Data retention extraction methodology for perpendicular STT-MRAM

Luc Tillie^{1,2}, E. Nowak¹, R. C. Sousa², M.-C. Cyrille¹, B. Delaet¹, T. Magis¹, A. Persico¹, J. Langer³, B. Ocker³, I-L Prejbeanu² and L. Perniola¹

¹CEA-LETI, Minatec Campus, Grenoble, France, email: <u>luc.tillie@cea.fr</u> ²SPINTEC, Univ. Grenoble Alpes / CEA / CNRS, Grenoble, France ³Singulus Technologies AG, Kahl am Main, Germany

Introduction

In Perp STT-MRAM, retention time τ at a given temperature is related to the Thermal Stability factor Δ [Feng et al. JAP 95] :

$$au = au_0 exp(\Delta)$$
 $\Delta = \log\left(-\frac{ au_0}{N au}\log(1-BER)\right)$

Application	Retention Time τ	Bit Error Rate (N=1)	$\begin{array}{c} \textbf{Thermal} \\ \textbf{Stability } \Delta \left[\mathbf{k}_{b} T \right] \end{array}$
Cache	10 ms	10 ⁻⁹	36 @85°C
Soldering	~9 min	10 ⁻⁵	38 @260°C
Storage (SCM)	1 month	10 ⁻⁹	56 @85°C
Automotive	10 years	10^{-5}	51 @150°C
Consumer	10 years	10 ⁻⁵	51 @85°C

Each application has a different temperature and retention target

Introduction

5% error ~ factor 10 in retention time

Thermal Stability must be extracted with high precision

Outline

- Perp-STT description
- Direct retention time measurement
- Delta extraction methods
- Accuracy and precision
- Delta dependence
- Conclusion

MAD Leti test chip

Standard Foundry Wafer CMOS 130nm + 4 Cu Metal TiN Bottom Electrode Definition

CMP touch (RMS ~ 2Å) Perpendicular magnetic stack deposition by Singulus Ta/FeCoB/MgO/FeCoB/Ta/Co /5x[Pt/Co]/Ru/Co/13x[Pt/Co]/Pt/Ta

Ø100nm Mesa Patterning

Encapsulation and CMP

M5

MAD Leti test chip : Multi back-end memory platform

Resistance Hysteresis Cycle

Resistance Distribution

4kbit matrix shows fully separated distributions

TMR Temperature dependence

The resistance window stays stable up to 235°C → Good state differentiation

Sharrock's Model

Sharrock's model [Sharrock, IEE Trans. On Magnetism, 35, 1999] : \rightarrow Two stable states, Parallel (P) and Anti-Parallel (AP), separated by an energy barrier ΔE

Outline

- Perp-STT description
- Direct retention time measurement
 - On single devices
 - On matrices
- Delta extraction methods
- Accuracy and precision
- Delta dependence
- Conclusion

Switching Time Probability (STP) on single device

Objective : How much time before it switches thermally?

Switching Time Probability (STP) on single device

 $P(\tau) = 1 - exp$

- + Simple Method
- + Exact value of Retention time
- Impractical for long retention time
- Extrapolation for low temperature

Switching Time Probability (STP) on matrix

- + Simple Method
- + Exact value of Retention time
- Impractical for long retention time
- Extrapolation for low temperature

Outline

- Perp-STT description
- Direct retention time measurement
- Delta extraction methods
 - 1. Switching Current Density
 - 2. Switching Pulse Width
 - 3. Switching Field Density
- Accuracy and precision
- Delta dependence
- Conclusion

LMW17 - 2.3 - L.Tillie

(1/3) Switching Current Density (SCD) $SCD(I) = \frac{\Delta}{I_c \tau(\Delta)} t_p \exp\left(-\frac{t_p}{\tau(\Delta)}\right)$ [Huai et al, JAP 98, 2005] 6 Switching Current Density [mA] $\Delta [k_b T] I_c [mA]$ Т 4 **25°C** 37 2.4 125°C 28 2.2 2 18 0.0 0.5 1.0 1.5 2.0 2.5 Switching Current [mA]

+ Fast Method+ Standard measurement

(2/3) Switching Pulse Width (SPW)

In thermally activated regime : $SPW(t_p) = I_c \left[1 - \frac{1}{\Delta} log \left(\frac{t_p}{\tau_0} \right) \right]$

(2/3) Switching Pulse Width (SPW)

In thermally activated regime : $SPW(t_p) = I_c \left[1 - \frac{1}{\Delta} log \left(\frac{t_p}{\tau_0} \right) \right]$

[Koch et al, Phys. Rev. Lett. 92, 2004]

Т	$\Delta [k_b T]$	I _c [mA]
85°C	74	3.57
175°C	51	2.82

(2/3) Switching Pulse Width (SPW)

In thermally activated regime : $SPW(t_p) = I_c \left[1 - \frac{1}{\Delta} log \left(\frac{t_p}{\tau_0} \right) \right]$

- + Fast Method
- + Requires to be in thermally activated regime
- Degradation due to long pulses

$$SFD(H) = \frac{1}{R_H \tau_0} exp\left\{-\frac{H_k}{2\tau_0 R_H} \sqrt{\frac{\pi}{\Delta}} erfc\left[\sqrt{\Delta}\left(1 - \frac{H}{H_k}\right)\right]\right\} exp\left[-\Delta\left(1 - \frac{H}{H_k}\right)^2\right]$$

$$SFD(H) = \frac{1}{R_H \tau_0} exp\left\{-\frac{H_k}{2\tau_0 R_H} \sqrt{\frac{\pi}{\Delta}} erfc\left[\sqrt{\Delta}\left(1 - \frac{H}{H_k}\right)\right]\right\} exp\left[-\Delta\left(1 - \frac{H}{H_k}\right)^2\right]$$

$$SFD(H) = \frac{1}{R_H \tau_0} exp\left\{-\frac{H_k}{2\tau_0 R_H} \sqrt{\frac{\pi}{\Delta}} erfc\left[\sqrt{\Delta}\left(1 - \frac{H}{H_k}\right)\right]\right\} exp\left[-\Delta\left(1 - \frac{H}{H_k}\right)^2\right]$$

$$SFD(H) = \frac{1}{R_H \tau_0} exp\left\{-\frac{H_k}{2\tau_0 R_H} \sqrt{\frac{\pi}{\Delta}} erfc\left[\sqrt{\Delta}\left(1 - \frac{H}{H_k}\right)\right]\right\} exp\left[-\Delta\left(1 - \frac{H}{H_k}\right)^2\right]$$

 $\Delta [k_b T] H_k [mT]$ 0.18 0.19 0.21

+ No degradation (only for reading) Involves magnetic field (Setup compatibility) LMW17 - 2.3 - L.Tillie

Outline

- Perp-STT description
- Direct retention time measurement
- Delta extraction methods
- Accuracy and precision
- Delta dependence
- Conclusion

Precision Measurement

Low cycle number induces optimistic ∆ extraction and high variability → High number of cycles needed

Measurement parameters

Two main measurement conditions :

- Number of significant points for curve fitting
- Number of events measured

Delta – accuracy and precision

Delta extraction requires :
→ At least 5 points over the distribution
→ A high number of events measured

Summary Table

	Switching		Significant points #		Events #		
	Mechanism	Accuracy		Precision		speed	Comments
		5%	1%	5%	1%		
STP	Retention (thermal)	-	-	≥10	≥20	1s – 1 yr	 + Simple method + Most precise - Impractical for long retention time
SCD	Current pulse (amplitude)	≥3	≥6	≥200	≥ 10 ⁴	ns	+ Fast method + Typically no degradation
SPW	Current pulse width (length)	≥3 (per pts)	≥5 (per pts)	≥10	≥100	ns – ms	 + Fast method - Requires to be in thermally activated regime - Degradation due to long pulses
SFD	Magnetic Field	≥6	-	≥300	≥ 10 ⁵	μs – ms	 + No degredation - Involves magnetic field

Outline

- Perp-STT description
- Direct retention time measurement
- Delta extraction methods
- Accuracy and precision
- Delta dependence
 - Diameter dependence
 - Temperature dependence
- Conclusion

Stability dependence with diameter

Non-quadratic behavior → Coherent with a constant sub-volume nucleation. [Sun et al, Phys. Rev. B 84']

STP at high temperature : Reference values

LMW17 - 2.3 - L.Tillie

SCD on all range : Coherent with reference values

LMW17 - 2.3 - L.Tillie

SPW Measurements : Coherent at high temperature, deviates from SCD below 100°C

SFD at low temperature : noisy but coherent with SCD

LMW17 - 2.3 - L.Tillie

Thermal stability modeling

- MacroSpin and Domain-Wall models coherent at high temperature
- MacroSpin deviates below 100°C
- Domain-Wall close to SCD on all range

Application	Retention Time τ	Bit Error Rate (N=1)	Thermal Stability Δ [k _b T]
Cache	10 ms	10 ⁻⁹	36 @85°C
Soldering	~9 min	10 ⁻⁵	38 @260°C
Storage (SCM)	1 month	10 ⁻⁹	56 @85°C
Automotive	10 years	10 ⁻⁵	51 @150°C
Consumer	10 years	10 ⁻⁵	51 @85°C

Conclusion

- 4 retention time methods have been compared in diameter and temperature
- Accuracy and precision study showed the need of measuring enough events with a minimum number of significant points
- The 4 extractions gave similar results except the SPW which deviates significantly below 100°C
- Extrapolating from high temperature to a certain value has to be done with care

Thank you for your attention

Luc.tillie@cea.fr