

DIRECTED SELF ASSEMBLY OF BLOCK COPOLYMERS: FROM MATERIALS TO INTEGRATION

R.Tiron et al., Leti Litho wokshop, February 28, 2019

DSA & Lithography

Contact hole

Line & space for nanowires

Chemo epitaxy for high chi

Non-CMOS applications

International Roadmap for Devices and Systems (IRDS) 2017 for lithography

EUV & multiple patterning

Insertion for 7nm node Expensive and complex EUV Limitation: Stochastic effects on the exposed resist as feature size shrink

DSA patterning

Opportunity for **memory**, sub 5 nm logic node Benefits: low cost, high resolution (pitch <20nm) Main challenges: ensure perfect patterning (defectivity), design rules restriction

Next Generation Technology	First Possible Use in Mfg.	Feature Type	Device Type
Multiple Patterning Extension to >4X patterning	2019	Vias, contacts or cut patterns for high performance logic	"7nm" Logic Node
EUV	2018	22 to 24nm hp CH/Cut Levels back end metals at 18nm hp LS	"7nm" Logic Node
DSA (for pitch multiplication)	2021	Contact holes/cut levels for logic. Possibly nanowire patterning	"5nm" Logic Node

DSA can be a low cost & complementary solution for sub-5nm logic node Potential applications: contact hole level, Nanowire (NW) patterning

DSA ADVANCES IN LETI

A wide array of materials and process flows available

leti

THE MAIN ACHIEVEMENTS: PS-b-PMMA CH DSA FOR VIA0 PATTERNING

Several process options available for Contact hole integration

TOWARDS STAKED NANOWIRES

PMMA-attractive

- Demonstration of etching capabilities with Si bulk
 - 45nm depth demonstrated
- Transfer to Si/SiGe/Si stack (short loop)
 - Capabilities demonstrated
- Transfer to Si/SiGe/Si stack (electrical lot)
 - Cut step demonstrated

leti

PS-*b***-PMMA GRAPHOEPITAXY FOR NANOWIRES**

Electrical test on nanowire based devices patterned by DSA

leti Ceatech

DSA CHARACTERIZATION AND ASSOCIATED COMPUTATIONAL METROLOGY

Defectivity

Defectivity & roughness monitored on fingerprint and patterned surfaces

Lithography in Leti Contact hole Line & space for nanowires Chemo epitaxy for high chi Non-CMOS applications

ACE PROCESS

leti

Ceatech

NL: neutral layer BCP: block copolymer

A new chemoepitaxy process by spacer patterning Compatible with high chi BCPs

A.Paquet et al, SPIE2019, Paper 10958-21.

R.Tiron et al., Leti Litho wokshop, February 28, 2019 | 10

ACE PROCESS WINDOW

Defectivity mapping

leti

Ceatech

Process window determination for spacer-chemoepitaxy by L30 BCP

200 nm

leti

ACE PROCESS FROM PS-PMMA TO HIGH CHI

Spacer patterning

Selective grafting

BCP self-assembly

PS-PMMA lamellar 30nm pitch

- E	guide pitch	Multip. factor		
L ₀ =30nn CD = 15n	120	2		
	180	3		
	240	4		

L ₀ = 18nm CD = 9nm	guide pitch	Multip. factor		
	72	2		
	108	3		
	144	4		

Template resolution & density constraints are relaxed

leti ^{Ceatech}

THE MAIN ACHIEVEMENTS : BEYOND CMOS APPLICATION

leti Ceatech

SI NANODOT AUTO-ALIGNEMENT FOR SET APPLICATION

SI nanodot Auto-alignement for SET (Single Electron Transistor)

FIB Carbon

Si nano dot ____

monocrystallin <100> oriented Si substrate

Goal: Directed Ion-Induced Self-Assembly (DIISA) of single Si nanodot (ND) in prefabricated DSA pillars

A. Gharbi et al., SPIE paper# 10960-57, February 27 2019

7 nm SiO2

	2	018	2019	20	020	2021
PS-b-PMMA					· · · ·	
Contact Hole & Via CH graphoepitaxie	Process of record monitoring (SPC)					
Nanowires L/S grapho	Si etch process	Electrical demonstrator	Process electric	s impact on al response		
High chi L/S chemo						
Material evaluation	★ L18 S free	<u>Si</u>	★ L18 S Si fre	Si containing vs e benchmark L14 platforms benchmark	★ L14	scale up
Metrology	★ Residues by BSE	★ PSD on L30 chemo	★ Qualified metrology On finger print	★PSD on L18Cchemo	★ Qualified metrolog In line & 3D	y feasibility on L14
ACE Chemoepitaxy (Spacer strategy)		★ L30 process monitoring 1 m	★ ★ 93i mask nanuf. L18	Cess L18 process 193i monitoring	*	L14 process monitoring

- DSA can easily meet resolution requirements down to N5.
- Different processes available to control selective surface modification.
- ACE: New chemoepitaxy approach using spacer patterning implemented
- DSA: extended beyond CMOS

5th International Symposium on DSA Milan - October 16-18, 2019 http://dsasymposium.org

Maxime Argoud **Charlote Bouet** Zdenek Chalupa Ahmed Gharbi Tommaso Giammaria Gabriela Gusmao Cacho Jerome Hazart Celine Lapeyre Aurelie Lepenec Laurent Pain Anne Paquet Marie-Line Pourteau Patricia Pimenta-Barros Guido Rademaker Marc Zelsmann

Masami Asai Xavier Chevalier Redouane Borsali Laura Evangelio Araujo Marta Fernandez Regulez Guillaume Fleury Douglas Guerrero Masahiko Harumoto Remi Letiec Francesc Perez Murano Seigi Nagahara Christophe Navarro Paul Nealey Celia Nicolet Kaumba Sakavuyi Harold Stokes

Colisa.MMP

