

M. Vinet, F. Andrieu, E. Nowak, C. Reita and N. Gambacorti

Era of data deluge, 2010 the Economist

Leti Functions and Constraints

Fundamental functions

- Compute
- Store
- Transmit

Constraint

- Power
- Cost
- Performance
- Time to Market

Sources of added energy consumption from Ford Fusion's autonomy system.

Opportunities for alternative computing

Advanced CMOS roadmap

Diversification of the roadmaps to fulfil many applications with high potential benefits

| 6

Need for accurate thickness measurements

- For performance motivation
 - Vt does depend on Tsi
 - To control variability

Need for accurate thickness measurements

- For integration motivation
 - To enlarge epitaxy process window

And surface quality/composition

Scaling Roadmap

SiGe channel improves performance

B De Salvo et al., IEDM'14

- Compressive stress from SiGe channel brings mobility gain
- Performance boost strongly depends on strain configuration

Stress Relaxation and Layout effects

R. Berthelon, F. Andrieu et al., EUROSOI'16

Design technology co-optimization

Continuous-RX designs is an optimimum for the W and SA/SB effects

leti Need for accurate strain measurements

Use of PED for precise strain characterization

leti ceatech

Apply precession to SiGe test device

leti ^{C21tech} Need for accurate strain measurements

Both STEM-HAADF and N-PED results are in good agreement with simulations
Much more noise in the strain profile measured by STEM-HAADF

leti Ceatech

dimensions.

space relaxation).

3D dopant mapping of PMOS device for 14 nm FDSOI technology

TEM image of the 14 nm PMOS device (NO-SOI)

r: 30 nm α: 15°

r: 30 nm α: 5°

r: 50 nm α: 5°

r: 30 nm α: 5°

Workshop on Characterization and Metrology for 3D CMOS | Adeline Grenier | 04/21/2017

ID card:

- Lithography alignment between layers $(3\sigma < 5nm)$
- 3D contact = W plug scales with the device technology (@ 28nm diameter = 40nm)
- Thin active layer (10 to 100nm) (low C coupling)

More than Moore

System integration More functionality Power gain Cost savings

Leti strategy

- Performance demonstration & technological modules development
 - FDSOI chosen as baseline for top layer
 - Low cost
 - IP portability (unlike junctionless)
 - Compatibility with analog and digital performance
- Wide range of applications scanning
- Ecosystem construction

1eti 2014 IEDM: Laser for heat confinement

3D electro-thermal simulator development (Home made simulator, B Matthieu, SISPAD2015)
Nanosec laser annealing experimental demonstration
Lower dopant diffusion and lower dopant segregation as compared to RTA

1eti 2015 and 2016: Low-temp 28 and 14FDSOI HP Demo

Best integration scheme for 28 and 14 technology (mix between extension first and last ad in-situ doped) Solid-Phase Epitaxy Regrowth activation mechanisms Strain preservation

Leti
2016: World's first 300mm CoolCube™

300mm FDSOI on FDSOI transistors
No deformation of lithographic maps during thin-film transfer
N over P, and P over N 3D inverters
Layer transfer above metal lines

1eti 2018 IEDM: towards manufacturing

Gate resistance optimization
World first bevel contamination containment
World first Smartcut© Si transfer on patterned wafers demonstration
500°C full epitaxy process (bake and growth)

All of the original technologies

Surface characterization for bonding

- Wafer scale and microscopic roughness
- Chemical activation

Contamination measurements

Backside

Nanowire integration: 15 years of innovation

Full strain relaxation of sacrificial Si_{0.7}Ge_{0.3} layer after the Fin recess

An initial strain (substrate-induced strain) is useless

3DAM Metrology Workshop | Vincent Delaye | 20/04/2018

Strain measurement and mechanical simulation

- Mechanical simulation and unique strain characterization
- Predictivice compact modelling unique versatile solution

Vertically stacked GAA MOSFET (nanosheet and/or nanowire)
Vertical GAA MOSFET (nanosheet and/or nanowire)
FinFET / Trigate MOSFET

O Rozeau, IEDM 2016

• Leti-NSP is a unique surface potential based model able to describe nanowire transistors whatever the shape of the wires

Solving useful problems requires a tremendous scaling

	Superconductor	Si spin		Trapped ions	Photons
Size*	(100µm)²	(100nm) ²	~	(1mm) ²	~(100µm)²
V Fidelity	~99.3%	>98%	דד	99.9%	50% (mesure) 98% (portes)
Speed	250 ns	~5 µs	7	100 µs	1 ms
Manufacturing			~		
Variability	3%	0.1%-0.5%	ĸ	0.01%	0.5%
Operation T°	50mK	1K	~	300K	4K
Entangled qubits	20	2	77	20	18

Leti Quantum computing architectures

Nature Comm. (2017)

| 32

Quantum computing key features

New materials: superconductors and associated oxides

-

A tunable Josephson platform to explore manybody quantum optics in circuit-QED Roch et al, ArXiv1802.00633 Few charges regime

Need for a2D array of dots connected by tunnel barriers

 $\Phi = 40 \text{ nm}$

Distance = 40nm

FDSOI, memories, CoolCube, nanowires, qubits (NCFET, FeFET, 2D materials...):

CMOS scaling has turned into devices adding

- Still a lot of opportunities and needs for technological developments
- In addition to the already existing needs for metrology, we are longing for accurate methods for:
 - Material characterization
 - Surface composition and roughness
 - Strain characterization
 - Within a wide range of temperature, charge density regime and geometries

Acknowledgments:

leti

Ceatech

L. Grenouillet, L. Brunet, C. Fenouillet-Beranger, P. Batude, S. Beaurepaire, F. Ponthenier, N. Rambal, V. Mazzocchi, J-B. Pin, P. Acosta-Alba, S. Kerdiles, P. Besson, H. Fontaine, T. Lardin, F. Fournel, V. Larrey, F. Mazen, V. Balan, C. Morales, C. Guerin, V. Jousseaume, X. Federspiel, D. Ney, X. Garros, A. Roman, D. Scevola, P. Perreau, F. Kouemeni-Tchouake, L. Arnaud, C. Scibetta, S. Chevalliez, F. Aussenac, J. Aubin, S. Reboh, F. Andrieu, S. Maitrejean, L. Hutin, B. Bertrand, Y. Thonnart, G. Pillonnet, G. Billiot, H. Jacquinot, M. Cassé, S. Barraud, J.-M. Hartmann, Y.-J. Kim, V. Mazzocchi, S. De Franceschi and T. Meunier, V. Delaye

The programs were/are partly funded by:

theFrench Public Authorities through the NANO2017 & WAYTOGOFAST programsn through the ANR CMOSQuSpin

Lhank

- H2020 EU fundings through SuperAid, 3DAM, 3DMuse, MOSQUITO ICT projects
- ERC project QuCube
- Industrial support of STMicroelectronics, Applied Materials, Screen,