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� source iterative solution

(one-group problem)

� angular approximation

� flat flux approximation over homogeneous regions 
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� numerical implementation based on trajectories

(in 2D XY ‘planar’ trajectories are lifted to polar directions)

� balance equation along a trajectory
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MOC 1 : DISCRETIZATION SCHEME
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� All following pictures 
have been 
shamelessly taken 
from R. Sanchez



� propagation equation across a region (flat source approximation)

transmission & escape coefficients :
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HIGHER ORDER BALANCE EQUATION: A 
CONSISTENCY PROBLEM

Defining a scalar product on a chord

the following generalized average balance per chord can be written

so that defining the polynomial coupling region matrix

the « polynomial angular » balance equation is: 
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BALANCE FROM ANGLE TO MOMENTS

The collision/fission operators use angular moments in the place of 
angular fluxes: 

Recall also that a « correspondence » exists between spatial 
moment and coefficients

If you define then the suite of angular-polynomial function base

and project with over this in angle-space you get

which in the typical “free” iteration scheme (index “i”) takes an easy 
to solve lower triangular form:
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� propagation & balance equations :

� After “some” algebra a multi-collisional version of the DPN operator is used to 
solve:

( ) ,( , ) ( )
S

i

A αα
α

ψ ψ θ± ±
∈∂

Ω ⋅Ω ∑r r

� �
∼

( )
, ,

2

1

4
A dS d ppA

S
α α

α α π
π

+ −
+

= ΩΖ ⊗ Ζ =∫ ∫
� �

( )
, ,

4

1

4 DPn
J dS d n A

S
α α α

α α π

ψ ψ
π

+ += Ω Ω Ζ∫ ∫
� � �

∼

DPN : SYNTHETIC ACCELERATION

PAGE 7



GOING TO AXIAL 3D GEOMETRIES

The basic difficulty for 3D MOC calculation is that we cannot store 
realistic 3D tracking data. To avoid this we consider only (at the 
beginning!) 3D axial geometries:

For these geometries the 3D tracking can be decomposed into 2 
phases:

1. Tracking a general 2D geometry on the x-y plane

2. Tracking a cartesian geometry on the s-z plane

Only 1 need to be stored but reconstruct 2 can be too expensive!
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OPTIMIZED 3D TRACKING

Thanks to axial regularity the set of 3D 
chords can be decomposed into a low 
number of classes that not only allow to 
reduce memory but also to decrease 
computational cost.

Thus, transmission coefficients,

are computed only per class and medium.
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ASTRID  REACTOR EXAMPLE: 2D SECTION
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ASTRID  REACTOR: AXIAL VIEW
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ASTRID  REACTOR CALCULATIONS
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ASTRID  REACTOR: SECOND CALCULATION
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ASTRID  REACTOR: SECOND CALCULATION
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POLYNOMIAL BASIS DEFINITION
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Polynomial basis to express fluxes and sources moments:
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Polynomial basis to express fluxes and sources moments:

Step approximation 
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POLYNOMIAL TRANSMISSION EQUATION
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• Polynomial transmission equation:



POLYNOMIAL TRANSMISSION EQUATION
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• Polynomial transmission equation:

• Numerical polynomial transmission equation:



POLYNOMIAL TRANSMISSION EQUATION
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• Polynomial transmission equation:

• Numerical polynomial transmission equation:
Axial coordinate at the trajectory 
entering point in the r region

Binomial coefficient



POLYNOMIAL TRANSMISSION EQUATION
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• Polynomial transmission equation:

• Numerical polynomial transmission equation:

Geometrical coefficients

Source term



POLYNOMIAL TRANSMISSION EQUATION
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• Polynomial transmission equation:

• Numerical polynomial transmission equation:
Escape coefficient:



STEP VS POLYNOMIAL TRANSMISSION

29 NOVEMBRE 2017 |  PAGE 25

• Step transmission:

• Polynomial transmission:



CHORDS CLASSIFICATION
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CHORDS CLASSIFICATION
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Thanks to chords classification…
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Thanks to chords classification…

For a given angle, z-plane and 2D-chord, each 
3D chords with the same length, belongs to 
the same class and has the same values of this 
term
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CHORDS CLASSIFICATION
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Thanks to chords classification…

This is only computed for 
the ~ 8 % of chords

For a given angle, z-plane and 2D-chord, each 
3D chords with the same length, belongs to 
the same class and has the same values of this 
term
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Thanks to chords classification…
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the ~ 8 % of chords
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• For a fair comparison:

Step

Polynomial
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• For a fair comparison:

Step

Polynomial

Plus the information needed for the balance equation:

Step

Polynomial

1 floating point operation
Np floating point operations

Np floating point operationsThey can be vectorized!



AXIAL DISCRETIZATION
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Difference between the axial discretization needed in the Step Constant and in 

the Polynomial case:



AXIAL DISCRETIZATION
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Difference between the axial discretization needed in the Step Constant and in 

the Polynomial case:

~ 30 unknowns
2*(Np+1)unknowns



FINAL CONSIDERATIONS
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• Higher numbers
of floating point 
operations per 
chord
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• Higher numbers
of floating point 
operations per 
chord

• Some of them
can be vectorized

• Less axial planes 
also means less
chords (~ -15%)

• Less memory 
needed



POLYNOMIAL VS STEP: RESULTS 2
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• An impressive gain in computational meshes is obtained



SELF-SHIELDING/ACCELERATION IMPACT
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• A factor 20 of computational time reduction can be obtained but 
there is a memory price to pay. (Work on it is under way!)

• NOTE: All micro/macro-scopic reaction rate errors are below 1%



CONCLUSIONS

• Polynomial MOC is on the way

• Classifications of chords is of fundamental importance

• Dpn acceleration works but it is memory expensive 

• Many ways are possible for memory reduction

• How about XS?
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� scattering term expansion 

� cell averaged angular flux moments

� positive method

� no fix-up is necessary

� arbitrary anisotropy order
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� Synthetic acceleration

� perform a free iteration

� solve synthetic acceleration for

� correct free iteration values

� this approach can be extended from inhomogeneous to eigenvalue

problems
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� transmission and escape first flight probabilities (symmetry and 

conservation preserved by numerical scheme) for SC method:

� similar formulas can be written for the Linear Surface method.

� numerical evaluation (coherence with transport)
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� after elimination of cell fluxes, the DPN acceleration equations are solved

iteratively for the currents

� solution with a Krilov iterator (BCGS or GMRES):

with an adapted ILU0 and domain decomposition method.
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Adapted tracking is done to exactly take into account 
symmetries and boundary conditions

p / 2  rotation

Cyclic tracking for 
infinite periodic systems

MOC 3 : BOUNDARY CONDITIONS
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