DE LA RECHERCHE À L'INDUSTRIE

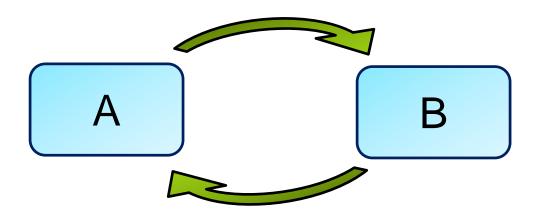
INTRODUCTION AUX TECHNIQUES DE COUPLAGE UTILISÉES EN PHYSIQUE DES RÉACTEURS

MANU – MATHÉMATIQUES POUR LA NEUTRONIQUE

Cyril PATRICOT

1. Qu'est-ce qu'un couplage?

- Situation mêlant plusieurs domaines ne pouvant être décrits séparément.
- Très courant!
- Exemple:
 - Une conversation.
 - Accident de perte de débit sur un réacteur en fonctionnement.



2. Démonstration de sûreté, l'approche classique

- Utilisation d'un code spécialisé dans une discipline.
- Modélisation simplifiée des autres disciplines.
- Définition de critères de sûreté.
- Introduction de pénalités et d'hypothèses conservatives par rapport à ces critères.
- Vérification de leur respect avec une marge suffisante.

3. L'approche multiphysique

- Relativement **récente** et **complémentaire** de l'approche classique.
- Principe : éviter les simplifications en mettant en œuvre des modélisations fines dans chacune des disciplines.
- Nécessite généralement de faire travailler ensemble plusieurs codes.
- Les incertitudes doivent être estimées.
- Objectif: Renforcer les démonstrations de sûreté, compréhension physique, réduction des marges, designs plus innovants etc.

4. Objectif de la présentation

- Présenter :
 - Ce qui se fait déjà en physique des réacteurs.
 - Quelques pistes que j'aimerais suivre.
- Récolter avis / conseils / expériences / idées etc.

SOMMAIRE

- I. Méthodes générales de résolution numérique de problèmes couplés discrétisés
- II. La factorisation « quasi-statique » du flux neutronique pour des problèmes multiphysiques
- III. Exemple de résolution intriquée
- IV. Conclusion

SOMMAIRE

- I. Méthodes générales de résolution numérique de problèmes couplés discrétisés
- II. La factorisation « quasi-statique » du flux neutronique pour des problèmes multiphysiques
- III. Exemple de résolution intriquée
- IV. Conclusion

1. Problématique

Résolution de $(x_1 \in \mathbb{R}^{d_1}, x_2 \in \mathbb{R}^{d_2})$:

$$\begin{cases} x_1 = f_1(x_1, x_2) \\ x_2 = f_2(x_1, x_2). \end{cases}$$

Parfois écrit sous la forme :

$$\begin{cases}
F_1(x_1, x_2) = f_1(x_1, x_2) - x_1 = 0 \\
F_2(x_1, x_2) = f_2(x_1, x_2) - x_2 = 0.
\end{cases}$$

2. Méthodes de point fixe

- Le point fixe :
 - \blacksquare Résolution de x = f(x)
 - Algorithme itératif : $x^{(n+1)} = f(x^{(n)})$.
- Deux façons de s'y ramener :
 - Gauss-Seidel (ou itérations de Picard) :

$$\begin{cases} x_1^{(n+1)} = f_1(x_1^{(n)}, x_2^{(n)}) \\ x_2^{(n+1)} = f_2(x_1^{(n+1)}, x_2^{(n)}). \end{cases}$$

■ Jacobi (convergence plus lente mais parallélisable) :

$$\begin{cases} x_1^{(n+1)} = f_1(x_1^{(n)}, x_2^{(n)}) \\ x_2^{(n+1)} = f_2(x_1^{(n)}, x_2^{(n)}). \end{cases}$$

2. Méthodes de point fixe

Conditions de convergence :

Soit
$$J_a = \begin{bmatrix} \frac{\partial f}{\partial u_1}(a) & \frac{\partial f}{\partial u_2}(a) \dots \\ \frac{\partial f}{\partial u_1}(a) & \frac{\partial f}{\partial u_2}(a) \dots \end{bmatrix}$$
 jacobienne de f en a .

- On note $\rho(J_a) = \max |\lambda_i|$, le rayon spectral de J_a (λ_i = valeurs propres).
- Condition nécessaire : $\rho(J_{x_{sol}}) < 1$. Suffisante si $x^{(0)}$ dans un certain voisinage.
- Condition suffisante : $\sqrt{\rho(J_x^tJ_x)} \le M < 1$ sur un voisinage de x_{sol} et $x^{(0)}$ pris dans ce voisinage.
- Interprétation : « Le couplage ne doit pas être trop fort ».

2. Méthodes de point fixe

- Propriété de convergence :
 - Convergence linéaire :

$$\exists a, k, \qquad ||x^{(n)} - x_{sol}|| \le a. k^n ||x^{(0)} - x^{(1)}||$$

- Si on a $\sqrt{\rho(J_x^t J_x)} \le M < 1$ sur un voisinage de x_{sol} , alors M peut jouer le rôle de k.
- Interprétation : « Converge d'autant plus vite que le couplage est faible ».

3. Accélérations du point fixe

Relaxation :

- On pose $x^{(n+1)} = (1 \alpha)x^{(n)} + \alpha f(x^{(n)})$, avec $\alpha > 0$.
- $\alpha_{\text{optimum}} = \frac{1}{1 f'(x_{\text{sol}})}$ à une dimension.
- $\alpha_{\rm optimum}$ dépend des propriétés de la solution, elle-même inconnue...

3. Accélérations du point fixe

- \triangle Δ^2 d'Aitken (1 dimension):
 - Consiste à chercher la relaxation optimale en posant :

$$f'(x_{sol}) = \frac{f(x^{(n+1)}) - f(x^{(n)})}{x^{(n+1)} - x^{(n)}}.$$

S'exprime généralement ainsi (Aitken-Steffensen) :

$$x^{(n+1)} = x^{(n)} - \frac{\left(\Delta x^{(n)}\right)^2}{\Delta^2 x^{(n)}}$$

$$= x^{(n)} - \frac{\left(f(x^{(n)}) - x^{(n)}\right)^2}{\left(f(x^{(n)}) - f(x^{(n)})\right) - \left(f(x^{(n)}) - x^{(n)}\right)}.$$

- Plusieurs généralisations à plus d'une dimension.

3. Accélérations du point fixe

- Accélération d'Anderson (n dimensions) :
 - On pose $x^{(n+1)} = \sum_{i=0}^{m} \alpha_i f(x^{(n-i)})$
 - Les α_i minimisent $\|\sum_{i=0}^m \alpha_i (f(x^{(n-i)}) x^{(n-i)})\|$ sous la contrainte $\sum_{i=0}^m \alpha_i = 1$.
 - Revient, lorsque f est linéaire, à chercher $x_{min} = \sum_{i=0}^{m} \alpha_i x^{(n-i)}$ qui minimise la norme du résidu $f(x_{min}) x_{min}$ dans l'espace engendré par $\{x^{(n-m)}, \dots, x^{(n)}\}$.
 - m est généralement pris à 2 ou 3.

4. Algorithme de Newton

Ecriture du problème sous la forme :

$$F(x) = \begin{pmatrix} F_1(x_1, x_2) \\ F_2(x_1, x_2) \end{pmatrix} = 0, \ x = (x_1, x_2).$$

- Soit J_x jacobienne de F en x.
- Algorithme :
 - \blacksquare On se donne $x^{(0)}$
 - Pour k = 1, 2... jusqu'à convergence :
 - Résoudre $J_{x^{(k-1)}}\delta x = -F(x^{(k-1)})$ en δx ,
 - Poser $x^{(k)} = x^{(k-1)} + \delta x$.

4. Algorithme de Newton

- Condition de convergence :
 - $-K||x^{(0)} x_{sol}|| < 1$, K étant une mesure de la non-linéarité de F autour de la solution :

$$K = \max_{x \in B(x_{sol}, \|x_{sol} - x^{(0)}\|)} \left(\frac{1}{2} \|J_x^{-1}\| \|D^2 F_x\|\right)$$

Interprétation : « La convergence est toujours possible, pourvu qu'on soit suffisamment proche de la solution. »

4. Algorithme de Newton

- Propriété de convergence :
 - Convergence quadratique (très rapide!) :

$$||x^{(n)} - x_{sol}|| \le \frac{(K||x^{(0)} - x_{sol}||)^{2^n}}{K}$$

Optimale.

5. Variantes du Newton

- Introduction d'une relaxation α :
 - \blacksquare On se donne $x^{(0)}$
 - Pour k = 1, 2... jusqu'à convergence :
 - Résoudre $J_{x^{(k-1)}}\delta x = -F(x^{(k-1)})$ en δx ,
 - Poser $x^{(k)} = x^{(k-1)} + \alpha \delta x$.

 $0 < \alpha \le 1$, déterminé pour assurer que $||x^{(k)} - x_{sol}|| < ||x^{(k-1)} - x_{sol}||$

Plus robuste à une mauvaise initialisation, α retourne à 1 dès que possible.

5. Variantes du Newton

- Entre deux solveurs échangeant un petit nombre de variables, l'un des deux étant basé sur un algorithme Newton en interne :
 - Solveur 1 calcule les $\frac{\partial(x_1)_i}{\partial(x_2)_j}$.
 - Solveur 2, basé sur Newton, modifié (résolution de δx_2):

$$(x_1)_i \to (x_1)_i^{k-1} + \sum_j \frac{\partial (x_1)_i}{\partial (x_2)_j} (\delta x_2)_j$$

6. Une variante célèbre du Newton : le JFNK (Jacobian-free Newton-Krylov)

Principe :

- Algorithme de Newton basé sur un algorithme itératif pour résoudre le système linéaire $J_{x^{(k-1)}}\delta x = -F(x^{(k-1)})$.
- A chaque itération de la résolution du problème linéaire, la jacobienne n'intervient qu'en multipliant un vecteur.
- On utilise l'approximation :

$$J_{u}v = \frac{F(u + \varepsilon v) - F(u)}{\varepsilon}$$

Un appel des codes à chaque itération de la résolution du problème linéaire. La jacobienne n'a pas à être calculée ni stockée.

- 6. Une variante célèbre du Newton : le JFNK (Jacobian-free Newton-Krylov)
- Avantage :
 - Comportement d'un Newton entre solveurs couplés « en boîte noire ».
- Inconvénient :
 - Un appel des codes par itération du solveur linéaire : peut être cher.
 - A dans les faits besoin d'un bon préconditionnement.
 - Paramétrage un peu délicat.

7. Utilisation de ces techniques de couplage en physique des réacteurs

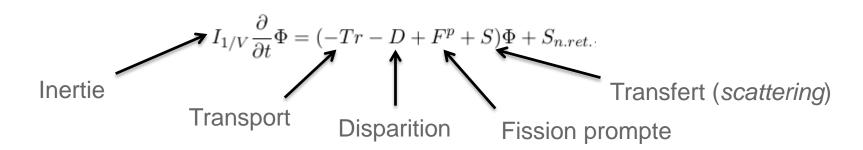
- Point-fixe (parfois avec relaxation) = très répandu par « les utilisateurs » : assez robuste et facile à faire !
- Newton = usage normal en interne solveur. Convergence optimal, robuste sauf pathologie.
- JFNK beaucoup étudié mais le bilan semble contrasté.
- Pas mal de techniques d'accélération de point fixe ou de variantes de Newton n'ont pas encore été beaucoup regardées semble-t-il.

SOMMAIRE

- I. Méthodes générales de résolution numérique de problèmes couplés discrétisés
- II. La factorisation « quasi-statique » du flux neutronique pour des problèmes multiphysiques
- III. Exemple de résolution intriquée
- IV. Conclusion

1. Présentation de la factorisation quasi-statique

- **Factorisation QS** : Méthode de résolution des équations cinétiques :
 - Allège la contrainte sur le pas de temps neutronique.
 - Permet ainsi de travailler sur le couplage ?
- Basée sur un constat : souvent peu d'évolution de la forme de la nappe de puissance.
- Définitions d'opérateurs :



1. Présentation de la factorisation quasi-statique

Principe: factorisation du flux en une fonction amplitude N et une fonction de forme \mathcal{F} :

$$\Phi(\overrightarrow{r}, \overrightarrow{\Omega}, E, t) = N(t)\mathcal{F}(\overrightarrow{r}, \overrightarrow{\Omega}, E, t).$$

- ightharpoonup N calculée avec des pas de temps fins en association avec les autres disciplines, \mathcal{F} mise à jour plus rarement (coûte cher).
- Nécessité de rajouter une condition pour définir la factorisation :

$$\langle I_{1/V} \mathcal{F}(t), \Phi_0^* \rangle = K(t)$$

Fonction de pondération. Flux adjoint de l'état initial utilisé.

1. Présentation de la factorisation quasi-statique

Injection de la factorisation, et produit scalaire avec Φ_0^* :

$$N\left\langle I_{1/V}\frac{\partial}{\partial t}\mathcal{F},\Phi_{0}^{*}\right\rangle + \frac{\partial N}{\partial t}\left\langle I_{1/V}\mathcal{F},\Phi_{0}^{*}\right\rangle = N\left\langle (-Tr-D+F^{p}+S)\mathcal{F},\Phi_{0}^{*}\right\rangle + \left\langle S_{n.ret.},\Phi_{0}^{*}\right\rangle$$

Nul grâce à la condition

Généralise notion de réactivité à la cinétique!

$$\rho = \frac{\langle (-Tr - D + F + S)\mathcal{F}, \Phi_0^* \rangle}{\langle F\mathcal{F}, \Phi_0^* \rangle}, \ \beta_{eff} = \frac{\langle \sum_l F_l^d \mathcal{F}, \Phi_0^* \rangle}{\langle F\mathcal{F}, \Phi_0^* \rangle}, \ \Lambda = \frac{\langle I_{1/V} \mathcal{F}, \Phi_0^* \rangle}{\langle F\mathcal{F}, \Phi_0^* \rangle}, \ c_l = \frac{\langle \chi_l C^l, \Phi_0^* \rangle}{\langle I_{1/V} \mathcal{F}, \Phi_0^* \rangle}$$

Avec

$$\beta_{eff}^{l} = \frac{\left\langle F_l^d \mathcal{F}, \Phi_0^* \right\rangle}{\left\langle F \mathcal{F}, \Phi_0^* \right\rangle}$$

1. Présentation de la factorisation quasi-statique

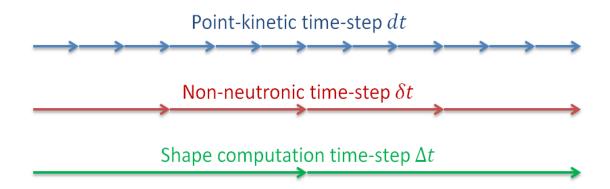
- Equation sur la forme obtenue en injectant la factorisation dans l'équation initiale.
- Le système quasi-statique :

$$\left\{ \begin{array}{l} I_{1/V} \left(\frac{\partial}{\partial t} \mathcal{F} + \mathcal{F} \frac{1}{N} \frac{\partial N}{\partial t} \right) = (-Tr - D + F^p + S) \mathcal{F} + \frac{S_{n.ret.}}{N} \\ \frac{\partial C^l}{\partial t} = -\lambda_l C^l + N \sum_{g'} \beta_l \nu \sigma_f^{g'} \mathcal{F}^{g'} \\ \frac{\partial N}{\partial t} = \frac{\rho - \beta_{eff}}{\Lambda} N + \sum_l \lambda_l c_l \\ \frac{\partial c_l}{\partial t} = -\lambda_l c_l + \frac{\beta_{eff}^l}{\Lambda} N. \end{array} \right\} \text{Cinétique point : évolution de l'amplitude}$$

- Equivalent à la cinétique spatiale classique à pas de temps convergé.
- Utilisée depuis longtemps dans les codes de neutronique, mais pas pour le couplage.

2. Principe de son utilisation pour des couplages

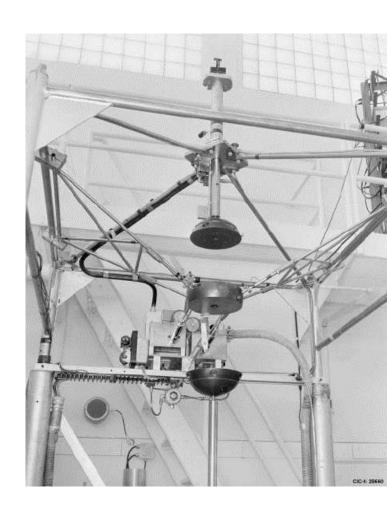
- Couplage cinétique-point avec les autres disciplines sur un pas de temps court.
- Mise à jour de la forme du flux plus rarement.



3. Présentation de l'expérience

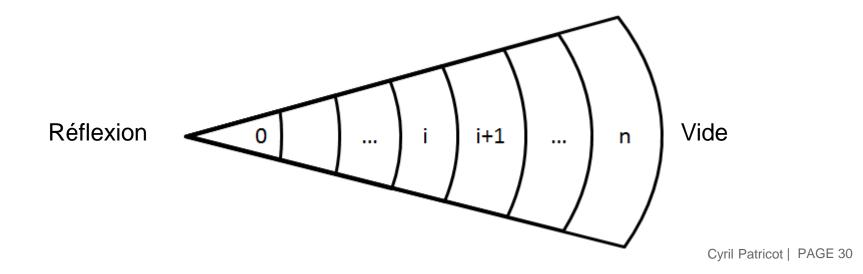
Godiva

- Expérience américaine des années 50 (et déclassifiée).
 - Sphère d'uranium métallique enrichi à 93.5% en U5. Rayon de 8.7407cm (52kg).
 - Excursions critiques promptes : Dilatation thermique (d'après PSI $\approx +40^{\circ}C$ et +0.1% en volume), d'où étouffement de la réaction en chaîne. $\approx 5.10^{-4}s$.



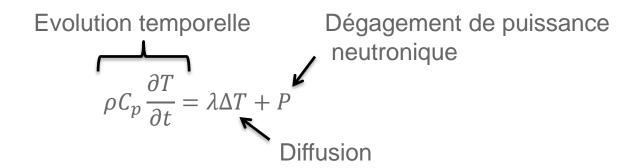
4. Les modèles couplés

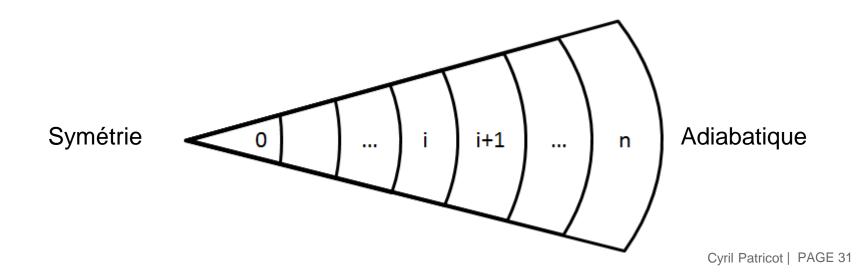
- Neutronique : transport simplifié (SP3) cinétique simulé par diffusion (9 groupes d'énergie).
 - Prise en compte du sens de propagation des neutrons.
 - « Simulé » pour réutiliser un solveur de diffusion.



4. Les modèles couplés

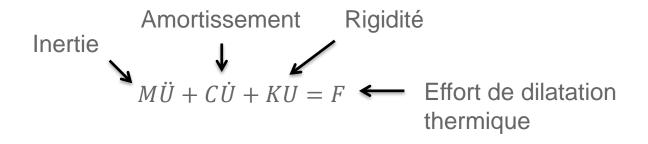
Thermique: diffusion instationnaire adiabatique.

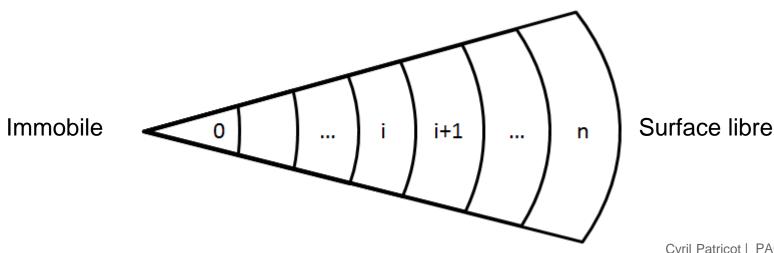




4. Les modèles couplés

Mécanique : thermoélasticité dynamique linéaire isotrope.



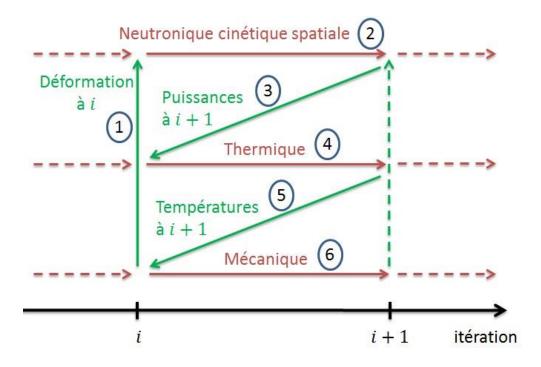


5. Physique du couplage

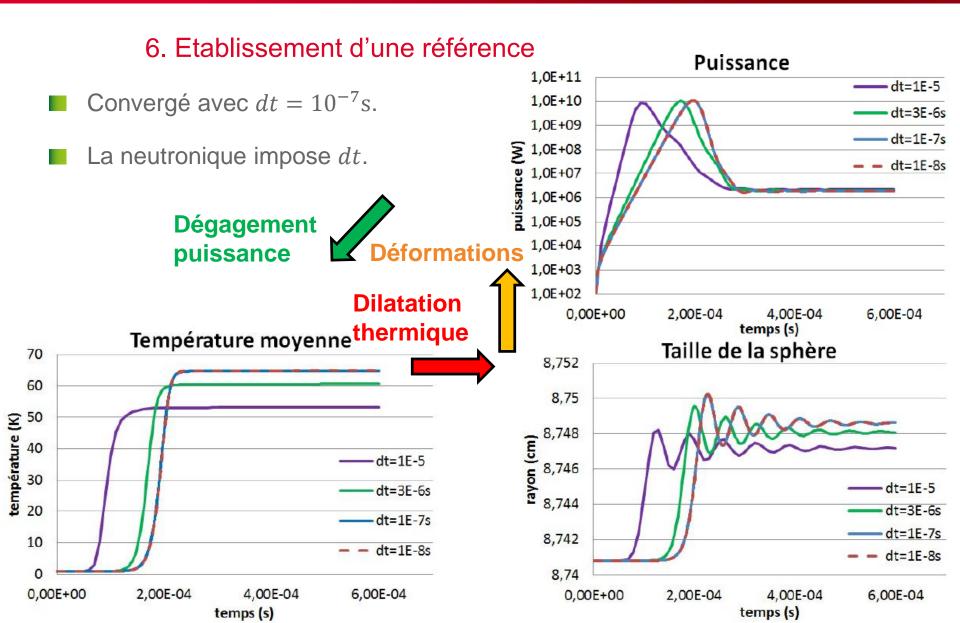
- Mécanique → Neutronique :
 - Dilatation du milieu d'où augmentation des fuites neutroniques.
- Neutronique → Thermique :
 - Dégagement de puissance.
- Thermique → Mécanique :
 - Dilatation thermique.
- Autres effets négligeables (notamment pas de Doppler : spectre très dur et peu d'U8).

6. Etablissement d'une référence

Schéma pour un pas de temps :



Itérations à chaque pas de temps pour converger sur un schéma implicite en temps.



6. Etablissement d'une référence

Comparaison à l'expérience et à PSI :

Grandeur	Expérience	Calcul PSI	Nos résultats
"Période" (temps de multiplication par e	$11.6\mu s$	$11.7\mu s$	$11.6 \mu s$
de la puissance sans contre-réaction)			
Excès en réactivité initial	1.082\$		758pcm,
			soit 1.065\$
Puissance maximale	$8.6 \mathrm{GW}$	$5.2 \mathrm{GW}$	10.8GW
Elévation de température moyenne finale		38K	65K
Variation de volume		0.13%	0.27%

Physique des phénomènes bien captée.

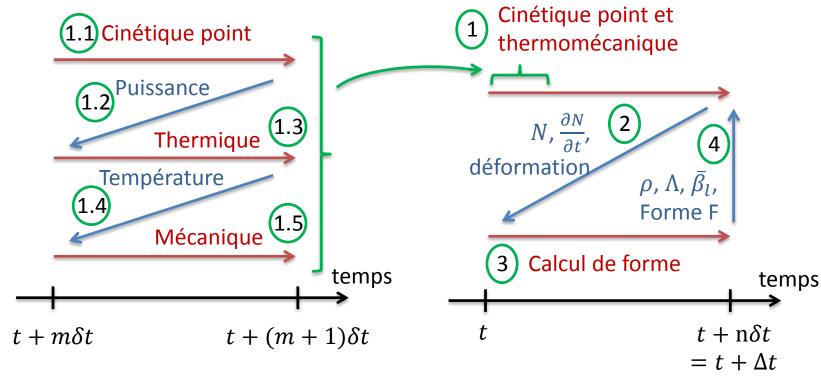
Temps de calcul : 5h38

7. Introduction de la factorisation QS

Schéma à deux niveaux :

Sur un pas de temps fin δt fixé à $10^{-7}s$:

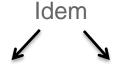
Sur un pas de temps large Δt :



Un seul passage ici (pas d'itération).

7. Introduction de la factorisation QS

Résultats :



Grandeur	Référence	$\mathbf{Q}\mathbf{S}$	$\mathbf{Q}\mathbf{S}$	
	$(\mathbf{dt} = \mathbf{10^{-7}s})$	$\Delta ext{t} = 10^{-7} ext{s}$	$\Delta ext{t} = 10^{-5} ext{s}$	
Puissance	10.8GW	$10.9 \mathrm{GW}$	16.4GW	
maximale				
Elévation de	65K	66K	89K	
température				
moyenne finale				
Variation de	0.27%	0.27%	0.37%	
volume				
Temps de	5h38	5h57	13min	
calcul				

Gain max envisageable grâce à la réduction du nombre d'appels à la cinétique de forme

8. Amélioration du couplage avec $\Delta t = 10^{-5} s$

- Idée : lever l'hypothèse ρ (réactivité, paramètre clef de la cinétique point) constante sur Δt .
- Trois techniques de couplage testées :
 - Gauss-Seidel : Itérations à chaque pas de temps. Interpolation linéaire de la réactivité à partir de la deuxième itération :

$$\rho(t + m\delta t) \approx \rho(t) + \frac{m\delta t}{\Delta t} (\rho(t + \Delta t) - \rho(t))$$

- Prédiction par extrapolation linéaire de la réactivité :

$$\rho(t + m\delta t) \approx \rho(t) + \frac{m\delta t}{\Delta t}(\rho(t) - \rho(t - \Delta t))$$

Prédiction par contre-réaction mécanique :

Rayon de la sphère

$$\rho(t+m\delta t) \approx \rho(t) + \frac{\rho(t) - \rho(0)}{r(t) - r(0)} (r(t+m\delta t) - r(t))$$

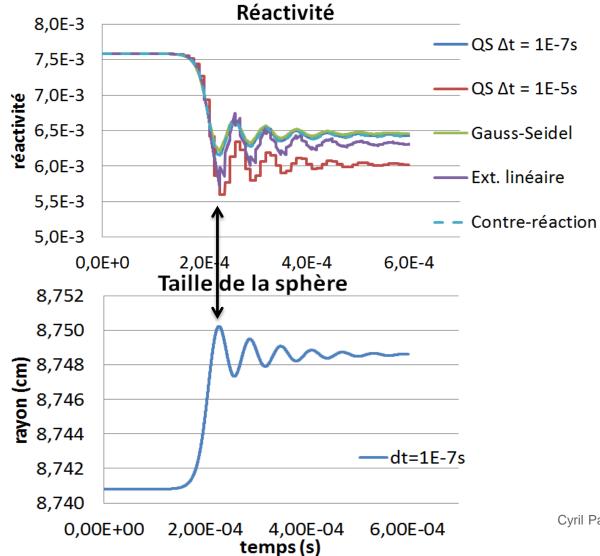
8. Amélioration du couplage avec $\Delta t = 10^{-5} s$

Résultats :

Grandeur	$\mathbf{Q}\mathbf{S}$	$egin{array}{c} \mathbf{QS} \ \mathbf{\Delta t} = \mathbf{10^{-5}s} \ \end{array}$	Gauss-	Extra-	Contre-
	$\Delta \mathrm{t} = 10^{-7} \mathrm{s}$	$\Delta ext{t} = 10^{-5} ext{s}$	Seidel	polation	réaction
				linéaire	
Puissance	10.9GW	16.4GW	10.5GW	12.6GW	11.0GW
maximale					
Elévation de	66K	89K	64K	72K	66K
température					
moyenne finale					
Variation de	0.27%	0.37%	0.27%	0.30%	0.28%
volume					
Temps de	5h57	13min	25min	14min	14min
calcul					

Gauss-Seidel et surtout contre-réaction très efficaces ! Gauss-Seidel ne nécessite pas de connaissance a priori

8. Amélioration du couplage avec $\Delta t = 10^{-5} s$



SOMMAIRE

- I. Méthodes générales de résolution numérique de problèmes couplés discrétisés
- II. La factorisation « quasi-statique » du flux neutronique pour des problèmes multiphysiques
- III. Exemple de résolution intriquée
- IV. Conclusion

1. Contexte du travail présenté

- **Objectif** : démontrer la faisabilité d'un solveur générique et véritablement multidisciplinaire, mêlant neutronique et thermomécanique.
- **Modèles** : calcul transitoire, phénoménologie identique à Godiva.
- **Démarche** : résoudre ensemble les systèmes linéaires issus des problèmes discrétisés (éléments finis). Schéma temporel implicite.

2. Modèles couplés

Neutronique : diffusion en cinétique. C_l éliminé sur chaque pas de temps par résolution analytique.

$$A_{total}\Phi(\Delta t) = S_{total}$$

 A_{total} et S_{total} construits à partir de matrices simples :

$$- (K_{ne})_{ij}^g = \int_{\Omega} D^g \underline{\nabla} \xi_i . \underline{\nabla} \xi_j d\Omega, \qquad \longrightarrow \text{ Diffusion des neutrons}$$

$$- (R)_{ij} = \int_{\Omega} \sigma \xi_i \xi_j d\Omega, \qquad \longrightarrow \text{ Interactions avec la matière}$$

$$- (M)_{ij} = \int_{\Omega} \xi_i \xi_j d\Omega. \qquad \longrightarrow \text{ Effets d'inertie}$$

Dépendance non linéaire aux déformations mécaniques

2. Modèles couplés

Mécanique : On simplifie un peu en se mettant en quasi-statique.

$$KU = F$$

$$(K)_{ij} = \int_{\Omega_0} \left(\lambda Tr(\underline{b_i}) Tr(\underline{b_j}) + 2\mu Tr(\underline{b_i} \cdot \underline{b_j}) \right) d\Omega_0 \quad \longrightarrow \quad \text{Rigidit\'e m\'ecanique}$$

$$(F)_i = \int_{\Omega_0} 3\kappa \alpha (T - T_0) Tr(\underline{b_i}) d\Omega_0. \quad \longrightarrow \quad \text{Dilatation thermique}$$

Linéaire en la température

2. Modèles couplés

Thermique: Diffusion thermique cinétique

$$A_{th}\mathcal{T}(\Delta t) = B_{th},$$
 Capacité thermique Diffusion thermique
$$-(A_{th})_{ij} = \frac{1}{\Delta t} \int_{\Omega_0} \rho C_p \xi_i \xi_j d\Omega_0 + \int_{\Omega_0} \lambda \nabla \xi_i \nabla \xi_j d\Omega_0,$$

$$-(B_{th})_i = \frac{1}{\Delta t} \int_{\Omega_0} \rho C_p \left(\sum_j \mathcal{T}_j(0)\xi_j\right) \xi_i d\Omega_0 + \int_{\Omega_0} P \xi_i d\Omega_0.$$
 Effet d'historique Dégagement de puissance,

Linéaire en la puissance neutronique

3. Couplage

Schéma implicite convergé avec algorithme de **Newton** : Jacobienne obtenue :

$$J_X = \left(\begin{array}{ccc} K & C_{TM} & 0\\ 0 & A_{th} & C_{NT}\\ C_{MN} & 0 & A_{total} \end{array}\right)$$

- C_{TM} issue du second membre mécanique :

$$(F)_{i} = \sum_{j} \underbrace{\int_{\Omega_{0}} 3\kappa \alpha \xi_{j} Tr(\underline{b_{i}}) d\Omega_{0}}_{-(C_{TM})_{ij}} \mathcal{T}_{j} \underbrace{-\int_{\Omega_{0}} 3\kappa \alpha T_{0} Tr(\underline{b_{i}}) d\Omega_{0}}_{(F')_{i}}$$

 $-C_{NT}$ du thermique :

$$(B_{th})_i = \underbrace{\frac{1}{\Delta t} \int_{\Omega_0} \rho C_p \left(\sum_j \mathcal{T}_j(0) \xi_j \right) \xi_i d\Omega_0}_{(B_{th})'_i} + \underbrace{\sum_{g,j} \underbrace{\int_{\Omega_0} K^g \xi_j \xi_i d\Omega_0}_{-(C_{NT})^g_{ij}} \phi_j^g}$$

3. Couplage

Schéma implicite convergé avec algorithme de **Newton** : Jacobienne obtenue :

$$J_X = \left(\begin{array}{ccc} K & C_{TM} & 0\\ 0 & A_{th} & C_{NT}\\ C_{MN} & 0 & A_{total} \end{array}\right)$$

Expression de C_{MN} : $C_{MN} = C_{MN}^S + C_{MN}^A$ avec:

$$(C_{MN}^S)_{ij}^{g'\to g} = -\delta_{g,g'} \frac{1}{V^g \Delta t} \sum_k \int_{\Omega_0} \bar{\xi_i} \bar{\xi_k} Tr(\underline{b_j}) d\Omega_0 \phi_k^g(0)$$

$$(C_{MN}^A)_{ij}^{g' \to g} =$$

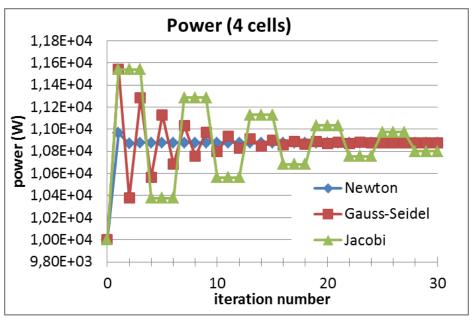
$$\delta_{g,g'} \sum_{k} \left(\frac{1}{V^g \Delta t} \int_{\Omega_0} \bar{\xi_i} \bar{\xi_k} Tr(\underline{b_j}) d\Omega_0 + \int_{\Omega_0} 2D_0^g (Tr(\underline{b_j}) \underline{Id} - \underline{b_j}) \underline{\nabla_0} \bar{\xi_i} . \underline{\nabla_0} \bar{\xi_k} d\Omega_0 \right) \phi_k^g(\Delta t)$$

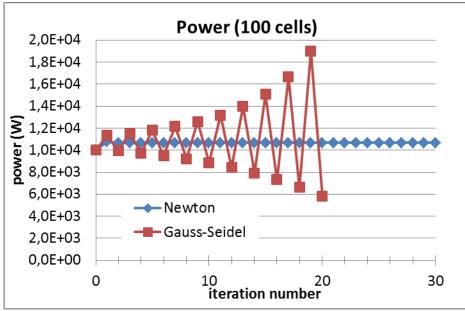
4. Cas « académique » considéré

- Rectangle 2D 10cm*8cm, 4 et 100 mailles identiques.
- Flux neutronique et température nuls au bord. Déplacements d'un coin nuls. Celui en X d'un autre coin également nul pour empêcher les rotations.
- Caractéristiques thermomécaniques de Godiva, sauf la capacité thermique qui est multipliée par 10^{-6} pour accélérer l'évolution de T.
- Diffusion neutronique 2 groupes. 1 groupe de précurseurs ($\beta = 500$ pcm).
- Puissance initiale de 10^4 W. K_{eff} initial de 1.006 (surcritique prompte).
- \blacksquare 1 pas de temps de 10^{-4} s.

5. Résultats

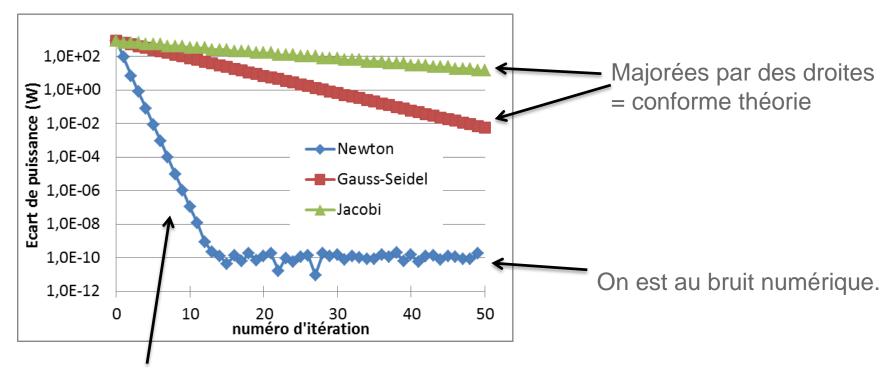
- Méthodes de point fixe pas toujours convergentes.
- Newton converge très vite!
- Jacobi très lent.





5. Résultats

En terme de vitesse de convergence (écart à la solution obtenue après 50 itérations de Newton) :



Droite ≠ théorie ! Quelques approximations dans le calcul de la jacobienne.

SOMMAIRE

- I. Méthodes générales de résolution numérique de problèmes couplés discrétisés
- II. La factorisation « quasi-statique » du flux neutronique pour des problèmes multiphysiques
- III. Exemple de résolution intriquée
- **IV.** Conclusion

4. CONCLUSION

- Résoudre un couplage ne se limite pas à faire de la tuyauterie !
- De nombreux algorithmes génériques n'ont pas encore été testés en physique des réacteurs.
- En prenant en compte les spécificités des disciplines, il est peut-être possible d'inventer de meilleures méthodes de couplage :
 - Intérêt de la factorisation quasi-statique à confirmer.
 - « Intrication » de la résolution ?
- Attention, un couplage peut parfois poser des vraies questions de **modélisation** et donc de **V&V**!

