DE LA RECHERCHE À L'INDUSTRIE

HIGHER ORDER ACCELERATED MOC METHOD

by Laurent Graziano & Simone Santandrea

www.cea.fr

METHOD OF CHARACTERISTICS (MOC)

(

 source iterative solution (one-group problem)

$$(2 \cdot \nabla + \Sigma)\psi^{(n+1)} = q^{(n)}$$

 $\psi_{in}^{(n+1)} = \beta \psi_{out}^{(n)} + \psi_0$

$$\begin{array}{l} q^{(n)} = H\psi^{(n)} + S \\ albedo \ operator \ \beta: \psi_{out} \rightarrow \psi_{in} \end{array}$$

angular approximation

 $\psi(\mathbf{r},\Omega)$

$$S_N = \{w_n, \Omega_n, n = 1, N\} \to \frac{1}{4\pi} \int_{(4\pi)} d\Omega f(\Omega) \sim \sum_n w_n f(\Omega_n)$$

flat flux approximation over homogeneous regions

$$egin{aligned} D &= igcup_i D_i \ , \ D_i \ of \ homogeneous \ support \ \psi(\mathbf{r},\Omega) &\sim \sum_i \psi_i(\Omega) heta_i(\mathbf{r}) \end{aligned}$$

MOC 1 : DISCRETIZATION SCHEME

numerical implementation based on trajectories

(in 2D XY 'planar' trajectories are lifted to polar directions)

□ balance equation along a trajectory

$$\begin{split} \psi_{+,i}(t,\Omega) - \psi_{-,i}(t,\Omega) + \sum_{i} R_{i}(t,\Omega)\psi_{i}(t,\Omega) &= R_{i}(t,\Omega)q_{i}^{(n)}(\Omega) \\ \downarrow \\ V_{i}\psi_{i}(\Omega) &= \int_{(i)} dr \,\psi(r,\Omega) \sim \sum_{t \parallel \Omega} \omega_{\perp}(t,\Omega)R_{i}(t,\Omega)\psi_{i}(t,\Omega) \end{split}$$

MOC 2 : DISCRETIZATION SCHEME

propagation equation across a region (flat source approximation)

$$\underbrace{\psi_{+}(\mathbf{r}, \mathbf{\Omega}) = e^{-\tau(r, r_{in})}\psi_{-}(\mathbf{r}_{in}, \mathbf{\Omega}) + \int_{0}^{R(t, \mathbf{\Omega})} dR' e^{-\tau(\mathbf{r}, \mathbf{r}')}q(\mathbf{r}', \mathbf{\Omega})}_{\downarrow} \qquad (\mathbf{r}' = \mathbf{r} - R'\mathbf{\Omega})$$
$$\underbrace{\psi_{+,i}(t, \mathbf{\Omega}) = T_{i}(t, \mathbf{\Omega}) \times \psi_{-,i}(t, \mathbf{\Omega}) + E_{i}(t, \mathbf{\Omega}) \times q_{i}^{(n)}(\mathbf{\Omega})}_{i}$$

 $\textit{transmission \& escape coefficients : } T_i(t, \mathbf{\Omega}) = e^{-\Sigma_i R_i(t, \mathbf{\Omega})}, \quad E_i(t, \mathbf{\Omega}) = \frac{1 - T_i(t, \mathbf{\Omega})}{\Sigma_i}$

Cea

HIGHER ORDER BALANCE EQUATION: A CONSISTENCY PROBLEM

Defining a scalar product on a chord

$$\langle f,g\rangle_L = \int_0^L dt\,f(t)g(t),$$

the following generalized average balance per chord can be written

$$\Sigma_r \left\langle \vec{P}, \Psi_r \right\rangle_L = \left\langle \vec{P}, \vec{P} \right\rangle_L \vec{q_r} + \vec{P}(0)\Psi_r(0) - \vec{P}(L)\Psi_r(L) + \left\langle \frac{\partial \vec{P}}{\partial t}, \Psi_r \right\rangle_L, \text{(Sanchez 2012)}$$

so that defining the polynomial coupling region matrix

$$P\bar{P}(\vec{\Omega}) = \frac{1}{V_r} \int_r d\vec{r} \ \vec{P}(\tilde{z}) \otimes \vec{P}(\tilde{z}) \simeq \frac{1}{V_r(\vec{\Omega})} \sum_{\substack{t \parallel \vec{\Omega} \\ t \cap r}} \left\langle \vec{P}, \vec{P} \right\rangle_{L_t},$$

the « polynomial angular » balance equation is:

$$\bar{\bar{C}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ \frac{1}{\Delta z/2} & 0 & 0 & 0 \\ 0 & \frac{2}{\Delta z/2} & 0 & 0 \\ 0 & 0 & \frac{3}{\Delta z/2} & 0 \\ 0 & 0 & \ddots & \ddots \end{bmatrix}.$$

$$\Sigma_r \,\,' \vec{\Psi}_r(\vec{\Omega}) = P \bar{P}(\vec{\Omega}) \cdot \vec{q}_r(\vec{\Omega}) - \Delta \vec{J}_r(\vec{\Omega}) + \mu \,\, \bar{\bar{C}} \,\,' \vec{\Psi}_r(\vec{\Omega}).$$

CEA | 2 FEBRUARY 2017 5

BALANCE FROM ANGLE TO MOMENTS

The collision/fission operators use angular moments in the place of angular fluxes: $\vec{\Phi}_r^n = \oint \frac{d\vec{\Omega}}{4\pi} A_n(\vec{\Omega}) \vec{\Psi}_r(\vec{\Omega}).$

Recall also that a « correspondence » exists between spatial moment and coefficients $\vec{\Psi}_r(\vec{\Omega}) = P\bar{P}^{-1} \cdot '\vec{\Psi}_r(\vec{\Omega})$

If you define then the suite of angular-polynomial function base

$$\vec{\mathbf{Z}}(\tilde{z},\vec{\Omega}) = \{A^{0}(\vec{\Omega})P_{0}(\tilde{z}), A^{1}(\vec{\Omega})P_{0}(\tilde{z}), ..., A^{0}(\vec{\Omega})P_{1}(\tilde{z}), A^{1}(\vec{\Omega})P_{1}(\tilde{z}), ...\}$$

and project with over this in angle-space you get

$$\Sigma_r \ '\vec{\Phi}_r = \mathcal{Z}\mathcal{Z} \cdot \vec{q}_r - \oint \frac{d\vec{\Omega}}{4\pi} \ \vec{A}(\vec{\Omega}) \otimes \Delta \vec{J}_r(\vec{\Omega}) + \mathcal{D} \cdot '\vec{\Phi}_r. \quad \mathcal{Z}\mathcal{Z} = \oint \frac{d\vec{\Omega}}{4\pi} \ \left(\vec{A}(\vec{\Omega}) \otimes \vec{A}(\vec{\Omega})\right) \otimes \vec{PP}(\vec{\Omega})$$

which in the typical "free" iteration scheme (index "i") takes an easy to solve lower triangular form:

$$\Sigma_r \,\,'\vec{\Phi}_{r,p}^{\ i} = \left(\boldsymbol{\mathcal{Z}}\boldsymbol{\mathcal{Z}}\cdot\vec{q}_r^{\ i-1}\right)_p - \frac{1}{4\pi} \oint d\vec{\Omega} \,\,\vec{A}(\vec{\Omega}) \otimes \left(\Delta\vec{J}_r(\vec{\Omega})\right)_p^i + \frac{p}{\Delta z/2} \cdot \bar{\bar{\alpha}}_p \cdot \,\,'\vec{\Phi}_{r,p-1}^{\ i} \quad 6$$

Cea

DP_N: SYNTHETIC ACCELERATION

$$\psi_{\pm}(\mathbf{r},\Omega) \sim \vec{A}_{S}(\Omega) \cdot \sum_{\alpha \in \partial i} \vec{\psi}_{\pm,\alpha} \theta_{\alpha}(\mathbf{r})$$

$$\vec{I}_{\alpha} = \frac{1}{4\pi S_{\alpha}} \int_{\alpha} dS \int_{(4\pi)} d\Omega \left| \Omega n \right| \vec{Z} \ \psi \underset{DPn}{\sim} A_{\alpha,+} \ \vec{\psi}_{\alpha,+}$$

$$A_{\alpha,+} = \frac{1}{4\pi S_{\alpha}} \int_{\alpha} dS \int_{(2\pi+)} d\Omega \vec{Z} \otimes \vec{Z} = ppA_{\alpha,-}$$

propagation & balance equations :

$$\begin{bmatrix} \vec{J}_{\alpha_v}^+ \\ \vec{J}_{\alpha_h}^+ \end{bmatrix} = \sum_{\beta \in r} \begin{bmatrix} \mathcal{T}_{\alpha_v^+ \beta_v^-} & \mathcal{T}_{\alpha_v^+ \beta_h^-} \\ \mathcal{T}_{\alpha_h^+ \beta_v^-} & \mathcal{T}_{\alpha_h^+ \beta_h^-} \end{bmatrix} \cdot \begin{bmatrix} \vec{\Phi}_{\beta_v}^- \\ \vec{\Phi}_{\beta_h}^- \end{bmatrix} + \begin{bmatrix} \boldsymbol{\mathcal{E}}_{\alpha_v^+} \\ \boldsymbol{\mathcal{E}}_{\alpha_h^+} \end{bmatrix} \cdot \vec{q}_r,$$

$$(\Sigma_r - \boldsymbol{\mathcal{D}}) \cdot \vec{\Phi}_r = \boldsymbol{\mathcal{Z}} \boldsymbol{\mathcal{Z}}_D \cdot \vec{q}_r - \frac{1}{V_r} \sum_{\alpha \in r} \left(\vec{J}_{\alpha}^+ - \vec{J}_{\alpha}^- \right),$$

• After "some" algebra a multi-collisional version of the DP_N operator is used to solve: $\dagger \tau = (\tilde{\tau} + \tilde{c}^+ \Sigma g + \tau)$

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

GOING TO AXIAL 3D GEOMETRIES

The basic difficulty for 3D MOC calculation is that we cannot store realistic 3D tracking data. To avoid this we consider only (at the beginning!) 3D axial geometries:

For these geometries the 3D tracking can be decomposed into 2 phases:

- 1. Tracking a general 2D geometry on the x-y plane
- 2. Tracking a cartesian geometry on the s-z plane

Only 1 need to be stored but reconstruct 2 can be too expensive!

OPTIMIZED 3D TRACKING

Thanks to axial regularity the set of 3D chords can be decomposed into a low number of classes that not only allow to reduce memory but also to decrease computational cost.

Thus, transmission coefficients,

$$T_i(t, \mathbf{\Omega}) = e^{-\Sigma_i R_i(t, \mathbf{\Omega})}$$

are computed only per class and medium.

ASTRID REACTOR EXAMPLE: 2D SECTION

| PAGE 10

ASTRID REACTOR: AXIAL VIEW

| PAGE 11 R

ASTRID REACTOR CALCULATIONS

Half-Column Fuel Sub-Assembly

ASTRID REACTOR: SECOND CALCULATION

| PAGE 13

ASTRID REACTOR: SECOND CALCULATION

Sub-assembly axial flux profile Step

POLYNOMIAL BASIS DEFINITION

$$\vec{P}(\tilde{z}_r) = \{ \tilde{z}_r^p = \left(\frac{z_r - \bar{z}_r}{\Delta z_r/2} \right)^p, \quad 0 \le p \le N_p \} \qquad \tilde{z}_r \in [-1, 1]$$

$$\vec{P}(\tilde{z}_r) = \{ \tilde{z}_r^p = \left(\frac{z_r - \bar{z}_r}{\Delta z_r / 2} \right)^p, \quad 0 \le p \le N_p \} \qquad \tilde{z}_r \in [-1, 1]$$
$$q(\vec{r}, \vec{\Omega}) = \sum_{n=1}^{N_m} A_n(\vec{\Omega}) \cdot q^n(\vec{r})$$

$$\vec{P}(\tilde{z}_r) = \{ \tilde{z}_r^p = \left(\frac{z_r - \bar{z}_r}{\Delta z_r / 2} \right)^p, \quad 0 \le p \le N_p \} \qquad \tilde{z}_r \in [-1, 1]$$

$$q(\vec{r}, \vec{\Omega}) = \sum_{n=1}^{N_m} A_n(\vec{\Omega}) \cdot q^n(\vec{r})$$
Step approximation $\longrightarrow q^n(\vec{r}) \simeq q_r^n$

$$\vec{P}(\tilde{z}_{r}) = \{\tilde{z}_{r}^{p} = \left(\frac{z_{r} - \bar{z}_{r}}{\Delta z_{r}/2}\right)^{p}, \quad 0 \le p \le N_{p}\} \qquad \tilde{z}_{r} \in [-1, 1]$$

$$q(\vec{r}, \vec{\Omega}) = \sum_{n=1}^{N_{m}} A_{n}(\vec{\Omega}) \cdot q^{n}(\vec{r})$$
Step approximation $\longrightarrow \qquad q^{n}(\vec{r}) \simeq q_{r}^{n}$
Polynomial approximation $\longrightarrow \qquad q^{n}(\vec{r}) = \sum_{p}^{N_{p}} P_{p}(\tilde{z}_{r}) \cdot q_{r,pol,p}^{n}$

$$\vec{P}(\vec{z}_{r}) = \{\vec{z}_{r}^{p} = \left(\frac{z_{r} - \bar{z}_{r}}{\Delta z_{r}/2}\right)^{p}, \quad 0 \leq p \leq N_{p}\} \qquad \tilde{z}_{r} \in [-1, 1]$$

$$q(\vec{r}, \vec{\Omega}) = \sum_{n=1}^{N_{m}} A_{n}(\vec{\Omega}) \cdot q^{n}(\vec{r})$$
Step approximation $\longrightarrow \qquad q^{n}(\vec{r}) \simeq q_{r}^{n}$
Polynomial approximation $\longrightarrow \qquad q^{n}(\vec{r}) = \sum_{p}^{N_{p}} P_{p}(\tilde{z}_{r}) \cdot q_{r,pol,p}^{n}$

$$q(\vec{r}, \vec{\Omega}) = \vec{P}(\tilde{z}_{r}) \cdot \vec{q}_{r,pol}(\vec{\Omega})$$

$$q_{r,pol,p}(\vec{\Omega}) = \sum_{n}^{N_{m}} A_{n}(\vec{\Omega}) \cdot q_{r,pol,p}^{n}$$

• Polynomial transmission equation:

$$q(\vec{r},\vec{\Omega}) = \vec{P}(\tilde{z}_r) \cdot \vec{q}_{r,pol}(\vec{\Omega})$$

$$\Psi(t^{out},\vec{\Omega}) = \Psi(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_r l} + \int_{t^{in}}^{t^{out}} dt' \ q\left(\vec{r}(t'),\vec{\Omega}\right) \ e^{-\Sigma_r(t^{out}-t')}$$

• Polynomial transmission equation:

$$\begin{split} q(\vec{r},\vec{\Omega}) &= \vec{P}(\tilde{z}_r) \cdot \vec{q}_{r,pol}(\vec{\Omega}) \\ \Psi(t^{out},\vec{\Omega}) &= \Psi(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_r l} + \int_{t^{in}}^{t^{out}} dt' \; q\left(\vec{r}(t'),\vec{\Omega}\right) \; e^{-\Sigma_r(t^{out}-t')} \end{split}$$

$$\Psi_{r}(t^{out},\vec{\Omega}) = \Psi_{r}(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_{r}l} + \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} c_{pk} \ \mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \frac{\left(\vec{q}_{r,pol}(\vec{\Omega})\right)_{p}}{\Sigma_{r}}$$

• Polynomial transmission equation:

$$\begin{aligned} q(\vec{r},\vec{\Omega}) &= \vec{P}(\tilde{z}_r) \cdot \vec{q}_{r,pol}(\vec{\Omega}) \\ \Psi(t^{out},\vec{\Omega}) &= \Psi(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_r l} + \int_{t^{in}}^{t^{out}} dt' \; q\left(\vec{r}(t'),\vec{\Omega}\right) \; e^{-\Sigma_r(t^{out}-t')} \end{aligned}$$

$$\Psi_{r}(t^{out},\vec{\Omega}) = \Psi_{r}(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_{r}l} + Binomial coefficient$$

$$+ \sum_{k=0}^{N_{p}} \underbrace{P_{k}(z^{in})}_{p=k} \sum_{p=k}^{N_{p}} \underbrace{C_{pk}}_{p=k} \mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \frac{\left(\vec{q}_{r,pol}(\vec{\Omega})\right)_{p}}{\Sigma_{r}}$$

$$\downarrow PAGE 22$$

• Polynomial transmission equation:

$$\begin{split} q(\vec{r},\vec{\Omega}) &= \vec{P}(\tilde{z}_r) \cdot \vec{q}_{r,pol}(\vec{\Omega}) \\ \Psi(t^{out},\vec{\Omega}) &= \Psi(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_r l} + \int_{t^{in}}^{t^{out}} dt' \; q\left(\vec{r}(t'),\vec{\Omega}\right) \; e^{-\Sigma_r(t^{out}-t')} \end{split}$$

$$\Psi_{r}(t^{out},\vec{\Omega}) = \Psi_{r}(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_{r}l} + \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} c_{pk} \left(\mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \left(\frac{\vec{\eta}_{r,pol}(\vec{\Omega})}{\sum_{r}}\right) + \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} c_{pk} \left(\mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \left(\frac{\vec{\eta}_{r,pol}(\vec{\Omega})}{\sum_{r}}\right) + \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} C_{pk}(\mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \left(\frac{\vec{\eta}_{r,pol}(\vec{\Omega})}{\sum_{r}}\right) + \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} C_{pk}(\mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \left(\frac{\vec{\eta}_{r,pol}(\vec{\Omega})}{\sum_{r}}\right) + \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} C_{pk}(\mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \left(\frac{\vec{\eta}_{r,pol}(\vec{\Omega})}{\sum_{r}}\right) + \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} C_{pk}(\mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \left(\frac{\vec{\eta}_{r,pol}(\vec{\Omega})}{\sum_{r}}\right) + \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} C_{pk}(\mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \left(\frac{\vec{\eta}_{r,pol}(\vec{\Omega})}{\sum_{r}}\right) + \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} C_{pk}(\mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \left(\frac{\vec{\eta}_{r,pol}(\vec{\Omega})}{\sum_{r}}\right) + \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} C_{pk}(\mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \left(\frac{2}{\Delta z}\right) + \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} C_{pk}(\mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \left(\frac{2}{\Delta z}\right) + \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} C_{pk}(\mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \left(\frac{2}{\Delta z}\right) + \sum_{k=0}^{N_{p}} C_{pk}(\mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \left(\frac{2}{\Delta z}\right) + \sum_{k=0}^{N_{p}} C_{pk}(\mu^{p-k} \left(\frac{2}{\Delta z}\right) + \sum_{k=0}^{N_{p}} C_{pk}(\mu^{$$

• Polynomial transmission equation:

$$\begin{split} q(\vec{r},\vec{\Omega}) &= \vec{P}(\tilde{z}_r) \cdot \vec{q}_{r,pol}(\vec{\Omega}) \\ \Psi(t^{out},\vec{\Omega}) &= \Psi(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_r l} + \int_{t^{in}}^{t^{out}} dt' \; q\left(\vec{r}(t'),\vec{\Omega}\right) \; e^{-\Sigma_r(t^{out}-t')} \end{split}$$

$$\Psi_{r}(t^{out},\vec{\Omega}) = \Psi_{r}(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_{r}l} + \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} c_{pk} \ \mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} \underbrace{E_{p-k}(\tau) = \frac{1}{\Sigma_{r}^{(p-k)}} \int_{\tau(t^{in})}^{\tau(t^{out})} d\tau' \tau'^{p-k} e^{(\tau'-\tau(t^{in}))}}{\Sigma_{r}} + \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} c_{pk} \ \mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} \underbrace{E_{p-k}(\tau) \underbrace{\left(\vec{q}_{r,pol}(\vec{\Omega})\right)_{p}}{\Sigma_{r}}}_{\Sigma_{r}} + \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} c_{pk} \ \mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} \underbrace{E_{p-k}(\tau) \underbrace{\left(\vec{q}_{r,pol}(\vec{\Omega})\right)_{p}}{\Sigma_{r}}}_{\Sigma_{r}}$$

STEP VS POLYNOMIAL TRANSMISSION

• Step transmission:

DE LA RECHERCHE À L'IN

$$\Psi(t^{out},\vec{\Omega}) = \Psi(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_r l} + \left(1 - e^{-\Sigma_r l}\right) \cdot \frac{q_r(\vec{\Omega})}{\Sigma_r}$$

• Polynomial transmission:

$$\Psi_r(t^{out},\vec{\Omega}) = \Psi_r(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_r l} + \sum_{k=0}^{N_p} P_k(z^{in}) \cdot \sum_{p=k}^{N_p} c_{pk} \ \mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \frac{\left(\vec{q}_{r,pol}(\vec{\Omega})\right)_p}{\Sigma_r}$$

 \mathbf{Z}

Ο

CHORDS CLASSIFICATION

$$\Psi_{r}(t^{out},\vec{\Omega}) = \Psi_{r}(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_{r}l} + \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} c_{pk} \ \mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \frac{\left(\vec{q}_{r,pol}(\vec{\Omega})\right)_{p}}{\Sigma_{r}}$$

PAGE 26

Thanks to chords classification...

$$\Psi_r(t^{out},\vec{\Omega}) = \Psi_r(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_r l} + \sum_{k=0}^{N_p} P_k(z^{in}) \cdot \sum_{p=k}^{N_p} c_{pk} \ \mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \frac{\left(\vec{q}_{r,pol}(\vec{\Omega})\right)_p}{\Sigma_r}$$

| PAGE 27

$$\Psi_{r}(t^{out},\vec{\Omega}) = \Psi_{r}(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_{r}l} + \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} c_{pk} \ \mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \frac{\left(\vec{q}_{r,pol}(\vec{\Omega})\right)_{p}}{\Sigma_{r}}$$
For a given angle, z-plane and 2D-chord, each 3D chords with the same length, belongs to the same class and has the same values of this term
$$0 \qquad S_{i} \qquad S \qquad CEA | 14 \text{ SEPTEMBER 2017} | \text{ PAGE 28}$$

$$\Psi_{r}(t^{out},\vec{\Omega}) = \Psi_{r}(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_{r}l} + \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} c_{pk} \ \mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \frac{\left(\vec{q}_{r,pol}(\vec{\Omega})\right)_{p}}{\Sigma_{r}}$$

$$\bullet \text{ Total number of chords } 10.39 \text{ M}$$

$$\bullet \text{ Number of classes } 0.814 \text{ M}$$

$$\bullet \text{ For a given angle, z-plane and 2D-chord, each 3D chords with the same length, belongs to the same class and has the same values of this term } e_{int} \sum_{j=1}^{N_{p}} e_{j} \sum_{j=1}$$

$$\begin{split} \Psi_{r}(t^{out},\vec{\Omega}) &= \Psi_{r}(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_{r}l} + \\ &+ \sum_{k=0}^{N_{p}} P_{k}(z^{in}) \cdot \sum_{p=k}^{N_{p}} c_{pk} \ \mu^{p-k} \left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \frac{\left(\vec{q}_{r,pol}(\vec{\Omega})\right)_{p}}{\Sigma_{r}} \\ \hline \bullet \text{ Total number of chords } 10.39 \text{ M} \\ \bullet \text{ Number of classes } 0.814 \text{ M} \\ \hline & \mathbf{V}_{r}(t^{out},\vec{\Omega}) = \Psi_{r}(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_{r}l} + \vec{P}(\vec{z}^{in}) \cdot \vec{T} \\ \\ \Theta \\ \Theta \\ O \\ & S_{i} \\ \end{split}$$

• For a fair comparison:

Step
$$\Psi(t^{out}, \vec{\Omega}) = \Psi(t^{in}, \vec{\Omega}) \cdot e^{-\Sigma_r l} + \left(1 - e^{-\Sigma_r l}\right) \cdot \frac{q_r(\vec{\Omega})}{\Sigma_r}$$

Polynomial
$$\Psi(t^{out}, \vec{\Omega}) = \Psi(t^{in}, \vec{\Omega}) \cdot e^{-\Sigma_r l} + \vec{P}(\tilde{z}^{in}) \cdot \vec{T}$$

• For a fair comparison:

$$\begin{aligned} \text{Step} \qquad & \Psi(t^{out},\vec{\Omega}) = \Psi(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_r l} + \left(1 - e^{-\Sigma_r l}\right) \underbrace{\bigcirc}_{\Sigma_r} \\ \text{Polynomial} \qquad & \Psi(t^{out},\vec{\Omega}) = \Psi(t^{in},\vec{\Omega}) \cdot e^{-\Sigma_r l} + \vec{P}(\tilde{z}^{in}) \cdot \vec{T} \end{aligned}$$

1 floating point operation

• For a fair comparison:

Step
$$\Psi(t^{out}, \vec{\Omega}) = \Psi(t^{in}, \vec{\Omega}) \cdot e^{-\Sigma_r l} + \left(1 - e^{-\Sigma_r l}\right) \underbrace{\underbrace{\Psi(t^{out}, \vec{\Omega})}_{\Sigma_r}}_{\Psi(t^{out}, \vec{\Omega})} = \Psi(t^{in}, \vec{\Omega}) \cdot e^{-\Sigma_r l} + \vec{P}(\vec{z}^{in}) \underbrace{\vec{P}(\vec{z}^{in})}_{I} + \vec{P$$

• For a fair comparison:

Step
$$\Psi(t^{out}, \vec{\Omega}) = \Psi(t^{in}, \vec{\Omega}) \cdot e^{-\Sigma_r l} + \left(1 - e^{-\Sigma_r l}\right) \underbrace{\bigcirc}_{\Sigma_r} \frac{q_r(\vec{\Omega})}{\Sigma_r}$$
Polynomial
$$\Psi(t^{out}, \vec{\Omega}) = \Psi(t^{in}, \vec{\Omega}) \cdot e^{-\Sigma_r l} + \vec{P}(\vec{z}^{in}) \underbrace{\frown}_{I} \vec{T}$$
1 floating point operations
1 floating point operation

Plus the information needed for the **balance equation**:

$$\mathbf{Step} \qquad \Psi_r(\vec{\Omega}) = \frac{1}{\Sigma_r} \left[q_r(\vec{\Omega}) - \frac{S_\perp}{V_r} \sum_{\substack{t \parallel \vec{\Omega} \\ t \cap r}} \left(\Psi(t^{out}, \vec{\Omega}) - \Psi(t^{in}, \vec{\Omega}) \right) \right]$$

• For a fair comparison:

Step
$$\Psi(t^{out}, \vec{\Omega}) = \Psi(t^{in}, \vec{\Omega}) \cdot e^{-\Sigma_r l} + \left(1 - e^{-\Sigma_r l}\right) \underbrace{\bigcirc}_{\Sigma_r} \frac{q_r(\vec{\Omega})}{\Sigma_r}$$
Polynomial
$$\Psi(t^{out}, \vec{\Omega}) = \Psi(t^{in}, \vec{\Omega}) \cdot e^{-\Sigma_r l} + \vec{P}(\vec{z}^{in}) \underbrace{\frown}_{I} \vec{T}$$
1 floating point operations
1 floating point operation

Plus the information needed for the **balance equation**:

$$\mathbf{Step} \qquad \Psi_r(\vec{\Omega}) = \frac{1}{\Sigma_r} \left[q_r(\vec{\Omega}) - \frac{S_\perp}{V_r} \sum_{\substack{t \parallel \vec{\Omega} \\ t \cap r}} \left(\Psi(t^{out}, \vec{\Omega}) - \Psi(t^{in}, \vec{\Omega}) \right) \right]$$

STEP VS POLYNOMIAL

• For a fair comparison:

Step
$$\Psi(t^{out}, \vec{\Omega}) = \Psi(t^{in}, \vec{\Omega}) \cdot e^{-\Sigma_r l} + \left(1 - e^{-\Sigma_r l}\right) \underbrace{\bigcirc}_{\Sigma_r} \frac{q_r(\vec{\Omega})}{\Sigma_r}$$
Polynomial
$$\Psi(t^{out}, \vec{\Omega}) = \Psi(t^{in}, \vec{\Omega}) \cdot e^{-\Sigma_r l} + \vec{P}(\vec{z}^{in}) \underbrace{\frown}_{I} \vec{T}$$
1 floating point operations
1 floating point operation

Plus the information needed for the **balance equation**:

$$\mathbf{Step} \qquad \Psi_r(\vec{\Omega}) = \frac{1}{\Sigma_r} \left[q_r(\vec{\Omega}) - \frac{S_\perp}{V_r} \sum_{\substack{t \parallel \vec{\Omega} \\ t \cap r}} \left(\Psi(t^{out}, \vec{\Omega}) - \Psi(t^{in}, \vec{\Omega}) \right) \right]$$

Polynomial
$$\tilde{\delta}_{r,p}(\vec{\Omega}) = \sum_{\substack{t \parallel \vec{\Omega} \\ t \cap r}} \left[P_p(\tilde{z}^{out}) \cdot \Psi(t^{out}) - P_p(\tilde{z}^{in}) \cdot \Psi(t^{in}) \right]$$

STEP VS POLYNOMIAL

• For a fair comparison:

Step
$$\Psi(t^{out}, \vec{\Omega}) = \Psi(t^{in}, \vec{\Omega}) \cdot e^{-\Sigma_r l} + \left(1 - e^{-\Sigma_r l}\right) \underbrace{\bigcirc}_{\Sigma_r} \frac{q_r(\vec{\Omega})}{\Sigma_r}$$
Polynomial
$$\Psi(t^{out}, \vec{\Omega}) = \Psi(t^{in}, \vec{\Omega}) \cdot e^{-\Sigma_r l} + \vec{P}(\vec{z}^{in}) \underbrace{\frown}_{I} \vec{T}$$
1 floating point operations
1 floating point operation

Plus the information needed for the **balance equation**:

$$\begin{split} \mathbf{Step} \quad \Psi_{r}(\vec{\Omega}) &= \frac{1}{\Sigma_{r}} \begin{bmatrix} q_{r}(\vec{\Omega}) - \frac{S_{\perp}}{V_{r}} \sum_{\substack{t \parallel \vec{\Omega} \\ t \cap r}} \left(\Psi(t^{out}, \vec{\Omega}) - \Psi(t^{in}, \vec{\Omega}) \right) \end{bmatrix} \\ \mathbf{N_{p} \ floating \ point \ operations} \\ \mathbf{Polynomial} \qquad \tilde{\delta}_{r,p}(\vec{\Omega}) &= \sum_{\substack{t \parallel \vec{\Omega} \\ t \cap r}} \begin{bmatrix} P_{p}(\tilde{z}^{out}) \underbrace{ (t^{out}) - P_{p}(\tilde{z}^{in}) \cdot \Psi(t^{in})} \end{bmatrix} \\ & | \text{ PAGE 38} \end{bmatrix} \\ \end{split}$$

STEP VS POLYNOMIAL

• For a fair comparison:

Step
$$\Psi(t^{out}, \vec{\Omega}) = \Psi(t^{in}, \vec{\Omega}) \cdot e^{-\Sigma_r l} + (1 - e^{-\Sigma_r l}) \underbrace{\frac{q_r(\vec{\Omega})}{\Sigma_r}}_{Polynomial}$$
Polynomial $\Psi(t^{out}, \vec{\Omega}) = \Psi(t^{in}, \vec{\Omega}) \cdot e^{-\Sigma_r l} + \vec{P}(\vec{z}^{in} \odot \vec{T})$
I floating point operations
Plus the information needed for the **balance equation**:
$$S \underbrace{\frac{1}{1 \text{ floating point operations}}}_{P} \underbrace{\frac{1}{1 \text{ floating point operations}}}_{t \cap r} \underbrace{\frac{$$

AXIAL DISCRETIZATION

Difference between the axial discretization needed in the Step Constant and in the Polynomial case:

AXIAL DISCRETIZATION

Difference between the axial discretization needed in the Step Constant and in the Polynomial case:

FINAL CONSIDERATIONS

• Higher numbers of floating point operations per chord \mathbf{Z}

FINAL CONSIDERATIONS

• Higher numbers of floating point operations per chord \mathbf{Z}

• Some of them can be vectorized

FINAL CONSIDERATIONS

• Higher numbers of floating point operations per chord \mathbf{Z}

- Some of them can be vectorized
- Less axial planes also means less chords (~ -15%)
- Less memory needed

POLYNOMIAL VS STEP: RESULTS 2

Method			Step			Poly	nomial (N	p=2)
$\Delta r \ (\text{cm})$			0.05				0.05	
$\Delta s \ (\text{cm})$			1.0			1	.0	0.5
Axial meshes	57	110	180	257	600	5	6	12
# chords	$29.57 \mathrm{M}$	31.88 M	34.93 M	$38.29 \mathrm{M}$	$53.24 \mathrm{M}$	$27.31~{ m M}$	$27.35 \mathrm{M}$	$55.24 \mathrm{~M}$
# classes	$17.07~{ m M}$	21.12 M	21.80 M	20.33 M	18.16 M	1.90 M	2.28 M	$4.57 \mathrm{M}$
Classification	83.82~%	74.67~%	66.68~%	59.56~%	52.39 %	98.4~%	98.09~%	96.21~%
Self-shielding				To	ne:			
k_{eff}	1.163761	1.165075	1.165412	1.165672	1.165744	1.165584	1.165805	1.165801
$\rho \text{ err}/\text{T4}$	-96.45	+0.44	+25.43	+44.66	+49.72	+37.76	+54.00	+53.92
(\mathbf{PCM})								
Time	$12\ 210\ {\rm s}$	$22\ 719\ {\rm s}$	37785 s	$55\ 472\ {\rm s}$	$127809~{\rm s}$	$15 \ 384 \ s$	$16 \ 326 \ s$	$34\ 775\ s$
Self-shielding				Sub-G	roups:			
k_{eff}	1.164114	1.16543	1.165767	1.166027	1.166094	1.165927	1.166147	1.166154
$\rho \text{ err}/\text{T4}$	-70.54	+26.38	+ 51.22	+70.28	+75.42	+ 63.01	+79.27	+79.72
(\mathbf{PCM})								
Time	$12\;575\;\mathrm{s}$	24 031 s	38 454 s	56 500 s	$124\ 470\ s$	$16\ 174\ { m s}$	17 316 s	50 620 s

• An impressive gain in computational meshes is obtained

Self-shielding effect				
	k_{eff}	δk_{eff}		
NO self-shielding	1.093190	-2932 PCM		
Sub-Groups method	1.127149	+84 PCM		
Tone method	1.126910	+62 PCM		

Table 5: Self-shielding effect for the full-column case in nominal conditions. δk_{eff} refers to the relative error (in PCM) with respect to the reference Tripoli4 calculation. Nominal conditions.

 DP_1 polynomial order Acc./Free 0 1 2 0.160.06 **Fime** Duters 0.660.110.11 0.02nners Memory 1.9610.06

Acceleration effectiveness

Table 6: Ratios of times, number of iterations and memory footprint between accelerated calculations and free iterations for varying order of the spatial polynomial order of the DP_1 operator. The case considered is the full-column assembly in nominal conditions.

- A factor 20 of computational time reduction can be obtained but there is a memory price to pay. (Work on it is under way!)
- NOTE: All micro/macro-scopic reaction rate errors are below 1%

- Polynomial MOC is on the way
- Classifications of chords is of fundamental importance
- Dpn acceleration works but it is memory expensive
- Many ways are possible for memory reduction
- How about XS?

- 1. Sanchez, R. (2012), `Prospects in deterministic three-dimensional whole-core transport calculations' Nuclear Engineering and Technology 44(5), 113-150.
- W. Boyd, A. Siegel, S. He, B. Forget and K. Smith: "Parallel performance results for the OpenMOC method of characteristic code on multi-core platforms", http://dx.doi.org/:10.1177/1094342016630388 International Journal of High Performance Computing Applications, February 15, 2016.
- 3. D.Sciannandrone, , S. Santandrea, R.Sanchez: "Optimized tracking strategies for step MOC calculations in extruded 3D axial geometries", Ann. Nucl. Energy Vol.87 49-60 (2016) http://dx.doi.org/10.1016/j.anucene.2015.05.014.
- 4. Santandrea S., Sciannandrone D., Sanchez R., Mao L. and Graziano L.: "A neutron transport characteristics method for 3D axially extruded geometries coupled with a fine group self-shielded environment", published in NSE 2017
- 5. Santandrea S., Graziano L & Sciannandrone D.: "Accelerated Polynomial axial expansions for full 3D neutron transport MOC in the APOLLO3R code system as applied to the ASTRID fast breeder reactor » published ANE 2018

MOC 1 : BASIC ITERATIVE SCHEME

scattering term expansion

 $q(\mathbf{r},\Omega)\sim\sum_i q_i(\Omega) heta_i(\mathbf{r})$

$$q_i(\Omega) = \sum_{\underline{k=0}}^{K} \sum_{sk,i} \sum_{l=-k}^{k} \phi_{k,i}^l A_k^l(\Omega) + S_i(\Omega)$$

scattering

 $external\ source$

cell averaged angular flux moments

$$\phi_{k,i}^{l} = \frac{1}{4\pi} \int_{(4\pi)} d\Omega A_{k}^{l}(\Omega) \psi_{i}(\Omega) \sim \sum_{n} w_{n} A_{k}^{l}(\Omega_{n}) \psi_{i}(\Omega_{n})$$

- positive method
- no fix-up is necessary
- arbitrary anisotropy order

DP_N: SYNTHETIC ACCELERATION

- □ Synthetic acceleration
 - *perform a free iteration*

• solve synthetic acceleration for

$$D\begin{pmatrix} \delta \Phi^{(n)} \\ \delta J^{(n)}_{+} \end{pmatrix} = H \begin{pmatrix} \Phi^{(n+1)}_{free} - \Phi^{(n)}_{free} \\ J^{(n+1)}_{+,free} - J^{(n)}_{+,free} \end{pmatrix}$$

• *correct free iteration values*

- $\Phi_{acce}^{(n+1)} = \Phi_{free}^{(n+1)} + \delta \Phi$
- $J_{+,acce}^{(n+1)} = J_{+,free}^{(n+1)} + \delta J_{+}$
- this approach can be extended from inhomogeneous to eigenvalue problems

$$T^{\rho\nu}_{\alpha\beta} = T^{\rho\nu}_{\beta\alpha} = \int_{\alpha} dS \int_{\beta \to \alpha} d\Omega A^{\rho} (\mathbf{\Omega}) A^{\nu} (\mathbf{\Omega}) |\mathbf{n} \cdot \mathbf{\Omega}| e^{-\Sigma_{i} R(\mathbf{r}, \mathbf{\Omega})} \quad (symmetry)$$

$$E_{\alpha}^{\rho\nu} = \frac{1}{\sum_{i} V_{i}} \left(A_{\alpha}^{\rho\nu} - \sum_{\alpha \in \partial i} T_{\alpha\beta}^{\rho\nu} \right)$$
(conservation)

- □ *similar formulas can be written for the Linear Surface method.*
- numerical evaluation (coherence with transport)

 $DP_N 2$

$$T^{\rho\upsilon}_{\alpha\beta} \sim \sum_{\boldsymbol{\Omega}} \mathbf{w}_{\boldsymbol{\Omega}} \mathbf{A}^{\rho} \left(\boldsymbol{\Omega}\right) \mathbf{A}^{\upsilon} \left(\boldsymbol{\Omega}\right) \sum_{(t,\boldsymbol{\Omega}) \in \beta \to \alpha} \mathbf{w}_{\perp}(t,\boldsymbol{\Omega}) e^{-\Sigma_{i} R(t,\boldsymbol{\Omega})}$$

• after elimination of cell fluxes, the DP_N acceleration equations are solved iteratively for the currents

$$\vec{J}_{+,\alpha}\,=\,\sum_{\beta\in\partial i}\hat{T}\,\vec{J}_{-,\beta}\,+\,\vec{J}_S$$

$$\hat{T}^{\rho\upsilon}_{\alpha\beta} = T^{\rho\upsilon}_{\alpha\beta} + E^{\rho 0}_{\alpha} \frac{\Sigma_i V_i \Sigma_{si}}{\Sigma_{ai} + E^{00} \Sigma_{si}} E^{0\upsilon}_{\beta} S^{\upsilon}$$

 $DP_N 3$

generalized transmission

related to multicollisional processes

 \Box solution with a Krilov iterator (BCGS or GMRES): $M \vec{\psi} = \vec{S}$

iterator:
$$M = 1 - \hat{T}$$

with an adapted ILU0 and domain decomposition method.

Adapted tracking is done to exactly take into account symmetries and boundary conditions

