

Inline Metrology Overview and Challenges

Principle Metrology Expert

Metrology Module - STMicroelectronics Crolles

3DAM Workshop - March 2019

ST Crolles Manufacturing and R&D Sites

ST Restricted

InLine Metrology Main Quality Criteria

InLine Metrology Challenges & Trends

InLine Metrology Main Quality Criteria

InLine Metrology Challenges & Trends

Accuracy & Precision

Sensitivity & Capability

Robustness & Productivity

Not Accurate

Not Precise

Accuracy & Precision

ISO9001 & IATF for automotive industries

Accuracy :

- Inline measurement processes are at the limit of physics
- Suffering from the lack of available reference standards
- Alternative is to rely on cross correlation & sponsor academic collaboration

Metrology Monitoring Control Chart

Precision (Repeatability & Reproducibility):

- Metrology variability budget requested to be minimum versus process variation to insure proper process control
- Drastic Control of metrology Equipement precision:
 - Ex: Smallest quantity Al layer in HKMG: 1.2 A +/- 0.4 A

Accuracy & Precision

Sensitivity & Capability

Robustness & Productivity

Sensitivity & Capability

Advanced Process Control (APC)

Sensitivity:

- Metrology provides judgment on lot, DOE, OPC, process window, engineering optimisation, equipment qualification...
- Small modification in process can have a hugh impact on model or image quality due to its extreme sensistivy
- Feed forward and backward → direct impact of metrology data quality on process readjustment

Capability (Precision/Tolerance Ratio) :

- Process capability (Cpk indicator) is a ratio which compares the process spread to the width of the specification tolerance
- The observed Cpk can be directly impacted by the Metrology individual or fleet variability
- Individual Stability and Alignment between Metrology systems are direct contributors of the observed Process capability

$$\sigma_{Observed}^2 = \sigma_{process}^2 + \sigma_{Measurements}^2$$

Accuracy & Precision

Sensitivity & Capability

Robustness & Productivity

Robustness & Productivity

Robustness:

- Continuous optimization of hardware & recovery intervention to increase Uptime and Overall Equipment Efficiency (OEE).
- Suffering from the lack of FDC (Fault Detection Control) compatibility for early detection.

Throughput :

- Strong difference versus techniques (image, model based...) and environment (air, ultra vacuum...).
- Fitting sequence being the limited factor for overall measurement process duration.

Matching :

- Drastic requirement for alignment of readings between multiple metrology equipment.
- Target for Metrology mismatching < 10% process variation.

Use of monitoring wafer over thickness metrology fleet

Use of production data through multiparameter variance analysis decomposition

InLine Metrology Main Quality Criteria

InLine Metrology Challenges & Trends

InLine Metrology Challenges & Trends

Advanced Methods

Time to solution

Bridge with domains

life.augmented

Advanced Methods

Hybrid metrology: getting more than the sum of data

Channel SiGe Channel layer :

Ref: L. Fauguier and al. Proceedings ISTDM/ICSI Conference Japan 2016

Raised Source Drain Doped SiGe layer :

Hybrid Metrology 13

 Many publication reported combining SEMCD, AFM, Scatterometry for CD measurement ...

 Different level of Hybridization implementation (from feed forward to ...offline complex fitting algorithms using combined spectra)

 Hybrid Metrology proven to be beneficial in some cases but conclusion are application dependent

Measurement error is propagating along the measurement chain

 Hybrid metrology implementation requires standardization and common protocol for exchange of data/spectra between metrology suppliers > Not easy to achieve

Strong IT development needed but no clear ROI to push further so far

InLine Metrology Challenges & Trends

Advanced Methods

Time to solution

Bridge with domains

TRL: Technology Readiness Level

Time to solution 15

- New key characteristics are needed to be controlled inline. In some cases, there is no existing metrology solution in the market.
- Metrology needs to maintien technology watch activities and strong collaboration with key suppliers to be capable to quickly respond to this need with an industrial solution
- European programs and Join Development Program are favorable environment to test innovative techniques in a 2 or 3 years time frame period

Time to solution

Transfer of specific lab technique to industrial environment

Photoluminescence Imaging: buried dislocation detection

Photoluminescence basic principle

Only non destructive technique able to detect buried dislocations

Si sample with buried dislocations intentionally created using P implant (6E13 at/cm² @ 1.39MeV) + recovery anneal – PL acquisition time ~3s

* R. Duru and al. IEEE/SEMI proceedings ASMC Conference 2017

Raman Spectroscopy: Ge composition ultrathin SiGe/Si

Raman Spectroscopy basic principle

Only non destructive technique to provide Ge% with few µm resolution

* A. Durand and al. E-MRS Spring Meeting (May 26-30, 2014, Lille, France)

InLine Metrology Challenges & Trends

Advanced Methods

Time to solution

Bridge with domains

Ultra Thin SOI layer

Ellipsometry results: & dielectric function is modified for ultra thin SOI layer

* L. Schneider and al. Proceedings IEEE/SEMI ASMC Conference (May 4-6, 2015, Saratoga Springs, NY, USA)

Physical simulation of optical properties through tight binding model

Decrease in intensity of E_2 : indiect gap in X in Brillouin Zone

ST Restricted

Local Strain: HRXRD

Fig. 1. Bright field TEM image (a) and schematic (b) of the structure

Finite Element Model

HRXRD

19

Horizontal and vertical displacement field

*A. Durand, V. Boureau, et al., IEEE 15th International Conference on Nanotechnology (IEEE-NANO), 2015, pp. 785-788.

InLine Metrology Challenges & Trends

Advanced Methods

Time to solution

Bridge with domains

SEMCD image

Get more of what we have already

Synoptic flow of fab automation with active Convolutional neutral Network CNN prediction

* J. Ducoté, Proceedings European Mask and lithography Conference (19-20 June 2018, Grenoble, Prance)

Nanotopography Image

Get more of what we have already

Example: CMP application - slurries selection

Topography signature versus slurries

ST Restricted

* M. Kessar, Proceedings SPIE Conference (March 2019, USA)

- Metrology is a pillar of process control and is submitted to key requirements in term of Quality (Accuracy, Capability, Stability...).
- Metrology is a process by its own and therefore submitted to same rules than any other manufacturing process.
- Metrology covers a large variety of technique and requires deep knowledge in Physics, Optics, Material science... → Synergy with other domains.
- With Big data and HVM, data science analytics will allow future development by treatment of Raw Metrology data or Spectra with low cost of engineering.

Thank you for attention

Thank you to all ST Crolles contributors

METROLOGY:

Cost money and Slow you down...

BUT

Allow you to go fast and reach destination safe / in time / everytime

