electrochemical control. Nature Materials 2023

More generally, the feat of carrying out these operando measurements will enable us to understand how to improve the efficiency of nanocatalysts, particularly in fuel cells and water electrolyzers.

The researchers will complement their work with theoretical studies. The results could be applied to synthesize catalysts with optimized activity, selectivity and lifetime.

Artist view of the facets of a platinum nanopartcle © C.Atlan & C.Chatelier / CEA

New insights on the regulation of CO₂ fixation in microalgae

Quenching of energy (qE) and CO₂ Concentrating Mechanism (CCM) are crucial for the survival of microalgae. Mutants deficient in qE cannot survive exposure to intense light, and mutants deficient in CCM cannot grow photoautotrophically (i.e. using light as an energy source and carbon dioxide as a carbon source) unless they are supplemented with high levels of CO₂. While the two processes have traditionally been studied separately, researchers at IRIG [collaboration] have shown that they are largely coregulated and share common regulatory elements (Figure).

activation of qE and CMM, this study unexpectedly shows that molecular mechanisms governing photosynthetic which are determined by the balance between CO2 fixation in potential of microalgae. chloroplasts and CO₂ generation by mitochondrial respiration. These data add a new facet to the role of CO₂ in photosynthetic microalgae. In addition to being a substrate for photosynthesis, CO₂ is also a signalling molecule that regulates gene expression in response to changes in light and CO₂ availability.

While the presence of light was thought to be essential for the These discoveries provide a better understanding of the CO₂ the expression of genes involved in these processes is largely metabolism and can be used to enable the biosphere to respond controlled by the availability of CO2. This finding suggests more effectively to the regulation of atmospheric CO2 that the effect of light on the regulation of gene expression is concentrations, but also to progress towards a sustainable lowoften indirect and reflects changes in intracellular CO₂ levels, carbon economy by fully exploiting the biotechnological

Collaboration

International consortium of scientists led by Dimitris Petroutsos

Contact: Dimitris PETROUTSOS LPCV Cell & Plant Physiology Laboratory

The shared transcriptional regulators, between qE and CCM, identified in this study are:

- CIA5, initially established as a master regulator of CCM, has now been shown to be a crucial regulator of the expression of genes and proteins involved in photoprotection [1].

- The transcription factor LCR1, initially identified as a regulator of CCM, has also been shown to control the expression of photoprotection [2]. - QER7, a transcriptional factor whose function is as yet unknown in Chlamydomonas, acts as a repressor of the expression of genes linked

to qE and CCM under the control of the blue light photoreceptor, phototropin [2].

REFERENCES

Águila Ruiz-Sola M, Flori S, Yuan Y, Villain G, Sanz-Luque E, Redekop P, Tokutsu R, Küken A, Tsichla A, Kepesidis G, Allorent G, Arend M, Iacono F, Finazzi G, Hippler M, Nikoloski Z, Minagawa J, Grossman AR and Petroutsos D. Light-independent regulation of algal photoprotection by CO2 availability. ications 2023

Arend M, Yuan Y, Águila Ruiz-Sola M, Omranian N, Nikoloski Z and Petroutsos D. Widening the landscape of transcriptional regulation of green algal photoprotection. Nature Communications 2023

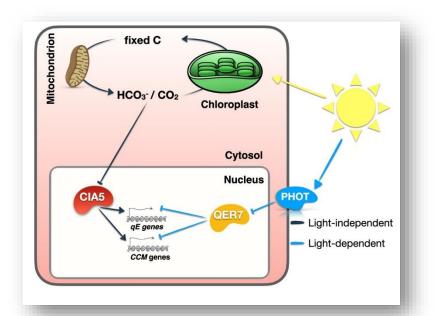


Figure: An increase in respiration or a decrease in photosynthesis leads to high levels of intracellular CO2, which represses the CCM and qE genes by inactivating CIA5. Exposure to bright light increases the rate of CO2 fixation, leading to CO2 depletion and activation of CIA5, which activates the genes associated with qE and CCM. The CIA5-dependent pathway is independent of light. Light affects the expression of the qE and CCM genes via phototropin. This regulatory protein operates in a signal transduction cascade, by acting as a repressor of the transcription factor QER7, which in turn represses the CCM and qE genes. The PHOT-QER7 signalling pathway is independent of CIA5.

The origin of the Universe will be unveiled by the LiteBIRD cryogenic satellite

mysterious primordial universe is the focus of much astrophysical research into the complex dynamics of our universe. The satellite will be equipped with ultra-sensitive detectors that need to be cooled down to 0.1 K (absolute zero) using a single cryogenic chain for the assembly. entire Due to the accumulation of heat received from the sun, radiated energy and operation, the satellite's temperature finds its equilibrium at around 300 K. A specific cryogenic system must be implemented to cool the telescope and the detectors to instruments. their operating temperature. As a first step, radiative panels are used to provide refrigerator lowers the temperature of telescopes to 1.8 K.

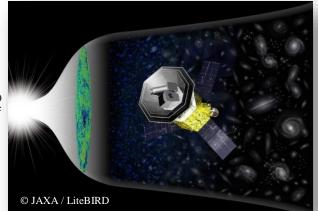
The exploration of the distant and Researchers at IRIG [collaboration] will provide the cooling system for the last two stages at 0.35 K and 0.1 K. To achieve this, scientists are using new magnetocaloric materials, such as YBGG (Ytterbium Gallium Garnet) or CPA (chromium potassium alum), which change temperature under the effect of variations in the magnetic field according to the principle of adiabatic demagnetization. Technological challenges include the compactness of components such as superconducting magnetic coils, and the development of gasgap or superconducting thermal switches. In addition, the Irig researchers will provide low-temperature multi-stage links between the refrigerator and the telescopes, optimizing thermal and mechanical performance, since a single cryogenic chain requires greater distances to link the various

In addition, the researchers specially developed the refrigeration system, the last two stages of which have to be an interface at 35 K. Then, a first maintained at very low temperatures of 0.35 k and 0.1 K respectively.

the instrument envelop to 4.8 K and a For the 0.35 K stage, the characteristics of each of the second system cools the first stage of the components were checked, and they were then meticulously

assembled to form a highly compact integrable unit that functions perfectly. Further measurements will be carried out to determine the various cooling capacities.

For the last stage at 0.1 K, a high-performance superconducting thermal switch was designed and installed. Its operation has been validated by tests showing that it achieves the cut-off factor required for the desired cryocooler efficiency.


This work on the overall thermal architecture is being carried out in parallel with technological developments, in order to propose the best possible couplings between the various subsystems.

The satellite is scheduled for launch in 2032, following on from the Planck satellite in 2009. The budget is estimated at 500 M€, which is comparable to ESA M-class missions. All the teams contributing to the LiteBIRD project are due to deliver study reports estimating the feasibility of the project by the end of 2023. They will then deliver an engineering model of the refrigerator and thermal links in 2025, followed by flight models in 2029.

Contact: Thomas PROUVE DSBT Low Temperature Systems Department

REFERENCE

LittleBIRD collaboration (+100 authors not shown) Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey, **PTEP** 2023

Collaboration

The project is led by the Japanese space agency JAXA (Japan Aerospace Exploration Agency), responsible for the satellite and the low-frequency telescope (LFT). The Medium and High Frequency Telescope (MHFT) is a European project, under the responsibility of CNES. Canada and the USA are involved in both projects for the detectors

Solubilization of TiO₂ nanoparticles by a bacterial siderophore

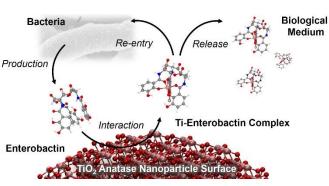
With the emergence of nanotechnology, the nanoparticulate forms of TiO₂ are found in an increasing number of dailylife products such as adhesives, paints, sunscreens, toothpastes, cosmetics as well as in the food industry. For example, the TiO_2 food additive E171, contains a variable portion of TiO2 nanoparticles depending on the source, is now forbidden by the European community since August 7th 2022 but still used in many countries to make foods whiter and brighter,. The average of ingested amount of titanium has been estimated at about 10-50 mg per person and per day. TiO2 is considered as robust, chemically stable, and by common belief, insoluble.

> Contact: Isabelle MICHAUD-SORET LCBM Chemistry and Biology of Metals Laboratory

REFERENCE

Laisney J. Chevallet M. Fauquant C. Sageot C. Moreau Y. Predoi D. Herlin-Boime N. Lebrun C and Michaud-Soret I Ligand-Promoted Surface Solubilization of TiO2 Nanoparticles by the Enterobactin Siderophore in Biological Medium Biomolecules 2022

Figure: titanium atoms are represented by pink spheres, oxygens in red and nitrogens in blue, carbons in grey and hydrogens in white.


Commonly, robust and chemically stable TiO₂ nanparticle was considered insoluble, while its dissolution could have an impact antimicrobial properties, toxicity, health, and the on environment. Size is considered the main physicochemical property affecting nanoparticle solubility; but various other parameters such as surface area, morphology and crystallinity must also be considered. The presence of organic ligands can also affect suspension stability, leading to nanoparticle dissolution.

Researchers at IRIG [collaboration] have taken an interest in organic siderophore ligands interaction with TiO2. Bacteria synthesize and secrete siderophores to capture the iron essential for their development. They have an extremely high affinity for iron (III) and exhibit a wide structural diversity: in particular, enterobactin (ent) forms the most stable complex with iron. The structure of enterobactin is composed of 3 catechol groups linked to a central lactone macrocycle (Figure). Its affinity for Fe(III) is so high that enterobactin is able to solubilize iron present in minerals such as olivine.

For the first time, studies have revealed that enterobactin binds covalently and forms complexes with Ti(IV), whose ionic radius is almost identical to that of Fe(III). In addition, Ti(IV) has a particular affinity for oxygenated ligands and could compete with hexacoordinated oxygenated metalloproteins or biomolecules.

The researchers were therefore interested in the binding of enterobactin to TiO2 nanoparticles, which could then dissolve. They showed that enterobactin, by binding to the surface of TiO_2 nanoparticles, promotes Ti(IV)solubilization through the formation of Ti-ent complexes. This dissolution depends on intrinsic properties such as the size, surface defects and crystallographic shape of the nanoparticles.

In addition, the dissolution of the food additive TiO₂ (E171) and the entry of the Ti-ent complex into Escherichia coli bacteria were also demonstrated. All these results raise questions about the possible impact, in terms of health or ecosystems, of the interaction between a powerful iron chelator such as enterobactin secreted by bacteria and TiO2 nanoparticles.

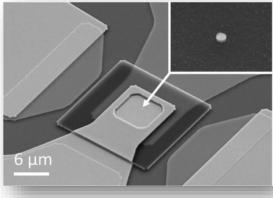
Collaboration LCBM, SyMMES, CEA Saclay, National Institute of Materials Physics in Romania.

Financial support

LabEx SERENADE (acronyme of Laboratory of Excellence for Safe(r) Ecodesign Research and Education applied to NAnomaterial

Spin-transfer tunnel junctions to miniaturize magnetic sensors

The principle of this electronic devices is of particular interest to the consumer market, the automotive industry and industry in general. Field measurement transitions between two resistor states either by direct time measurement or pulse-width modulation conversion. It is an alternative to conventional halleffect or magnetoresistive magnetic sensors. The magnetic sensor is based on a tunnel junction using the spin transfer effect. an elementary component developed for a non-volatile memory, but ingeniously put to good use here in another context. Its nanometric dimension is several thousand times smaller than that of other hall-effect or magnetoresistance sensors. In a first iteration, the sensor is already showing comparable performance: a detection range of 80 mT, a frequency bandwidth of 30 kHz, and a very low noise level. All the electronic components used are standard to facilitate integration into an integrated circuit.


The principle of this electronic devices is of particular interest to the consumer market, the automotive industry and industry in general. Field measurement is based on the detection of periodic transitions between two resistor states, either by direct time measurement or pulse-width modulation conversion. It

Researchers at IRIG [collaboration] have developed a sensor based on a magnetic tunnel junction with spin transfer torque. Thanks to its physical principle, detection is no longer limited by the accuracy of resistance measurement. Resistance changes between the junction's high and low values are measured by applying a periodic sinusoidal or triangular voltage. The voltage at which the junction changes state therefore varies linearly with the applied field.

Two modes of magnetic field detection are possible: time conversion to find switching voltages, or modulation of a signal by resistance transitions. The modulation mode results in lower noise and better measurement resolution, thanks to more powerful detection electronics. The main advantages of the proposed sensor are its small size, hence low power consumption, and reduced packaging electronics footprint. The detection range can be wider than that of other magnetic sensors, as detectivity is no longer limited by field range. What's more, this sensor is insensitive to the intense fields that cause irreversible damage to magnetoresistive sensors. The design of this sensor is similar to STT MRAM magnetic tunnel junction memory cells, whose technology is already mature, enabling the sensor to be integrated into CMOS circuits. As a result, mass production can be carried out in MRAM foundries with few changes.

Sensor performance has not yet reached the level of commercially available magnetic sensors. But simple improvements to the sensing element and conditioning electronics are underway to further reduce noise levels. This type of sensor could find applications in a variety of fields, from industrial applications to the medical field, integrated on a chip, or in an arrav of detectors to produce 2D images.

Collaboration

University of Applied Sciences Northwestern, Suisse, et ICube (Université de Strasbourg)

REFERENCE

h COL7A1

ound healing closur

T = 12h

5 7.5 Time (vears)

C Migration assay:

T = 0h

Nicolas H. Sousa R. Mora-Hernández A. Prejbeanu I-L. Hebrard L. Kammerer J-B and Pascal J

Conditioning circuits for nanoscale perpendicular spin transfer torque magnetic tunnel junctions as magnetic sensors. *IEEE Sensors Journal* 2023

Electronic microscopy of 50 nm diameter magnetic tunnel junction

Using genetics to identify kidney cancers most at risk

Sometimes diagnosed at an advanced stage, cancer can progress, spread to distant organs (metastasis) and/or reappear after treatment. Assessing patients' chances of survival would therefore help clinicians to improve disease management. Researchers at IRIG investigated the prognostic potential of each gene to identify new biomarkers for predicting patient survival in clear cell renal cell carcinoma, the seventh most common type of cancer in the Western world. Their research revealed that increased expression of the COL7A1 gene, encoding a specific form of collagen, correlates with the advancement of this cancer and therefore with the risk of death (Figure A). Moreover, this high expression also makes it possible to identify patients most at risk among patients of the same stage, such as stage II (generally with a good prognosis) (Figure B). This new method of survival assessment is complementary to, and more precise than some of the methods (such as the stage) used today in the clinic. Since the COL7A1 biomarker is robust, it can be applied to patients of different genetic/ethnic origins or who have undergone different therapies.

Contact: Laurent GUYON

Biology and Biotechnology for Health

Biosante

Preliminary experiments on cultured kidney cancer cells have led researchers to hypothesize that this correlation with risk is causal: *COL7A1* may play a role in cancer cell migration, a key step in the development of metastasis in patients (Figure C). Furthermore, the presence of *COL7A1* is also correlated with high expression of genes involved in important molecular mechanisms of carcinogenesis: cell division, inflammatory response and epithelial-mesenchymal transition.

COI 741

-Medium

-High

expre

In conclusion, researchers at IRIG have developed a method for identifying kidney cancer patients most at risk, with the aim of improving their management. To further improve predictions, researchers are currently using artificial intelligence (AI) methods, using the expression of several genes. In the longer term, if *COL7A1*'s role in cancer cell migration/invasion is confirmed, it could be a therapeutic target to reduce the onset of metastasis.

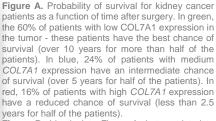


Figure B. Identical to Figure A, but restricted to stage II patients (early stage). These patients are not considered "at risk" using current methods. Measurement of *COL7A1* expression identifies the 15 patients (out of 57) most at risk.

Figure C. In vitro cell migration experiment. After removing the cells from the center of the petri dish (clear vertical zone or wound, i.e. devoid of cells, at time T = 0h), cells expressing a high level of COL7A1 (top) migrate faster: in 12h, they have "filled in" the wound, which is not the case for cells with low COL7A1 expression.

REFERENCES

Α

Invival

y of s

1.00

0.75

0.5

0.2

Koca D. Séraudie I. Jardillier R. Cochet C. Filhol O and Guyon L COL7A1 expression improves prognosis prediction for aatients with clear cell renal cell carcinoma atop of stage. <u>Cancers</u> 2023

Jardillier R. Koca D. Chatelain F and Guyon L

Time (years)

Prognosis of lasso-like penalized Cox models with tumor profiling improves prediction over clinical data alone and benefits from bi-dimensional pre-screening. <u>BMC Cancer</u> 2022

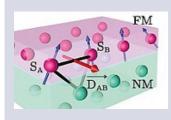
Deregulation of autophagy alters tumor progression

Gene expression is the process by which genetic information is translated into functional macromolecules. Transcription is the first step in this process, which involves the synthesis of messenger RNAs (mRNAs) from the corresponding gene DNA template. Over the past few decades, genome-wide transcriptional profiling approaches have made it possible to assess the expression levels of thousands of genes in parallel in various biological contexts. In statistical analyses, the expression of a gene is estimated by counting the number of occurrences of the corresponding mRNA sequences over a set of samples and is defined by two dimensions: the mean and the variance.

Contact: Xavier GIDROL BGE Biosciences and bioengineering for health The overwhelming majority of transcriptomic analyses based on the study of expression profiles focus on the identification of genes whose mean expression changes significantly when comparing samples from different conditions, corresponding to biological processes of interest, such as developmental biology, disease etiology, therapeutic target discovery, etc. In this classical approach, variance is usually considered only as a noise parameter to be estimated before comparing expression means.. Yet, the estimation of expression variance can be relevant from a physiological point of view, since a change in this parameter can reflect a biological change in the regulation of gene expression. Fluctuations in gene expression may indeed be due to various sources intrinsic to cellular life, such as the stochastic nature of gene transcription, the phase of cell cycle, chromatin changes or mRNA degradation.

Researchers at IRIG propose to compare the performance of statistical methods that identify such differentially variant genes. They demonstrated the potential of this approach by analyzing expression datasets in various cancers, which identified key cellular functions in tumor progression that could not have been identified by comparing average expression.

The researchers evaluated four recent methods that detect differences in the mean and dispersion of RNA-seq data. By applying these methods on simulated data, they have characterized reliable parameters to detect genes with expression variance between two conditions. The Cancer Genome Atlas data were then subjected to these methods. Among the genes showing increased expression variance in tumors and no change in average expression, some key cellular functions were identified, the majority of which are related to catabolism and are overrepresented in most of the cancers analyzed.

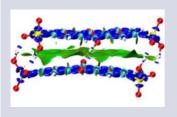

It may be biologically and physiologically relevant to consider differential variance in gene expression. These results highlight autophagy in carcinogenesis, illustrating the potential of the differential variance approach to gain new insights into biological processes and to discover new biomarkers.

REFERENCE

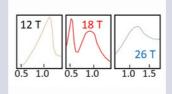
Le Priol C. Azencott C-A and Gidrol X

Detection of genes with differential expression dispersion unravels the role of autophagy in cancer progression <u>PLOS Computational Biology 2023</u>

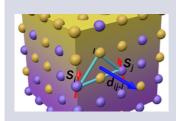
Other scientific news of the laboratories


Review: from early theories of Dzyaloshinskii–Moriya interactions in metallic systems to today's novel roads.

READ MORE


Searching outside the cell nucleus for sun-induced DNA damage.

READ MORE


NMR: Everything you need to know about the organic electrolyte of a redox flow battery.

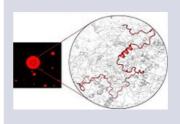
READ MORE

Tuning the pairing mechanism of a superconductor.

READ MORE

Gradient-Induced Dzyaloshinskii-Moriya Interaction.

READ MORE


The "Entry and budding of enveloped viruses group" labelled ' FRM 2023.

READ MORE

New contract for ITER-DMS cryogenic pellets.

READ MORE

Liquid-Liquid phase separation modifies the dynamic properties of intrinsically disordered proteins.

READ MORE

Fluorophore photophysics and super-resolution microscopy get married in the SMIS simulator.

READ MORE

Flora CLEMENT - Winner of the Junior Researcher Prize of the Espoir lsère association against cancer

READ MORE

Ilnauguration of a newgeneration PFIB-SEM

READ MORE

Environment: red snow is increasingly present on the world's glaciers

(in french) **READ MORE**

Sara Pullara - Dominique Job Young Scientist Award

READ MORE

Professor Rachidi Walid receives an endowment of nearly €60,000 from the association « Jetons cancer »

READ MORE

ENGIE R&I and CEA launch the "PROSPER-H2" industrial chair in solar fuels

(in french) **<u>READ MORE</u>**

Biology and Biotechnology for Health Unité Inserm13 CEA-Inserm-UGA <u>BGE-lab.fr</u>	Biosciences and bioengineering for Health UMR_S 1292 CEA-Inserm-UGA <u>biosante-lab.fr</u>	Chemistry and Biology of Metals UMR 5249 CEA-CNRS-UGA <u>CBM-lab.fr</u>	Institut de Biologie Structurale UMR 5075 CEA/CNRS/UGA <u>IBS.fr</u>	Modeling and Exploration of Materials UMR CEA/UGA <u>MEM-lab.fr</u>
Quantum Photonics, Electronics and Engineering UMR CEA-UGA <u>pheliqs.fr</u>	Cell & Plant Physiology UMR CEA-CNRS- UGA-Inrae <u>LPCV.fr</u>	Low Temperature Systems UMR CEA-UGA <u>d-SBT.fr</u>	Spintronics and Component Technology UMR 8191 CEA- CNRS-UGA-G-INP Spintec.fr	Molecular Systems and nanoMaterials for Energy and Health UMR 5819 CEA-CNRS-UGA <u>Symmes.fr</u>
Interdisciplinary Research Institute of Grenoble Head Publishing Director CEA-Grenoble Pascale Bayle-Guillemaud Pascale Bayle-Guillemaud If a venue des Martyrs 38000 GEPL/OBLE Annie Andrieux Editor and electronic format Alain Farchi Editorial Board Cécile Brevton Claude Chapelier, Odile Filhol-				

38000 GRENOBLE

Cécile Breyton, Claude Chapelier, Odile Filhol-Cochet, Xavier Gidrol, Laurent Guyon, Isabelle

Michaud-Soret, Dimitris Petroutsos, Thomas

Prouvé, Peter Reiss, Marie-Ingrid Richard,

Ricardo Sousa, Alain Farchi.

