DE LA RECHERCHE À L'INDUSTRIE

x^{2}

Eigenvalue Problems

in Three-dimensional Random Media

Coline Larmier

Advisor: Andrea Zoia
Directors: E. Dumonteil and A. Mazzolo

CEA/SACLAY
\square Eigenvalue problems in random media
\square Stochastic tessellations
\square Analysis of fuel assemblies
\square Perspectives

cea
 CONTEXT AND MOTIVATIONS

Analysis of re-criticality probability following severe core accidents

Fuel degradation:

$>$ melting and solidification
> random configurations

TMI corium sample

NEUTRON TRANSPORT IN « RANDOM » MEDIA

The randomness of a medium is measured w.r.t. neutron transport
Define :

- $\lambda=1 / \Sigma=$ neutron mean free path

- $\Lambda=$ typical disorder size (correlation length) : average size of homogeneous regions

Three possible regimes :

$$
\Lambda \ll \lambda
$$

$$
\Lambda \approx \lambda
$$

$\Lambda \gg \lambda$

- Macroscopically heterogeneous medium (homogeneous « by blocks »)
- Microscopically homogeneous medium ("atomic mix »)
- Microscopically heterogeneous medium
- Disorder can be described by probabilistic models

STOCHASTIC TESSELLATIONS FOR CRITICALITY PROBLEMS

Stochastic tessellations [Miles, Santalo] are a convenient model for disorder
Idea: partition a d-dimensional region according to a given probability law $P(q)$

Poisson tessellations
> Random hyper-planes
> Markov property

Voronoi tessellations
> Poisson point process
> Voronoi diagrams

THE BOLTZMANN EQUATION IN STOCHASTIC GEOMETRIES

Eigenvalue Boltzmann equation for the neutron flux φ :

Scattering

$$
\begin{gathered}
\underbrace{\boldsymbol{\omega} \cdot \nabla \varphi_{k}^{(q)}}_{\text {Leakage }}+\underbrace{\sum_{t}^{(q)} \varphi_{k}^{(q)}}_{\text {Collisions }}-\int \sum_{\Sigma_{s}^{(q)}\left(\mathbf{r}, \mathbf{v}^{\prime} \rightarrow \mathbf{v}\right) \varphi_{k}^{(q)}\left(\mathbf{r}, \mathbf{v}^{\prime}\right)} \mathrm{d} \mathbf{v}^{\prime}
\end{gathered} \begin{gathered}
\begin{array}{c}
\text { For a single } \\
\text { geometry } \\
\text { realization } q
\end{array} \\
k^{(q)}
\end{gathered} \underbrace{\left.\nu^{(q)}\left(v^{\prime}\right) \Sigma_{f}^{(q)}(\mathbf{r}, v) v^{\prime}\right) \varphi_{k}^{(q)}\left(\mathbf{r}, \mathbf{v}^{\prime}\right) \mathrm{d} \mathbf{v}^{\prime}}_{\text {Fission }}
$$

In compact form: $\mathcal{L}^{(q)} \varphi_{k}^{(q)}(\mathbf{r}, \mathbf{v})=\frac{1}{k^{(q)}} \mathcal{F}^{(q)} \varphi_{k}^{(q)}(\mathbf{r}, \mathbf{v})$
For random geometries: we search the ensemble-averaged eigenpairs

$$
\left\{\begin{array}{l}
\left\langle\varphi_{k}\right\rangle=\int \mathcal{P}(q) \varphi_{k}^{(q)}(\mathbf{r}, \mathbf{v}) d q \\
\langle k\rangle=\int \mathcal{P}(q) k^{(q)} d q
\end{array}\right.
$$

Quenched disorder:
 reference solutions

HOMOGENEISATION: « ANNEALED DISORDER »

Instead of solving the exact equation and taking ensemble averages
Introduce effective transport kernels \mathcal{L}^{\prime} and \mathcal{F}^{\prime}
such that $\mathcal{L}^{\prime} \varphi_{k}^{\prime}=\frac{1}{k^{\prime}} \mathcal{F}^{\prime} \varphi_{k}^{\prime} \quad$ Annealed disorder
with the constraints

$$
\left\{\begin{array}{l}
k^{\prime} \simeq\langle k\rangle \\
\varphi_{k}^{\prime} \simeq\left\langle\varphi_{k}\right\rangle
\end{array}\right.
$$

> Advantages:

- solve the eigenvalue problem just once
- no need to generate random tessellations

> Drawbacks:

- suppressing correlations: no memory of the media already traversed
- approximate method: need reference solutions for validation

NUMERICAL TOOLS

Eigenvalue problems in stochastic (Poisson) tessellations :
\square Analytical results via perturbation theory [Pomraning; Williams]
. Numerical simulations for 1d configurations (slab or rod)
We have developed a c++ code to generate random tessellations
> Several geometrical forms: d-parallelepipeds, spheres, cylinders, ...
> Dimensions: 1d (rod or slab); 2d (flat or extruded); 3d
> Several mixing statistics: Poisson (Markov), Voronoi, Box
> Interface for the Monte Carlo transport code TRIPOLI-4

CEA | November 30th 2017 | PAGE 8

Analysis of Poisson tessellations

d-DIMENSIONAL POISSON TESSELLATIONS

Tessellation of a box of side L

While sampled hyperplanes < N

- Sample a direction $\mathbf{n} \sim \mathrm{H}(\mathbf{n})$
- Intersect the existing polyhedra with the new hyper-plane having normal vector \mathbf{n}
- Update the tessellation

Effects of the tessellation density ρ

- Analysis of the tessellation density ρ
- $1 / \rho=\Lambda=$ correlation length = typical disorder size (for infinite tessellations)
- The number \mathbf{N}_{P} of d-polyhedra increases with increasing $\rho: N_{p} \sim(\rho L)^{d}$
- 3d tessellations: examples of realizations

$\sim 10^{2}$ polyhedra

C2Z Effects of anisotropy: H(n)

Statistical properties of Poisson tessellations

- Analysis by Monte Carlo methods
- Generate a large ensemble of Poisson tessellations
- Compute the number of polyhedra
- Compute the physical observables
- Estimate moments \& distributions
- Compare to literature (when available!)
- Relevant observables:
> Polyhedral features
- Volume and surface
- Number of faces (connectivity)
- In-radius / out-radius (aspect ratio)
> Stereology
- Chord length distribution

Polyhedral features [*] of infinite tessellations with law H

Volume: $\left\langle V_{d}\right\rangle=\frac{d!}{\zeta_{d}}\left(\frac{\alpha_{d}}{2 \rho}\right)^{d} \quad$ where
[^] Miles (1964); Schneider \& Weil (2008)

$$
\zeta_{d}=\int_{\Omega_{d}^{+}} \cdots \int_{\Omega_{d}^{+}} \underbrace{\left[\mathbf{n}_{1}, \cdots, \mathbf{n}_{d}\right]}_{\begin{array}{c}
\text { d-space } \\
\text { determinant }
\end{array}} d H\left(\mathbf{n}_{1}\right) \cdots d H\left(\mathbf{n}_{d}\right)
$$

Number of faces: $\left\langle f_{d}\right\rangle=2 d$
In-radius: exponentially distributed, with $\left\langle r_{\text {in }, d}\right\rangle=\frac{1}{\alpha_{d} \rho}$

- Out-radius: unknown
$>$ Inequalities: $\left\langle V_{d}^{m}\right\rangle \geq\left\langle V_{d}^{m}\right\rangle^{\text {iso }}$

$$
\left\langle S_{d}\right\rangle \geq\left\langle S_{d}\right\rangle^{\text {iso }}
$$

$$
\alpha_{d}=2 \sqrt{\pi} \frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)}
$$

Chord lengths [*] for infinite tessellations with law H

[*] Miles (1964); Schneider \& Weil (2008)

- A straight line with orientation \mathbf{v} will encounter a number of hyper-planes having a Poisson distribution with density

$$
\rho(\mathbf{v})=\frac{\alpha_{d}}{2} \rho \int_{\Omega_{d}^{+}}|\mathbf{n} \cdot \mathbf{v}| d H(\mathbf{n})
$$

$$
\alpha_{d}=2 \sqrt{\pi} \frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)}
$$

The line \mathbf{v} will be cut into chords ℓ exponentially distributed with average

$$
\langle\ell\rangle(\mathbf{v})=1 / \rho(\mathbf{v})
$$

If the lines \mathbf{v} are isotropic and homogeneous, then

$$
\Lambda \equiv\langle\ell\rangle=\alpha_{d} \frac{\left\langle V_{d}\right\rangle}{\left\langle S_{d}\right\rangle}=\frac{1}{\rho} \quad \text { Correlation length of the tessellation }
$$

cea
 Finite size effects: polyhedral features

Finite size effects: chord length distribution

Sample lines with direction v: $\mathscr{P}(\ell \mid \mathbf{v})=\rho(\mathbf{v}) e^{-\ell \rho(\mathbf{v})}$

$$
\rho(\mathbf{v})=\frac{\alpha_{d}}{2} \rho \int_{\Omega_{d}^{+}}|\mathbf{n} \cdot \mathbf{v}| d H(\mathbf{n})
$$

Homogeneous and isotropic lines:

H	$\langle\ell\rangle$	Monte Carlo
Isotropic	1	$0.999 \pm 1 \cdot 10^{-3}$
Linear	1	$0.993 \pm 9 \cdot 10^{-4}$
Parabolic	1	$0.993 \pm 1 \cdot 10^{-3}$
Box	1	$0.992 \pm 1 \cdot 10^{-3}$
Histogram	1	$0.993 \pm 1 \cdot 10^{-3}$

Coloured Poisson geometries and percolation

] Attribute physical properties:

- Assign each polyhedron a « label »
- Binary stochastic mixing: red with probability \mathbf{p}, blue with probability $1-\mathrm{p}$
- Define a cluster: aggregate neighbouring polyhedra sharing the same colour

$$
\begin{aligned}
& \rho=0.6 \\
& p=0.50
\end{aligned}
$$

$$
\begin{aligned}
& \rho=2 \\
& p=0.50
\end{aligned}
$$

$$
\begin{aligned}
& \rho=2 \\
& p=0.25
\end{aligned}
$$

\square Percolation threshold: $\mathbf{p}_{\mathbf{c}}$

- Value of p beyond which the red cluster spans a.s. the entire domain
- Rigorously defined for infinite tessellations
- Physical meaning: preferential paths

Percolation properties for 3d Poisson geometries

3d Poisson : $p_{c}=0.290 \pm 0.007$ (Larmier et al., 2016)
2d Poisson : $p_{c}=0.586 \pm 0.001$ (Lepage et al., 2010)
Cubic 3d lattice : $p_{c}=0.3126$ (Grassberger, 1992)

Application to an eigenvalue problem

Intact assembly

Compositions:

(ternary mixing, respecting volume fractions \mathbf{p})

Damaged fuel

 Fuel: UOX/MOX : 35\%
\square Cladding : 10\%

Moderator: $\mathrm{H}_{2} \mathrm{O}$: 55\%

CEA | November 30th 2017 | PAGE 21

cea
 BENCHMARK PARAMETERS

REFERENCE SOLUTIONS BY MONTE CARLO METHODS

Ce2 AVERAGE EIGENVALUE $K_{\text {EFF }}$

Thanks for your attention

References

- C. Larmier, A. Zoia, F. Malvagi, E. Dumonteil, A. Mazzolo, Poisson-Box Sampling algorithm for threedimensional Markov binary mixtures. JQSRT 206, 70-82 (2018)
] C. Larmier, A. Lam, P. Brantley, F. Malvagi, T. Palmer, A. Zoia, Monte Carlo Chord Length Sampling for d-dimensional Markov binary mixtures, JQSRT 204, 256-271 (2018)
C. Larmier, A. Zoia, F. Malvagi, E. Dumonteil, A. Mazzolo, Neutron multiplication in random media: Reactivity and kinetics parameters, Ann. Nucl. Energy 111, 391-406 (2018)
- C. Larmier, A. Zoia, F. Malvagi, E. Dumonteil, A. Mazzolo, Monte Carlo particle transport in random media: the effects of mixing statistics. JQSRT 196, 270-286 (2017)
] C. Larmier, François-Xavier Hugot, F. Malvagi, A. Mazzolo, A. Zoia, Benchmark solutions for transport in d-dimensional Markovian binary mixtures, JQSRT 189, 133-148 (2017)
[C. Larmier, E. Dumonteil, F. Malvagi, A. Mazzolo, A. Zoia, Finite size effects and percolation properties of Poisson geometries, Phys. Rev. E 94, 012130 (2016)

Centre de Saclay | 91191 Gif-sur-Yvette Cedex
T. +33 (0)1 69086275 | Secr :+33 (0)1 69083961

Etablissement public à caractère industriel et commercial | RCS Paris B 775
685019

Effects of the tessellation density ρ

Dimensionless factor $z=\rho L$: system «size»

DISTRIBUTION OF K ${ }_{\text {EFF }}$ AS A FUNCTION OF $\boldsymbol{\Lambda}$

MOX assembly with isotropic Poisson tessellation

DISTRIBUTION OF K ${ }_{\text {EFF }}$ AS A FUNCTION OF ANISOTROPY

MOX assembly with $\Lambda=1$

