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• Due to technology scaling & high computation needs, more 
resources are integrated on-chip
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Intel SCC 
(48 cores, 2010)

Tilera Tile Gx
(72 cores, 2012)

Intel Xeon Phi
(72 cores, 2015)

[Rupp, 40 years of microprocessor trend data, 2015]

Today’s Multi-/Many-core Computing Systems



• 3D stacking technology is a promising integration technology for 
future computation system design
• More on-chip resources compared to 2D designs

3D Stacking Technology & Its Benefits
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Area/Chip Yield# of Cores

3D

2D

On-chip Comm. latency

• Various technologies integrated 
on a single chip
• On-chip stacking DRAM
• Silicon-photonic Network-on-

Chip (PNoC)

http://researcher.watson.ibm.com/researcher/view_group.php?id=2757
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Challenges of 3D Stacking Technology

• On-chip Resource Management
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• On-chip Thermal Management

 Under utilized resources 
Performance and energy efficiency 
benefits left on the table

 Increased power density 
Potential thermal violations
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LayerN

Core

Cache

http://researcher.watson.ibm.com/researcher/view_group.php?id=2757

Photonic
Layer
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Layer

 Thermal and process sensitivity of 
devices in other technologies 
Resilience problems or high 
power consumption



Silicon-Photonics Network-on-Chip
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• Silicon-Photonic Link

• Silicon-Photonic Links vs. Electrical Links
o Higher bandwidth 

density

o Lower long-distance 
communication latency

o Lower data-dependent 
energy consumption

o More sensitive to 
thermal variations

o More sensitive to 
process variations
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Integration
methods: Mono. 2.5D 3D



Silicon-Photonics Network-on-Chip
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• Silicon-Photonic Link

• Silicon-Photonic Links vs. Electrical Links
o Higher bandwidth 

density

o Lower long-distance 
communication latency

o Lower data-dependent 
energy consumption

o More sensitive to 
thermal variations

o More sensitive to 
process variations

o High optical loss
o Low laser source 

efficiency (due to 
high temp.)

High thermal 
tuning power

Ring
mod.

Ring
filter

λ1

micro-heater

High laser 
source power

On-chip energy efficiency is a limiting factor for PNoC integration!
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Integration
methods: Mono. 2.5D 3D

Manycore Systems with Silicon-Photonics NoCs



Design-Time Techniques
• Studies on PNoC placement’s impact on signal to 

noise ratio [Li, DATE’15]

• Optical waveguide routing algorithms to reduce 
optical loss under a fixed netlist [Condrat, SLIP’08] 
[Ding, DAC’09]   [Ramini, DATE’13]

• P & R Solutions for PNoC
o PROTON: An automatic tool for PNoC P & R 

[Boo, ICCAD’13]

o GLOW: A ILP based global router for PNoC
[Ding, DAC’12] 

How do we address thermal sensitivity today?
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Runtime Management Techniques
• Aurora [Li, TCAD’15]

o Thermal Tuning
o DVFS
o Routing Algorithm

Device-Level Techniques
• Cladding [Djordjevic, Opt.Exp.’13]

• Heaters [Zhou, TACO’10] [Li, 

TVLSI’12]

• Mach-Zehnder interferometers
[Biswajeet, Opt.Exp.’10]

Our work aims at reducing the thermal tuning power & laser source power for 
PNoC via workload allocation, thermal tuning policies, and design-time techniques.

Cross-Layer Design Automation



Tooling for Design Space Exploration

# of cores & NoC topology

Apps

BW requirement

BW per 
wavelength

# of wavelengths

Optical NoC
area limit 
(5%~10%) 

# of 
waveguides

# of wavelengths 
per waveguide

Ring Design

Dimensions

nrefraction

Thermal 
sensitivity

Free Spectral Range 
(FSR)

Spacing between 
wavelengths

Tolerable Ring 
Temperature Gradient
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[DATE’14]



Memory 
Controllers

Target Many-core System w/ PNoC

• 256-core system with Clos network
Core Architecture: IA-32 core in Intel SCC [Howard,ISSCC’11], 

16KB I/D L1 cache & 256KB L2 cache; 

L2 L2

L2L2

C+L1C+L1

C+L1 C+L1

Processor Tile 
with 4 Cores

16 wgs with
16 rings/wg

16 wgs
13

[DATE’14, TCAD’17]

routers
2 MCs

8 Core tiles

Input 
stage

Middle 
stage

Output 
stage



Floorplan Optimization Flow
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MILP-Based 
OptimizerDesign Options & 

Constraints 
(# of cores, aspect 

ratios, etc.)

Floorplan with Minimized 
PNoC Power & Area Cost

INPUT OUTPUT

• Optimization Goal:

– PNoC Power:

• P & R’s impact on waveguide length, crossing and bending

• Laser source efficiency

• PNoC placement’s impact on thermal tuning power

– PNoC Area:
• Area cost of router groups and waveguides

Compact 
Thermal Model

[DATE’16]



15

• Compact thermal model

MILP-Based 
OptimizerDesign Options & 

Constraints 
(# of cores, aspect 

ratios, etc.)

Floorplan with Minimized 
PNoC Power & Area Cost

INPUT OUTPUT

Compact 
Thermal Model

Floorplan Optimization Flow
[DATE’16]



Thermal 
tuning 
power

Resonant 
frequency 
difference 

among router 
groups

Floorplan Optimization Flow
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• Compact thermal model 

Compact 
Thermal Model

Power profile:

1×N

Accumulated thermal 
weight profiles

MILP-Based 
OptimizerDesign Options & 

Constraints 
(# of cores, aspect 

ratios, etc.)

Floorplan with Minimized 
PNoC Power & Area Cost

INPUT OUTPUT

Compact 
Thermal Model

N×M 1×MSize:

[DATE’16]



Cross-layer PNoC P&R Optimization
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Power Profiles

Thermal Conditions 
of Potential Ring 
Group Locations

PNoC Layouts w/
Minimum PNoC
Power

[DATE’16]



RingAware Workload Allocation Policy
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• Multi-program support
– Sort the threads based on their power dissipation & allocate high-

power application first 

Center core RD0 cores

Categorize cores based on their 
relative positions to the rings

# of threads <= the # of non-
RD0 and non-center cores?

Yes

Avoid RD0 and 
center cores

Keep same # of 
threads in each 

RD0 region

No

[DATE’14]

• Goals:
– Minimize the difference among ring temperatures

– Reduce the overall chip temperature



FreqAlign Workload Allocation Policy

• Process variation introduces resonant frequency shift 
after the system is manufactured

• Only balancing the temperature of ring groups is not 
enough to compensate the frequency mismatch

• On-chip laser sources’ optical frequencies also need to 
match with corresponding rings’ resonant frequency
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[TCAD’17]
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FreqAlign Workload Allocation Policy
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• Target many-core system:

o Keep track of the optical frequency shifts 
of ring groups (in RG weight array)

o Record every core’s thermal impact on 
every ring group

o Choose the core to minimize the frequency 
difference among all ring groups

• Workflow:

Initial RG 
weight array

Find a core that minimizes 
the frequency diff. and 

assign the thread

More 
threads?

End

Update the RG 
weight array

No

Yes

• FreqAlign:

[TCAD’17]

o Keep track of the optical frequency shifts 
of ring groups (in RG weight array)



Experimental Methodology
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• Workload Sets: Selected benchmarks 
from SPLASH2, PARSEC and UHPC:

Workload Sets Job 1 Job2

HP + HP md shock

HP + MP md blackscholes

HP + LP shock lu_cont

MP + MP barnes blackscholes

MP + LP barnes water_nsq

LP + LP lu_cont canneal

• Simulation Framework:

• Tested Policies: 

– Workload Allocation Policy: 
Cluster, RingAware, FreqAlign

– Thermal Tuning Policy: Target 
Frequency Tuning (TFT), 
Adaptive Frequency Tuning 
(AFT)



Experimental Results for 
Many-core System w/o Process Variations
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• Compared to RingAware, FreqAlign reduces the resonant frequency 
difference by 60.6% on average;

• Compared to RingAware + TFT, FreqAlign + AFT reduces the tuning power by 
14.93W on average.

Resonance Frequency Difference PNoC Thermal Tuning Power



Laser Source Placement and Sharing Examples
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Edge 
Placement

Local 
Placement

Sharing 
Degree

High Low

Propagation 
loss

High Low

Higher Sharing Degree 
 Higher 𝜂𝑊𝑃𝐸, Lower # of laser sources 
 Lower laser source power consumption

Higher Propagation loss
 Higher required output optical power 
 Higher laser source power consumption

[NOCS’14]



o Cross-layer, thermally-aware 
optimizer for floorplanning of 
PNoCs

o Runtime workload allocation for 
thermal tuning power reduction

Take-Aways
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o Cross-layer simulation & 
optimization flow: an enabler to 
design energy-efficient systems 
with PNoCs
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