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Architectures

> DARPA Chips Program

@ ASIP PnP chiplets for
machine learning

> Cortical processor

4 One-shot learning
algorithm accelerator

4 Second part of this work

> Modifled DRAM for ML
¢ Customized 3D DRAM

Machine Learning Activities

ML for EDA

Center for Advanced
Electronics through
Machine Learning

€ Applying Machine
learning to EDA problems

4 Back end design; DRC;
Design Reuse



Outline

> Machine Learning and Machine Intelligence _
> Scale matters

> Memory-centric accelerators
¢ DNN and customized DRAM
& Customizable 2.5D Processor

> Conclusions
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Machine Learning to Machine Intelligence

Problem Types: Inline One-time
Image/Pattern Improvement, Learning
Recognition Sequences |
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Deep Networks

> Multiple hidden layers to create needed degrees
of freedom

¢ Feed forward networks
¢ Fully connected network shown
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Convolutional Networks

> Space invariant pattern matching allows “step
and repeat” with a single small network

¢ le. Not all layers fully connected

Convolution Pooling Convolution Pooling Fully Fully Qutput Predictions
+ RelU +Relll Connected Connected
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€ Mix of partially connected and fully connected layers




Recurrent Networks

> Feedback paths added Iin
€ Harder to train but works well on sequential data

INPUT LAYER

HIDDEM LAYER




Long Short Term Memory

> Recurrent network that includes short term
memory that can persist for long times

€ Improves ability to deal with sequential data
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Numenta HTM @ Sowon Cel

@ Hierarchical e
€ Recurrent

@ Sparse distributed codes

€ Hetero-associative memory
€ “One hot” learning

¢ Statically connected synapses
for spatial learning and
inference

4 Dynamically connected
synapses for temporal
learning, inference, and
predictions ..

# Predictions lead to stability - —

% Highly divergent binary and
iInteger operations

Neuron Network
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Distal Segments

D. George and B. Jaros, “The IITM Learning Algorithms,” Numenta, 2007.
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Typical Scales

> Larger data sets lead to larger networks

Problem ____Complexity bource

Single camera for 250,000 parameters nVidia
autonomous vehicle

Obiject identification in > 1B parameters Google
Video

Speech Recognition 4.5M parameters Microsoft
(CNN) 11.7M ops

Speech Recognition 8.9M parameters Microsoft
(DNN) 8.9M ops

Speech Translation 151M parameters to GoogleMind

4B parameters
Face Recognition 140M parameters Google Facenet
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Scaling for Embedded Systems

Support for multiple ANNs

Eight parallel DNN machine for self-
driving car image classification*

Future implementations

Support for disparate ANNs
~16 Gb of memory
~5% for weights

~25 Tbps for real time
classification (60 fps) of multiple
disparate ANNSs

~80% weight memory traffic

weight

memory

input/output |

memory

Verhelst

1 Bojarski, M. et al. “End to End Learning for Self-Driving Cars”. arXiv preprint arXiv:1604.07316
(2016).
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Scale helps accuracy
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Memory Hierarchy

> Need capacity and bandwidth:
> Traditional Solution: Use a memory hierarchy

E DDR DRAM

25.6 GBps/chip

A HKMG 28nm 1GHz Fully-Pipelined Tile-able
IMB Embedded SRAM IP with 1.39mm’ per MB
Ming-Zhang Kuo, Osamu Takahashi, Ping-1 g-Chung Lin, Min-Jer Wang, Ping-Wer Wang.

On-chip SRAM,, SOA:

1.56 sq.mm/Mb

46 mW; 600 MHz; 1 MB; 144D,
76 pJ/access; 500 f]/bit;

| Inference Engine.
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Machine Learning & Locality
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> Traditional Solution relies on locality
@ Does not work for Recurrent Network

€ Works best for batch processing not real time edge
processing

=N Cache weights for image

(not for fc layers)

Cache weights to batch
process multiple images
(not for edge aps)
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Machine Learning

> Traditional Solution Is useful but does not deal

well with scale
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Tezzaron DIRAMA4

> “Dis-integrated” RAM

Family
Name

DiIRAMA4-
64C64™

DiIRAMA4-
64C32™

DIRAMA4-
64C16™

¢ DRAM only tiers

€ Sense amps, etc. on logic

only tiers

@ 32 bit DQ / port

Ports

64

64

64

Banks per
Port

64

64

64

Storage
4x nm node

 «— Lontroller
40 nm node

I/0 layer
142 mm Ba nm node

e ks

0.5mm
. Data

Interface Density Bandwidth Latency
0.6-1.3V 64Gb 4/4 Tbls 9 ns
CMOS I/O (R/W)
0.6-1.3v 32Gb 4/4 Tbls 9 ns
CMOS I/O (R/W)
0.6-1.3vV 16Gb 4/4 Tbls 9 ns

CMOS 1/0 (RIW)



Feature Value Comment
Capacity 64 Gbit 1 Gbit/port
Number of ports 64 Each port provides access to an individual memory
Maximum clock frequency | 1GHz
Number of banks per port 64
Pages per bank 4096
Bits per page 4096
Cycles per read 2 Burst of 2
Cycles per write 2 Burst of 2
Timing
Name Value Comment
tropro 15ns Page open to page open
IpoCcRrA 3ns Page open to cache read, aligned to word address
Lpocr 9Ins Page open to cache read
Lpocw 9ns Page open to cache write
trorc 9ns Page open to page close
Ipcpo 10 ns Page close to page open
tere 5ns cache read latency
tewt —1Ins cache write latency
Power
Name Value Comment
Page open 100 p]
Page close 320pl]
Page refresh 320p]
Cache read 64 pl
Cache write 64 pl
NOP 20pl]

Table C.1 DiRAM4 characteristics [14]
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Modifications to DIRAM4

> Standard DIRAM4
€ 64 disjoint 1Gb memory ports
¢ Standard DiRAMA4 port is 32bits @ 1GHz

€ System has 64 sub-systems each operating on one memory
port

€ 4 Tbs in each direction
> Proposed Customizations for a 3D-DRAM
€ We suggest widen to 2048 bits and use high-density TSVs
€ Entire page in one access using burst-of-2
€ Raw bandwidth ~2Tbps per port
€ Write mask since only partial writes needed

133 f]J/bit SRAM: 500 f]/bit
131 Tbps bandwidth 86 Gbps per port

20
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Modified DIRAM

> Collaboration with Tezzaron

& Match external bandwidth to internal bandwidth
O Two cycle complete row access

64 memories, each 64 banks

ﬁﬁ

2048 Gbps l 1 1 48 Gbps

20
Port Manager / / k—’/ / 32 Gbps
2048 Gbps l 1128 Gbps 1 1

N -




3D Configuration
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Streaming Operations

> Weights and data streamed In predictive
fashion

® Avoids need for SRAM buffers, except for match-rating
FIFOs

4 Hides DRAM latency

Customized DRA@ g

R
PortManager | [~— [

i
S
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Streaming Operations

> Weights and data streamed in predictive fashion
® Avoids need for SRAM buffers, except for match-rating FIFOs
4 Hides DRAM latency

Customized DRA

| | L
|

| 1 I Weights

24

Port Manager /




Streaming Operations

> Weights and data streamed In predictive
fashion

® Avoids need for SRAM buffers, except for match-rating
FIFOs

4 Hides DRAM latency

Customized DRA g e

Port Manager /4—*

l 1 Data
PEs *—7/ / — 2




Design Detalls

extracted
€ Assumed 5 um pitch TSVs

> 12 x 14 mm footprint (dictated by DIRAM
> Completely designed, synthesized and

¢ 2500 to/from PEs (0.06 sq.mm)
¢ 4200 to/from DRAM (0.105 sq.mm)

Block Power (W)
Manager 42.55
PE 26.50
DRAM 4.51
DRAM TSVs 1.14
Stack Bus TSVs 0.74
Total 75.44

)
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Comparison with State of Art

> Power and area needed to match inference
throughput capabillity of this solution

I N L

This work 75 175
Research SOA 224 1,096
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Outline

> Machine Learning and Machine Intelligence
> Scale matters

> Memory-centric accelerators
4 DNN and customized DRAM
4 Customizable 2.5D Processor -

> Conclusions
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Overall Approach

> Customizable Interposer for Scalable Tasks

8 Gb

GDDR6 [#b] «» GDDR6| 32 x 12 Gbps

> 9dddD
| NAAUAD

GDDR6 (<> |1-> GDDR6
i i Total:
) )
w) w)
) w)
) )
(@) (@)

8 GB
384 GBps
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Interposer

> Fanout package used to support high pin count
small ICs

Fanout Package

Microbump
4-6 BEOL Wiring layers
TSVs

Bumps \
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Interposer Design — Memory
Interfaces
> Configurable Mem IFt t
Mem Mem
f_" Control - Control <_>I
NOC NOC
Mem Mem
€% Control [¢P t t 4P| Control
NOC NOC
Mem Mem
<P Control |¢=p <€¥» Control
NOC t t NOC
t Mem Mem t
Control (€= Control |———-
NOC NOC

t .
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CPU

Up to 8 FC DNN
accelerators

Up to 8 CNN
accelerators

Up to 8 LSTM
accelerators®

HTM accelerator*

ML Scale to Task

RISC V 4—3

DNN DNN DNN DNN
DNN DNN DNN DNN
CNN CNN CNN CNN
CNN CNN CNN CNN

HTM

*Training and inference

n
8 GB
384 GBps
In
8 channels

32
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Application

> Video
description

& HTM for
anomaly
detection

Activity Recognition
Sequences in the Input

1 May 2016

3

arXiv:1411.4389v4 [cs.CV]

Long-term Recurrent Convolutional Networks for

Visual Recognition and Description

Jeff Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Sergio

Kaie Saenko, Trevor Darrell

Abstract—

Modsls have dominaid oont modals which
mmnmunmmumwmmml i opemis mmmnmdmmmmm
archiaciures which is end.1o-and trainabio and sutabis for largo. tha vaius of thass
models for aciivil recogniion image captioning. In contrast which assume a fixed visual
reprasantation or periorm simpic lsmporal sveraging for ara “doubly asop” in
that they learn composiional mpresentalions in space and Bme. Learing kng-ierm dependencies is possitie when noninearibes are
incorporated nio e network siaie updaios. Differentiabo recurrant mods s are appaaiing in that they can directly map varizbie length
InpUts (9.9 Videos) 10 vanadie .9, nawral pin Yot hay can be
optimized with backpropagasion. Our recuent mmnalmmkam rechy modem

modls and can b jorty traned 1o loarn dynamics and comnvolutonal parcaptual reprosantatons Our rasuRs Show that such
modols. have dissnct advantages over stato-of.the-art mode's ko recognition or genaraton which ara separainly defined or apbmzed.

INTRODUCTION

Recognition and description of images and videos is
a fundamental challenge of computer vision. Dramatic
progress has been achieved by supervised
neural network (CNN) models on image recognition tasks,
and a number of eciensions fo process video have been
recently proposed. Ideally, a video model should allow pro-
cessing of vasiable length input sequences, and also provide
for variable lkength outputs, including generation of full-
length sentence descriptions that go beyond conventional
one-versus-all prodiction tasks. In this paper we propase
hmgrm Recurrent Convolutional Nnr:wrs (LRCM) a dﬂ&b

for visual

oo mtm. convolutional layers muln.um,., temporal ro-
cursion and is end-to-end trainable (Figure 1). We instanti-
ate our architecture for specific video activity fecognition,
image caption generation, and video description tasks as
described below

Research on CNN models for video processing has
considened leaming 3D spatio-temporal filters over raw
sequence data [1], 21 and leaming of frame-to-frame sep-
optic flow or

Ira;edury«hﬂyed models aggregated over fixed windows ~CNs). aclass
or video shot segments [3], [4] Such models explore two
extrema of perceptual time-series sepresentation learning:
either leam a fully general time-varying weighting, or apply o),

=
A group of young men playing a A

A female tonnis player in action on
— game of soccer

A baschall game in progress with the
batter up to plate

A brown bear standing on top of a
Tush green ficl

A person holding a cell phone in
their hand

A woman laying on a bed in & bed-

A close up of a person brushing his A black and white cat is siting on
tweth, chair

A larg clock mounted to the side of A bunch of fruit that are sitting A toothbrush holder sitting on top of
a building. table. a white sink

& koo domighon: Inagewed comegoraiog coplons guemetd y cur s LA sl Tame i 442 ot oo ooy
mmnmm\mw\:omu[n} Wi usod boam search with a boam s2¢ of 5 1o goneras tho sanibncos, and dsplay o

o ] Domshue, LA Hemdricks, M. Rolwbuck, S. Guadarrama, and T. Darrdl 0 in 2 represantaiion that scales i arbitrarily long seque:

Image Captioning
Sequences in the Output

Video Description

Sequences in the Input and Output
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Conclusions

Deep Neural Networks

€ Real applications results in large networks
0 100M+ weights

€& SRAM is useful but DRAM backing is needed

@ Better solution: Modified 3D DRAM that rivals SRAM
power efficiency and bandwidth

4 Can hide DRAM latency

| Bandwidth _[Capacity __Energyhit _latency ___

SOA SRAM N*86 Gbps N*1Mb 500 fJ/bit 1.2 ns
Modified DIRAM4 130 Thps 64 Gb 133 fJ/bit 15 ns

Configurable 2.5D Accelerator
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