HIGHER ORDER ACCELERATED MOC METHOD

by
Laurent Graziano \& Simone Santandrea

METHOD OF CHARACTERISTICS (MOC)

- source iterative solution (one-group problem)

$$
\left.\begin{array}{c}
(\Omega \cdot \nabla+\Sigma) \psi^{(n+1)}=q^{(n)} \\
\psi_{\text {in }}^{(n+1)}=\beta \psi_{\text {out }}^{(n)}+\psi_{0}
\end{array}\right\}
$$

- angular approximation

$$
S_{N}=\left\{w_{n}, \Omega_{n}, n=1, N\right\} \rightarrow \frac{1}{4 \pi} \int_{(4 \pi)} d \Omega f(\Omega) \sim \sum_{n} w_{n} f\left(\Omega_{n}\right)
$$

- flat flux approximation over homogeneous regions

$$
\begin{aligned}
& D=\cup_{i} D_{i}, D_{i} \text { of homogeneous support } \\
& \psi(\mathbf{r}, \Omega) \sim \sum_{i} \psi_{i}(\Omega) \theta_{i}(\mathbf{r})
\end{aligned}
$$

Ce2
 MOC 1 : DISCRETIZATION SCHEME

- numerical implementation based on trajectories (in 2D XY 'planar' trajectories are lifted to polar directions)

- balance equation along a trajectory

$$
\begin{array}{r}
\psi_{+, i}(t, \Omega)-\psi_{-, i}(t, \Omega)+\Sigma_{i} R_{i}(t, \Omega) \psi_{i}(t, \Omega)=R_{i}(t, \Omega) q_{i}^{(n)}(\Omega) \\
\downarrow \\
V_{i} \psi_{i}(\Omega)=\int_{(i)} d r \psi(r, \Omega) \sim \sum_{t \| \Omega} \omega_{\perp}(t, \Omega) R_{i}(t, \Omega) \psi_{i}(t, \Omega)
\end{array}
$$

MOC 2 : DISCRETIZATION SCHEME

$\boldsymbol{\Omega} \in S_{N}:$

- propagation equation across a region (flat source approximation)

$$
\begin{aligned}
& \underbrace{\psi_{+}(\mathbf{r}, \boldsymbol{\Omega})=e^{-\tau\left(r, r_{i n}\right)} \psi_{-}\left(\mathbf{r}_{i n}, \boldsymbol{\Omega}\right)+\int_{0}^{R(t, \boldsymbol{\Omega})} d R^{\prime} e^{-\tau\left(\mathbf{r}, \mathbf{r}^{\prime}\right)} q\left(\mathbf{r}^{\prime}, \boldsymbol{\Omega}\right)}_{\downarrow} \quad\left(\mathbf{r}^{\prime}=\mathbf{r}-R^{\prime} \boldsymbol{\Omega}\right) \\
& \psi_{+, i}(t, \boldsymbol{\Omega})=T_{i}(t, \boldsymbol{\Omega}) \times \psi_{-, i}(t, \boldsymbol{\Omega})+E_{i}(t, \boldsymbol{\Omega}) \times q_{i}^{(n)}(\boldsymbol{\Omega})
\end{aligned}
$$

$$
\text { transmission \& escape coefficients : } T_{i}(t, \boldsymbol{\Omega})=e^{-\Sigma_{i} R_{i}(t, \boldsymbol{\Omega})}, \quad E_{i}(t, \boldsymbol{\Omega})=\frac{1-T_{i}(t, \boldsymbol{\Omega})}{\Sigma_{i}}
$$

HIGHER ORDER BALANCE EQUATION: A CONSISTENCY PROBLEM

Defining a scalar product on a chord

$$
\langle f, g\rangle_{L}=\int_{0}^{L} d t f(t) g(t),
$$

the following generalized average balance per chord can be written

$$
\Sigma_{r}\left\langle\vec{P}, \Psi_{r}\right\rangle_{L}=\langle\vec{P}, \vec{P}\rangle_{L} \vec{q}_{r}+\vec{P}(0) \Psi_{r}(0)-\vec{P}(L) \Psi_{r}(L)+\left\langle\frac{\partial \vec{P}}{\partial t}, \Psi_{r}\right\rangle_{L},(\text { Sanchez 2012) }
$$

so that defining the polynomial coupling region matrix

$$
\overline{P P}(\vec{\Omega})=\frac{1}{V_{r}} \int_{r} d \vec{r} \vec{P}(\vec{z}) \otimes \vec{P}(\vec{z}) \simeq \frac{1}{V_{r}(\bar{\Omega})} \sum_{t \rightarrow \|}\langle\vec{P}, \vec{P}\rangle_{L_{t}},
$$

the « polynomial angular » balance equation is:

$$
\overline{\bar{C}}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\frac{1}{\Delta z / 2} & 0 & 0 & 0 \\
0 & \frac{2}{\Delta z / 2} & 0 & 0 \\
0 & 0 & \frac{3}{\Delta z / 2} & 0 \\
0 & 0 & \ddots & \ddots
\end{array}\right] .
$$

$$
\Sigma_{r}^{\prime} \vec{\Psi}_{r}(\vec{\Omega})=\overline{\overline{P P}}(\vec{\Omega}) \cdot \vec{q}_{r}(\vec{\Omega})-\Delta \vec{J}_{r}(\vec{\Omega})+\mu \bar{C}^{\prime} \vec{\Psi}_{r}(\vec{\Omega}) .
$$

BALANCE FROM ANGLE TO MOMENTS

The collision/fission operators use angular moments in the place of angular fluxes:

$$
\vec{\Phi}_{r}^{n}=\oint \frac{d \vec{\Omega}}{4 \pi} A_{n}(\vec{\Omega}) \vec{\Psi}_{r}(\vec{\Omega}) .
$$

Recall also that a < correspondence » exists between spatial moment and coefficients

$$
\vec{\Psi}_{r}(\vec{\Omega})=\overline{P P}^{-1} \cdot \cdot^{\prime} \vec{\Psi}_{r}(\vec{\Omega})
$$

If you define then the suite of angular-polynomial function base

$$
\overrightarrow{\mathcal{Z}}(\tilde{z}, \vec{\Omega})=\left\{A^{0}(\vec{\Omega}) P_{0}(\tilde{z}), A^{1}(\vec{\Omega}) P_{0}(\tilde{z}), \ldots, A^{0}(\vec{\Omega}) P_{1}(\tilde{z}), A^{1}(\vec{\Omega}) P_{1}(\tilde{z}), \ldots\right\}
$$

and project with over this in angle-space you get

$$
\Sigma_{r}^{\prime} \vec{\Phi}_{r}=\mathcal{Z Z} \cdot \vec{q}_{r}-\oint \frac{d \vec{\Omega}}{4 \pi} \vec{A}(\vec{\Omega}) \otimes \Delta \vec{J}_{r}(\vec{\Omega})+\mathcal{D} \cdot \vec{\Phi}_{r} . \quad \mathcal{Z Z}=\oint \frac{d \vec{\Omega}}{4 \pi}(\vec{A}(\vec{\Omega}) \otimes \vec{A}(\vec{\Omega})) \otimes \overline{P P}(\vec{\Omega})
$$

which in the typical "free" iteration scheme (index "i") takes an easy to solve lower triangular form:

$$
\Sigma_{r}{ }^{\prime} \vec{\Phi}_{r, p}^{i}=\left(\mathcal{Z Z} \cdot \vec{q}_{r}^{i-1}\right)_{p}-\frac{1}{4 \pi} \oint d \vec{\Omega} \vec{A}(\vec{\Omega}) \otimes\left(\Delta \vec{J}_{r}(\vec{\Omega})\right)_{p}^{i}+\frac{p}{\Delta z / 2} \cdot \overline{\bar{\alpha}}_{p} \cdot \vec{\Phi}_{r, p-1}^{i} \quad 6
$$

CeZ $D P_{N}$: SYNTHETIC ACCELERATION

- propagation \& balance equations :

$$
\begin{gathered}
{\left[\begin{array}{c}
\vec{J}_{\alpha_{v}}^{+} \\
\vec{J}_{\alpha_{h}}^{+}
\end{array}\right]=\sum_{\beta \in r}\left[\begin{array}{cc}
\mathcal{T}_{\alpha_{v}^{+} \beta_{v}^{-}} & \mathcal{T}_{\alpha_{v}^{+} \beta_{h}^{-}} \\
\mathcal{T}_{\alpha_{h}^{+} \beta_{v}^{-}} & \mathcal{T}_{\alpha_{h}^{+} \beta_{h}^{-}}
\end{array}\right] \cdot\left[\begin{array}{c}
\vec{\Phi}_{\beta_{v}}^{-} \\
\vec{\Phi}_{\beta_{h}}^{-}
\end{array}\right]+\left[\begin{array}{l}
\mathcal{E}_{\alpha_{v}^{+}} \\
\mathcal{E}_{\alpha_{h}^{+}}
\end{array}\right] \cdot \overrightarrow{\boldsymbol{q}}_{r},} \\
\left(\Sigma_{r}-\mathcal{D}\right) \cdot{ }^{\prime} \overrightarrow{\boldsymbol{\Phi}}_{r}=\mathcal{\mathcal { Z }} \mathcal{Z}_{D} \cdot \overrightarrow{\boldsymbol{q}}_{r}-\frac{1}{V_{r}} \sum_{\alpha \in r}\left(\overrightarrow{\boldsymbol{J}}_{\alpha}^{+}-\overrightarrow{\boldsymbol{J}}_{\alpha}^{-}\right)
\end{gathered}
$$

- After "some" algebra a multi-collisional version of the $D P_{N}$ operator is used to solve:

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{J}}^{+}={ }^{\dagger} \mathcal{T} \cdot \overrightarrow{\boldsymbol{J}}^{-}+{ }^{\dagger} \mathcal{E} \cdot \overrightarrow{\boldsymbol{q}}_{r}^{\text {ext }},{ }^{\dagger} \mathcal{T}=\left(\tilde{\mathcal{T}}+\overrightarrow{\mathcal{E}}^{+} \boldsymbol{\Sigma}_{s, r}^{g}{ }^{\dagger} \boldsymbol{\mathcal { I }}\right) \\
&{ }^{\dagger} \mathcal{E}=\overrightarrow{\mathcal{E}}^{+}\left(\mathcal{I}_{d}+\Sigma_{r, s}^{g} \cdot{ }^{\dagger} \mathcal{C}\right)
\end{aligned}
$$

GOING TO AXIAL 3D GEOMETRIES

The basic difficulty for 3D MOC calculation is that we cannot store realistic 3D tracking data. To avoid this we consider only (at the beginning!) 3D axial geometries:

For these geometries the 3D tracking can be decomposed into 2 phases:

1. Tracking a general 2 D geometry on the $\mathrm{x}-\mathrm{y}$ plane
2. Tracking a cartesian geometry on the s-z plane

Only 1 need to be stored but reconstruct 2 can be too expensive!

OPTIMIZED 3D TRACKING

Thanks to axial regularity the set of 3D chords can be decomposed into a low number of classes that not only allow to reduce memory but also to decrease computational cost.

Thus, transmission coefficients,

$$
T_{i}(t, \boldsymbol{\Omega})=e^{-\Sigma_{i} R_{i}(t, \boldsymbol{\Omega})}
$$

are computed only per class and medium.

ASTRID REACTOR EXAMPLE: 2D SECTION

ASTRID REACTOR: AXIAL VIEW

ASTRID REACTOR CALCULATIONS

ASTRID REACTOR: SECOND CALCULATION

ASTRID REACTOR: SECOND CALCULATION

Sub-assembly axial flux profile Step

POLYNOMIAL BASIS DEFINITION

Polynomial basis to express fluxes and sources moments:

$$
\vec{P}\left(\tilde{z}_{r}\right)=\left\{\tilde{z}_{r}^{p}=\left(\frac{z_{r}-\bar{z}_{r}}{\Delta z_{r} / 2}\right)^{p}, \quad 0 \leq p \leq N_{p}\right\} \quad \tilde{z}_{r} \in[-1,1]
$$

POLYNOMIAL BASIS DEFINITION

Polynomial basis to express fluxes and sources moments:

$$
\begin{aligned}
& \vec{P}\left(\tilde{z}_{r}\right)=\left\{\tilde{z}_{r}^{p}=\left(\frac{z_{r}-\bar{z}_{r}}{\Delta z_{r} / 2}\right)^{p}, \quad 0 \leq p \leq N_{p}\right\} \quad \tilde{z}_{r} \in[-1,1] \\
& q(\vec{r}, \vec{\Omega})=\sum_{n=1}^{N_{m}} A_{n}(\vec{\Omega}) \cdot q^{n}(\vec{r})
\end{aligned}
$$

POLYNOMIAL BASIS DEFINITION

Polynomial basis to express fluxes and sources moments:

$$
\begin{aligned}
& \vec{P}\left(\tilde{z}_{r}\right)=\left\{\tilde{z}_{r}^{p}=\left(\frac{z_{r}-\bar{z}_{r}}{\Delta z_{r} / 2}\right)^{p}, \quad 0 \leq p \leq N_{p}\right\} \quad \tilde{z}_{r} \in[-1,1] \\
& q(\vec{r}, \vec{\Omega})=\sum_{n=1}^{N_{m}} A_{n}(\vec{\Omega}) \cdot q^{n}(\vec{r}) \\
& \text { Step approximation } \longrightarrow q^{n}(\vec{r}) \simeq q_{r}^{n}
\end{aligned}
$$

POLYNOMIAL BASIS DEFINITION

Polynomial basis to express fluxes and sources moments:

$$
\begin{aligned}
& \vec{P}\left(\tilde{z}_{r}\right)=\left\{\tilde{z}_{r}^{p}=\left(\frac{z_{r}-\bar{z}_{r}}{\Delta z_{r} / 2}\right)^{p}, \quad 0 \leq p \leq N_{p}\right\} \quad \tilde{z}_{r} \in[-1,1] \\
& q(\vec{r}, \vec{\Omega})=\sum_{n=1}^{N_{m}} A_{n}(\vec{\Omega}) \cdot q^{n}(\vec{r})
\end{aligned}
$$

$$
\begin{aligned}
& \text { Step approximation } \longrightarrow q^{n}(\vec{r}) \simeq q_{r}^{n} \\
& \text { Polynomial approximation } \longrightarrow q^{n}(\vec{r})=\sum_{p}^{N_{p}} P_{p}\left(\tilde{z}_{r}\right) \cdot q_{r, p o l, p}^{n}
\end{aligned}
$$

POLYNOMIAL BASIS DEFINITION

Polynomial basis to express fluxes and sources moments:

$$
\begin{aligned}
& \vec{P}\left(\tilde{z}_{r}\right)=\left\{\tilde{z}_{r}^{p}=\left(\frac{z_{r}-\bar{z}_{r}}{\Delta z_{r} / 2}\right)^{p}, \quad 0 \leq p \leq N_{p}\right\} \quad \tilde{z}_{r} \in[-1,1] \\
& q(\vec{r}, \vec{\Omega})=\sum_{n=1}^{N_{m}} A_{n}(\vec{\Omega}) \cdot q^{n}(\vec{r}) \\
& \text { Step approximation } \quad q^{n}(\vec{r}) \simeq q_{r}^{n} \\
& \text { Polynomial approximation } \\
& \hline q(\vec{r}, \vec{\Omega})=\vec{P}\left(\tilde{z}_{r}\right) \cdot \vec{q}_{r, p o l}^{n}(\vec{r})=\sum_{p}^{N_{p}} P_{p}\left(\tilde{z}_{r}\right) \cdot q_{r, p o l, p}^{n} \\
& \hline
\end{aligned}
$$

POLYNOMIAL TRANSMISSION EQUATION

- Polynomial transmission equation:

$$
\begin{array}{r}
q(\vec{r}, \vec{\Omega})=\vec{P}\left(\tilde{z}_{r}\right) \cdot \vec{q}_{r, p o l}(\vec{\Omega}) \\
\Psi\left(t^{\text {out }}, \vec{\Omega}\right)=\Psi\left(t^{\text {in }}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+\int_{t^{i n}}^{t^{\text {out }}} d t^{\prime} \downarrow\left(\vec{r}\left(t^{\prime}\right), \vec{\Omega}\right) e^{-\Sigma_{r}\left(t^{\text {out }}-t^{\prime}\right)}
\end{array}
$$

- Polynomial transmission equation:

$$
\begin{array}{r}
q(\vec{r}, \vec{\Omega})=\vec{P}\left(\tilde{z}_{r}\right) \cdot \vec{q}_{r, p o l}(\vec{\Omega}) \\
\Psi\left(t^{\text {out }}, \vec{\Omega}\right)=\Psi\left(t^{\text {in }}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+\int_{t^{\text {in }}}^{t^{\text {out }}} d t^{\prime} \\
\downarrow\left(\vec{r}\left(t^{\prime}\right), \vec{\Omega}\right) e^{-\Sigma_{r}\left(t^{\text {out }}-t^{\prime}\right)}
\end{array}
$$

- Numerical polynomial transmission equation:

$$
\begin{aligned}
& \Psi_{r}\left(t^{\text {out }}, \vec{\Omega}\right)=\Psi_{r}\left(t^{i n}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+ \\
& \quad+\sum_{k=0}^{N_{p}} P_{k}\left(z^{i n}\right) \cdot \sum_{p=k}^{N_{p}} c_{p k} \mu^{p-k}\left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \frac{\left(\vec{q}_{r, p o l}(\vec{\Omega})\right)_{p}}{\Sigma_{r}}
\end{aligned}
$$

POLYNOMIAL TRANSMISSION EQUATION

- Polynomial transmission equation:

$$
\begin{array}{r}
q(\vec{r}, \vec{\Omega})=\vec{P}\left(\tilde{z}_{r}\right) \cdot \vec{q}_{r, p o l}(\vec{\Omega}) \\
\Psi\left(t^{\text {out }}, \vec{\Omega}\right)=\Psi\left(t^{\text {in }}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+\int_{t^{i n}}^{t^{\text {out }}} d t^{\prime} \downarrow\left(\vec{r}\left(t^{\prime}\right), \vec{\Omega}\right) e^{-\Sigma_{r}\left(t^{\text {out }}-t^{\prime}\right)}
\end{array}
$$

- Numerical polynomial transmission equation:

- Polynomial transmission equation:

$$
\begin{array}{r}
q(\vec{r}, \vec{\Omega})=\vec{P}\left(\tilde{z}_{r}\right) \cdot \vec{q}_{r, p o l}(\vec{\Omega}) \\
\Psi\left(t^{\text {out }}, \vec{\Omega}\right)=\Psi\left(t^{\text {in }}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+\int_{t^{i n}}^{t^{\text {out }}} d t^{\prime} \downarrow\left(\vec{r}\left(t^{\prime}\right), \vec{\Omega}\right) e^{-\Sigma_{r}\left(t^{\text {out }}-t^{\prime}\right)}
\end{array}
$$

- Numerical polynomial transmission equation:

POLYNOMIAL TRANSMISSION EQUATION

- Polynomial transmission equation:

$$
\begin{array}{r}
q(\vec{r}, \vec{\Omega})=\vec{P}\left(\tilde{z}_{r}\right) \cdot \vec{q}_{r, p o l}(\vec{\Omega}) \\
\Psi\left(t^{\text {out }}, \vec{\Omega}\right)=\Psi\left(t^{i n}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+\int_{t^{\text {in }}}^{t^{\text {out }}} d t^{\prime} \\
\downarrow\left(\vec{r}\left(t^{\prime}\right), \vec{\Omega}\right) e^{-\Sigma_{r}\left(t^{\text {out }}-t^{\prime}\right)}
\end{array}
$$

- Numerical polynomial transmission equation:

$$
\begin{aligned}
& \Psi_{r}\left(t^{\text {out }}, \vec{\Omega}\right)=\Psi_{r}\left(t^{i n}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+ \\
& \quad \begin{array}{l}
\text { Escape coefficient: } \\
E_{p-k}(\tau)=\frac{1}{\Sigma_{r}^{(p-k)} \int_{\tau\left(t^{i n}\right)}^{\tau\left(t^{\text {out })}\right.} d \tau^{\prime} \tau^{\prime p-k}} \text { where }
\end{array} \\
& \quad+\sum_{k=0}^{N_{p}} P_{k}\left(z^{i n}\right) \cdot \sum_{p=k}^{N_{p}} c_{p k} \mu^{p-k}\left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \frac{\left(\vec{q}_{r, p o l}(\vec{\Omega})\right)_{p}}{\Sigma_{r}}
\end{aligned}
$$

STEP VS POLYNOMIAL TRANSMISSION

- Step transmission:

$$
\Psi\left(t^{o u t}, \vec{\Omega}\right)=\Psi\left(t^{i n}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+\left(1-e^{-\Sigma_{r} l}\right) \cdot \frac{q_{r}(\vec{\Omega})}{\Sigma_{r}}
$$

- Polynomial transmission:

$$
\begin{aligned}
& \Psi_{r}\left(t^{\text {out }}, \vec{\Omega}\right)=\Psi_{r}\left(t^{i n}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+ \\
& \quad+\sum_{k=0}^{N_{p}} P_{k}\left(z^{i n}\right) \cdot \sum_{p=k}^{N_{p}} c_{p k} \mu^{p-k}\left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \frac{\left(\vec{q}_{r, p o l}(\vec{\Omega})\right)_{p}}{\Sigma_{r}}
\end{aligned}
$$

CHORDS CLASSIFICATION

$$
\begin{aligned}
& \Psi_{r}\left(t^{\text {out }}, \vec{\Omega}\right)=\Psi_{r}\left(t^{i n}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+ \\
& \quad+\sum_{k=0}^{N_{p}} P_{k}\left(z^{i n}\right) \cdot \sum_{p=k}^{N_{p}} c_{p k} \mu^{p-k}\left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \frac{\left(\vec{q}_{r, p o l}(\vec{\Omega})\right)_{p}}{\Sigma_{r}}
\end{aligned}
$$

CHORDS CLASSIFICATION

Thanks to chords classification...

$$
\begin{aligned}
& \Psi_{r}\left(t^{\text {out }}, \vec{\Omega}\right)=\Psi_{r}\left(t^{i n}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+ \\
& \quad+\sum_{k=0}^{N_{p}} P_{k}\left(z^{i n}\right) \cdot \sum_{p=k}^{N_{p}} c_{p k} \mu^{p-k}\left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \frac{\left(\vec{q}_{r, p o l}(\vec{\Omega})\right)_{p}}{\Sigma_{r}}
\end{aligned}
$$

CHORDS CLASSIFICATION

Thanks to chords classification...

$$
\Psi_{r}\left(t^{o u t}, \vec{\Omega}\right)=\Psi_{r}\left(t^{i n}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+
$$

$$
\begin{aligned}
& +\sum_{k=0}^{N_{p}} P_{k}\left(z^{i n}\right) \cdot \sum_{(p=k}^{N_{p}} c_{p k} \mu^{p-k}\left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \frac{\left(\vec{q}_{r, p o l}(\vec{\Omega})\right)_{p}}{\Sigma_{r}} \\
& \longrightarrow \\
& \longrightarrow
\end{aligned}
$$

For a given angle, z-plane and 2D-chord, each 3D chords with the same length, belongs to the same class and has the same values of this term

CHORDS CLASSIFICATION

Thanks to chords classification...

$$
\Psi_{r}\left(t^{o u t}, \vec{\Omega}\right)=\Psi_{r}\left(t^{i n}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+
$$

$$
+\sum_{k=0}^{N_{p}} P_{k}\left(z^{i n}\right) \cdot \underbrace{\sum_{p=k}^{N_{p}} c_{p k} \mu^{p-k}\left(\frac{2}{\Delta z}\right)^{p-k} E_{p-k}(\tau) \frac{\left(\vec{q}_{r, p o l}(\vec{\Omega})\right)_{p}}{\Sigma_{r}}}
$$

\bullet Total number of chords	10.39 M
\bullet Number of classes	0.814 M

For a given angle, z-plane and 2D-chord, each 3D chords with the same length, belongs to the same class and has the same values of this term

CHORDS CLASSIFICATION

Thanks to chords classification...

CHORDS CLASSIFICATION

Thanks to chords classification...

STEP VS POLYNOMIAL

- For a fair comparison:

Step

$$
\Psi\left(t^{\text {out }}, \vec{\Omega}\right)=\Psi\left(t^{i n}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+\left(1-e^{-\Sigma_{r} l}\right) \cdot \frac{q_{r}(\vec{\Omega})}{\Sigma_{r}}
$$

Polynomial

$$
\Psi\left(t^{o u t}, \vec{\Omega}\right)=\Psi\left(t^{i n}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+\vec{P}\left(\tilde{z}^{i n}\right) \cdot \vec{T}
$$

STEP VS POLYNOMIAL

- For a fair comparison:
$\begin{array}{ll}\text { Step } & \Psi\left(t^{\text {out }}, \vec{\Omega}\right)=\Psi\left(t^{\text {in }}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+\left(1-e^{-\Sigma_{r} l} \bigodot^{\frac{q_{r}(\vec{\Omega})}{\Sigma_{r}}}\right. \\ \text { Polynomial } & \Psi\left(t^{\text {out }}, \vec{\Omega}\right)=\Psi\left(t^{\text {in }}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+\vec{P}\left(\tilde{z}^{i n}\right) \cdot \vec{T}\end{array}$
1 floating point operation

STEP VS POLYNOMIAL

- For a fair comparison:

STEP VS POLYNOMIAL

- For a fair comparison:

Step

$$
\begin{aligned}
& \Psi\left(t^{\text {out }}, \vec{\Omega}\right)=\Psi\left(t^{\text {in }}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+\left(1-e^{-\Sigma_{r} l}\right) \bigodot^{\frac{q_{r}(\vec{\Omega})}{\Sigma_{r}}} \\
& \Psi\left(t^{\text {out }}, \vec{\Omega}\right)=\Psi\left(t^{i n}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+\vec{P}\left(\tilde{z}^{i n}\right. \\
& \rightharpoonup
\end{aligned} \underbrace{1 \text { floating point operation }} \begin{aligned}
& \mathrm{N}_{\mathrm{p}} \text { floating point operations }
\end{aligned}
$$

Polynomial

Plus the information needed for the balance equation:
Step $\quad \Psi_{r}(\vec{\Omega})=\frac{1}{\Sigma_{r}}\left[q_{r}(\vec{\Omega})-\frac{S_{\perp}}{V_{r}} \sum_{\substack{t \| \Omega \\ t \cap r}}\left(\Psi\left(t^{\text {out }}, \vec{\Omega}\right)-\Psi\left(t^{\text {in }}, \vec{\Omega}\right)\right)\right]$

STEP VS POLYNOMIAL

- For a fair comparison:

Step

$$
\begin{aligned}
\Psi\left(t^{\text {out }}, \vec{\Omega}\right) & =\Psi\left(t^{\text {in }}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+\left(1-e^{-\Sigma_{r} l}\right) \bigodot^{\frac{q_{r}(\vec{\Omega})}{\Sigma_{r}}} \\
\Psi\left(t^{\text {out }}, \vec{\Omega}\right) & =\Psi\left(t^{i n}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+\vec{P}\left(\tilde{z}^{i n}\right. \\
& { }^{\vec{T}} \downarrow \\
& \mathrm{~N}_{\mathrm{p}} \text { floating point operations }
\end{aligned}
$$

Polynomial

Plus the information needed for the balance equation:
Step $\quad \Psi_{r}(\vec{\Omega})=\frac{1}{\Sigma_{r}}\left[q_{r}(\vec{\Omega})-\frac{S_{\perp}}{V_{r}} \sum_{\substack{t \mid \vec{\Omega} \\ t n_{r}}}\left(\Psi\left(t^{\text {out }}, \vec{\Omega}\right)-\Psi\left(t^{\text {in }}, \vec{\Omega}\right)\right)\right]$

STEP VS POLYNOMIAL

- For a fair comparison:

Step

$$
\begin{aligned}
\Psi\left(t^{\text {out }}, \vec{\Omega}\right) & =\Psi\left(t^{\text {in }}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+\left(1-e^{-\Sigma_{r} l}\right) \bigodot^{\frac{q_{r}(\vec{\Omega})}{\Sigma_{r}}} \\
\Psi\left(t^{\text {out }}, \vec{\Omega}\right) & =\Psi\left(t^{i n}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+\vec{P}\left(\tilde{z}^{i n}\right. \\
& \stackrel{\vec{T}}{ } \underbrace{1 \text { floating point operation }}
\end{aligned}
$$

Polynomial

Plus the information needed for the balance equation:
Step $\Psi_{r}(\vec{\Omega})=\frac{1}{\Sigma_{r}}\left[q_{r}(\vec{\Omega})-\frac{S_{1}}{V_{r}} \sum_{\substack{t \| \Omega \\ t \cap r}}\left(\Psi\left(t^{\text {out }}, \vec{\Omega}\right)-\Psi\left(t^{i n}, \vec{\Omega}\right)\right)\right]$
Polynomial

$$
\tilde{\delta}_{r, p}(\vec{\Omega})=\sum_{\substack{t \| \vec{\Omega} \\ t \cap r}}\left[P_{p}\left(\tilde{z}^{o u t}\right) \cdot \Psi\left(t^{o u t}\right)-P_{p}\left(\tilde{z}^{i n}\right) \cdot \Psi\left(t^{i n}\right)\right]
$$

STEP VS POLYNOMIAL

- For a fair comparison:

Step

$$
\begin{aligned}
& \Psi\left(t^{\text {out }}, \vec{\Omega}\right)=\Psi\left(t^{i n}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+\left(1-e^{-\Sigma_{r} l}\right) \bigodot_{\frac{q_{r}(\vec{\Omega})}{\Sigma_{r}}}^{\Sigma_{r}} \\
& \begin{array}{c}
\Psi\left(t^{\text {out }}, \vec{\Omega}\right)=\Psi\left(t^{\text {in }}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l} \\
\mathrm{~N}_{\mathrm{p}} \text { floating point operations }
\end{array} \\
& 1 \text { floating point operation }
\end{aligned}
$$

Polynomial

Plus the information needed for the balance equation:
Step $\Psi_{r}(\vec{\Omega})=\frac{1}{\Sigma_{r}}\left[q_{r}(\vec{\Omega})-\frac{S_{1}}{V_{r}} \sum_{\substack{t \| \Omega \\ t \cap n}}\left(\Psi\left(t^{\text {out }}, \vec{\Omega}\right)-\Psi\left(t^{i n}, \vec{\Omega}\right)\right)\right]$ $\xrightarrow{\mathrm{N}_{\mathrm{p}} \text { floating point operations }}$

Polynomial

$$
\tilde{\delta}_{r, p}(\vec{\Omega})=\sum_{\substack{t \| \vec{\Omega} \\ t \cap r}}\left[P_{p}\left(\tilde{z}^{o u t} \bigcirc \Psi\left(t^{o u t}\right)-P_{p}\left(\tilde{z}^{i n}\right) \cdot \Psi\left(t^{i n}\right)\right]\right.
$$

STEP VS POLYNOMIAL

- For a fair comparison:

Step

$$
\Psi\left(t^{o u t}, \vec{\Omega}\right)=\Psi\left(t^{i n}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}+\left(1-e^{-\Sigma_{r} l} \bigodot^{\frac{q_{r}(\vec{\Omega})}{\Sigma_{r}}}\right.
$$

Polynomial

$$
\Psi\left(t^{\text {out }}, \vec{\Omega}\right)=\Psi\left(t^{\text {in }}, \vec{\Omega}\right) \cdot e^{-\Sigma_{r} l}
$$

1 floating point operation

Plus the information needed for the balance equation:

AXIAL DISCRETIZATION

Difference between the axial discretization needed in the Step Constant and in the Polynomial case:

AXIAL DISCRETIZATION

Difference between the axial discretization needed in the Step Constant and in the Polynomial case:

FINAL CONSIDERATIONS

- Higher numbers of floating point operations per chord

FINAL CONSIDERATIONS

- Higher numbers of floating point operations per chord
- Some of them can be vectorized

FINAL CONSIDERATIONS

- Higher numbers of floating point operations per chord
- Some of them can be vectorized
- Less axial planes also means less chords (~-15\%)
- Less memory needed

POLYNOMIAL VS STEP: RESULTS 2

Method	Step					Polynomial ($N_{p}=2$)		
$\Delta r(\mathrm{~cm})$	0.05					0.05		
$\Delta s(\mathrm{~cm})$	1.0					1.0		0.5
Axial meshes	57	110	180	257	600	5	6	12
\# chords	29.57 M	31.88 M	34.93 M	38.29 M	53.24 M	27.31 M	27.35 M	55.24 M
\# classes	17.07 M	21.12 M	21.80 M	20.33 M	18.16 M	1.90 M	2.28 M	4.57 M
Classification	83.82 \%	74.67 \%	66.68 \%	59.56 \%	52.39 \%	98.4 \%	98.09 \%	96.21 \%
Self-shielding	Tone:							
$k_{\text {eff }}$	1.163761	1.165075	1.165412	1.165672	1.165744	1.165584	1.165805	1.165801
$\begin{gathered} \rho \text { err / T4 } \\ (\text { PCM }) \end{gathered}$	-96.45	+0.44	+25.43	+44.66	+49.72	+37.76	+54.00	+53.92
Time	12210 s	22719 s	37785 s	55472 s	127809 s	15384 s	16326 s	34775 s
Self-shielding	Sub-Groups:							
$k_{\text {eff }}$	1.164114	1.16543	1.165767	1.166027	1.166094	1.165927	1.166147	1.166154
$\begin{gathered} \rho \text { err } / \mathbf{T} 4 \\ (\text { PCM }) \end{gathered}$	-70.54	+26.38	+ 51.22	+70.28	+75.42	+63.01	+ 79.27	+79.72
Time	12575 s	24031 s	38454 s	56500 s	124470 s	16174 s	17316 s	50620 s

- An impressive gain in computational meshes is obtained

SELF-SHIELDING/ACCELERATION IMPACT

Self-shielding effect		
	$k_{e f f}$	$\delta k_{e f f}$
NO self-shielding	1.093190	-2932 PCM
Sub-Groups method	1.127149	+84 PCM
Tone method	1.126910	+62 PCM
Table 5: Self-shielding effect for the full-column case in nominal conditions. $\delta k_{e f f}$ relative error (in PCM) erence Tripoli4 calculation. Nominal conditions.		

	$D P_{1}$ polynomial order Acc./Free Time		0
	0.16	1	2
Outers	0.66	-	0.06
Inners	0.11	-	0.11
Memory	1.96	-	10.06

Table 6: Ratios of times, number of iterations and memory footprint between accelerated calculations and free iterations for varying order of the spatial polynomial order of the $D P_{1}$ operator. The case considered is the full-column assembly in nominal conditions.

- A factor 20 of computational time reduction can be obtained but there is a memory price to pay. (Work on it is under way!)
- NOTE: All micro/macro-scopic reaction rate errors are below 1%

Cea conclusions

- Polynomial MOC is on the way
- Classifications of chords is of fundamental importance
- Dpn acceleration works but it is memory expensive
- Many ways are possible for memory reduction
- How about XS?

REFERENCES

1. Sanchez, R. (2012), `Prospects in deterministic three-dimensional whole-core transport calculations’ Nuclear Engineering and Technology 44(5), 113-150.
2. W. Boyd, A. Siegel, S. He, B. Forget and K. Smith: "Parallel performance results for the OpenMOC method of characteristic code on multi-core platforms", http://dx.doi.org/:10.1177/1094342016630388 International Journal of High Performance Computing Applications, February 15, 2016.
3. D.Sciannandrone, , S. Santandrea, R.Sanchez: "Optimized tracking strategies for step MOC calculations in extruded 3D axial geometries", Ann. Nucl. Energy Vol.87 49-60 (2016) http://dx.doi.org/10.1016/j.anucene.2015.05.014.
4. Santandrea S., Sciannandrone D., Sanchez R., Mao L. and Graziano L.: " A neutron transport characteristics method for 3D axially extruded geometries coupled with a fine group self-shielded environment", published in NSE 2017
5. Santandrea S., Graziano L \& Sciannandrone D.: "Accelerated Polynomial axial expansions for full 3D neutron transport MOC in the APOLLO3R code system as applied to the ASTRID fast breeder reactor » published ANE 2018

CeZ MOC 1 : BASIC ITERATIVE SCHEME

- scattering term expansion $\quad q(\mathbf{r}, \Omega) \sim \sum_{i} q_{i}(\Omega) \theta_{i}(\mathbf{r})$

$$
q_{i}(\Omega)=\underbrace{\sum_{k=0}^{K} \sum_{s k, i} \sum_{l=-k}^{k} \phi_{k, i}^{l} A_{k}^{l}(\Omega)}_{\text {scattering }}+S_{i}(\Omega)
$$

- cell averaged angular flux moments

$$
\phi_{k, i}^{l}=\frac{1}{4 \pi} \int_{(4 \pi)} d \Omega A_{k}^{l}(\Omega) \psi_{i}(\Omega) \sim \sum_{n} w_{n} A_{k}^{l}\left(\Omega_{n}\right) \psi_{i}\left(\Omega_{n}\right)
$$

- positive method
- no fix-up is necessary
- arbitrary anisotropy order

$D P_{N}$: SYNTHETIC ACCELERATION

\square Synthetic acceleration

- perform a free iteration

$$
\binom{\Phi^{(n)}}{J_{+}^{(n)}} \rightarrow\binom{\Phi_{\text {free }}^{(n+1)}}{J_{+, \text {free }}^{(n+1)}}
$$

- solve synthetic acceleration for

$$
\left.\begin{array}{l}
D\binom{\delta \Phi^{(n)}}{\delta J_{+}^{(n)}}=H\left(\begin{array}{cc}
\Phi^{(n+1)} \\
\text { free } & \Phi_{\text {free }}^{(n)} \\
J_{+,}^{(n+1)} \\
+J_{\text {free }}^{(n)} \\
+, \text { freee }
\end{array}\right.
\end{array}\right) .
$$

- this approach can be extended from inhomogeneous to eigenvalue problems

$D P_{N} 2$

- transmission and escape first flight probabilities (symmetry and conservation preserved by numerical scheme) for SC method:

$$
\begin{array}{ll}
T_{\alpha \beta}^{\rho v}=T_{\beta \alpha}^{\rho v}=\int_{\alpha} d S \int_{\beta \rightarrow \alpha} d \Omega A^{\rho}(\boldsymbol{\Omega}) A^{v}(\boldsymbol{\Omega})|\mathbf{n} \cdot \boldsymbol{\Omega}| e^{-\Sigma_{i} R(\mathbf{r}, \boldsymbol{\Omega})} & \text { (symmetry) } \\
E_{\alpha}^{\rho v}=\frac{1}{\sum_{i} V_{i}}\left(A_{\alpha}^{\rho v}-\sum_{\alpha \in \partial i} T_{\alpha \beta}^{\rho v}\right) & \text { (conservation) }
\end{array}
$$

- similar formulas can be written for the Linear Surface method.
- numerical evaluation (coherence with transport)

$$
T_{\alpha \beta}^{\rho v} \sim \sum_{\boldsymbol{\Omega}} \mathrm{w}_{\boldsymbol{\Omega}} \mathrm{A}^{\rho}(\boldsymbol{\Omega}) \mathrm{A}^{v}(\boldsymbol{\Omega}) \sum_{(t, \boldsymbol{\Omega}) \in \beta \rightarrow \alpha} \mathrm{w}_{\perp}(t, \boldsymbol{\Omega}) e^{-\Sigma_{i} R(t, \boldsymbol{\Omega})}
$$

Cea $\quad D P_{N} 3$

- after elimination of cell fluxes, the $D P_{N}$ acceleration equations are solved iteratively for the currents

$$
\begin{gathered}
\vec{J}_{+, \alpha}=\sum_{\beta \in \partial i} \hat{T} \vec{J}_{-, \beta}+\vec{J}_{S} \\
\hat{T}_{\alpha \beta}^{\rho v}=T_{\alpha \beta}^{\rho v}+E_{\alpha}^{\rho 0} \frac{\Sigma_{i} V_{i} \Sigma_{s i}}{\Sigma_{a i}+E^{00} \Sigma_{s i}} E_{\beta}^{0 v} S^{v} \\
\text { generalized transmission } \\
\text { related to multicollisional processes }
\end{gathered}
$$

- solution with a Krilov iterator (BCGS or GMRES): $\quad M \vec{\psi}=\vec{S}$

$$
\text { iterator : } \quad M=1-\hat{T}
$$

with an adapted ILUO and domain decomposition method.

MOC 3 : BOUNDARY CONDITIONS

Adapted tracking is done to exactly take into account symmetries and boundary conditions
p/2 rotation

Cyclic tracking for infinite periodic systems

