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Machine Learning Activities

Architectures
> DARPA Chips Program

� ASIP PnP chiplets for 
machine learning

> Cortical processor
� One-shot learning 

algorithm accelerator
� Second part of this work

> Modified DRAM for ML
� Customized 3D DRAM

ML for EDA
Center for Advanced 
Electronics through 
Machine Learning

� Applying Machine 
learning to EDA problems

� Back end design; DRC; 
Design Reuse
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Outline

> Machine Learning and Machine Intelligence

> Scale matters

> Memory-centric accelerators
� DNN and customized DRAM
� Customizable 2.5D Processor

> Conclusions
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Machine Learning to Machine Intelligence 

Problem Types:

Algorithms:
Unlabelled Data

Image/Pattern 
Recognition

Inline One-time 
Learning

“cat”

Labelled Data Uber

Improvement,
Sequences

Deep / 
Convolutional 

Neural 
Networks

Reinforcement 
Learning,

LSTM

Spatial 
Temporal 
Memories
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Deep Networks

> Multiple hidden layers to create needed degrees 
of freedom
� Feed forward networks
� Fully connected network shown
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Convolutional Networks

> Space invariant pattern matching allows “step 
and repeat” with a single small network
� Ie. Not all layers fully connected

� Mix of partially connected and fully connected layers
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Recurrent Networks

> Feedback paths added in
� Harder to train but works well on sequential data
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Long Short Term Memory

> Recurrent network that includes short term 
memory that can persist for long times
� Improves ability to deal with sequential data
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Numenta HTM
� Hierarchical
� Recurrent
� Sparse distributed codes
� Hetero-associative memory
� “One hot” learning
� Statically connected synapses 

for spatial learning and 
inference

� Dynamically connected 
synapses for temporal 
learning, inference, and 
predictions

� Predictions lead to stability
� Highly divergent binary and 

integer operations

Column of 
neurons

Distal Segments
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Typical Scales

> Larger data sets lead to larger networks

Problem Complexity Source

Single camera for 
autonomous vehicle

250,000 parameters nVidia

Object identification in 
Video

> 1B parameters Google

Speech Recognition 
(CNN)

4.5M parameters
11.7M ops

Microsoft

Speech Recognition 
(DNN)

8.9M parameters
8.9M ops

Microsoft

Speech Translation 151M parameters to 
4B parameters

GoogleMind

Face Recognition 140M parameters Google Facenet
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Scaling for Embedded Systems

Support for multiple ANNs
Eight parallel DNN machine for self-
driving car image classification1

Future implementations
• Support for disparate ANNs

• ~16 Gb of memory

• ~5% for weights

• ~25 Tbps for real time 
classification (60 fps) of multiple 
disparate ANNs 

• ~80% weight memory traffic
Verhelst

http://www.hackerboards.com

1
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https://research.googleblog.com/2017/11/automl-for-large-scale-image.html

Scale helps accuracy
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Memory Hierarchy

> Need capacity and bandwidth: 
> Traditional Solution: Use a memory hierarchy

DDR DRAM
25.6 GBps/chip

On-chip SRAM, SOA:
1.56 sq.mm/Mb
46 mW; 600 MHz; 1 MB; 144b,
76 pJ/access; 500 fJ/bit; 

Inference Engine.
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Machine Learning & Locality 

> Traditional Solution relies on locality
� Does not work for Recurrent Network
� Works best for batch processing not real time edge 

processing

Cache weights for image
(not for fc layers)

Cache weights to batch 
process multiple images

(not for edge aps)
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Machine Learning

> Traditional Solution is useful but does not deal 
well with scale
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Tezzaron DiRAM4
> “Dis-integrated” RAM

� DRAM only tiers
� Sense amps, etc. on logic 

only tiers
� 32 bit DQ / port

Family 
Name

Ports
Banks per 
Port

Interface Density
Data 
Bandwidth

Latency

DiRAM4-
64C64™

64 64 0.6 – 1.3V
CMOS I/O

64 Gb 4/4 Tb/s
(R/W)

9 ns

DiRAM4-
64C32™

64 64 0.6 – 1.3V
CMOS I/O

32 Gb 4/4 Tb/s
(R/W)

9 ns

DiRAM4-
64C16™

64 64 0.6 – 1.3V
CMOS I/O

16 Gb 4/4 Tb/s
(R/W)

9 ns
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Modifications to DiRAM4

> Standard DiRAM4
� 64 disjoint 1Gb memory ports
� Standard DiRAM4 port is 32bits @ 1GHz
� System has 64 sub-systems each operating on one memory 

port
� 4 Tbs in each direction

> Proposed Customizations for a 3D-DRAM
� We suggest widen to 2048 bits and use high-density TSVs
� Entire page in one access using burst-of-2
� Raw bandwidth ~2Tbps per port
� Write mask since only partial writes needed

133 fJ/bit
131 Tbps bandwidth

SRAM: 500 fJ/bit
86 Gbps per port
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Modified DiRAM
> Collaboration with Tezzaron

� Match external bandwidth to internal bandwidth
◊ Two cycle complete row access

…

64 memories, each 64 banks

2048 Gbps

Port Manager

PEs

2048 Gbps

2048 Gbps 128 Gbps
32 Gbps
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3D Configuration

PE0

PE63

Pr ocessi ng Layer

PE0

PE63

Pr ocessi ng Layer

PEM0

Management  Layer

PEM63

DRAM0

DRAM63

Mul t i Por t ed DRAM

St ack Bus
( 2048b/ 512b)

NoC
( Management  Layer )

DRAM Page I nt er f ace
( 4096b)

Array of 

(PE)

Array of 
processing 

engines
(PE)

Custom 
organized 

DRAM

Management
Layer
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Streaming Operations

> Weights and data streamed in predictive 
fashion
� Avoids need for SRAM buffers, except for match-rating 

FIFOs
� Hides DRAM latency

…

Port Manager

PEs

Customized DRAM
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Streaming Operations

> Weights and data streamed in predictive fashion
� Avoids need for SRAM buffers, except for match-rating FIFOs
� Hides DRAM latency

…

Port Manager

PEs

Customized DRAM

Weights
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Streaming Operations

> Weights and data streamed in predictive 
fashion
� Avoids need for SRAM buffers, except for match-rating 

FIFOs
� Hides DRAM latency

…

Port Manager

PEs

Customized DRAM

Data
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Design Details

> 12 x 14 mm footprint (dictated by DiRAM )
> Completely designed, synthesized and 

extracted
� Assumed 5 um pitch TSVs
� 2500 to/from PEs (0.06 sq.mm)
� 4200 to/from DRAM (0.105 sq.mm)
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Comparison with State of Art

> Power and area needed to match inference 
throughput capability of this solution

Power (W) Area (sq.mm)

This work 75 175

Research SOA 224 1,096
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Outline
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Overall Approach 

> Customizable Interposer for Scalable Tasks

GDDR6

GDDR6

GDDR6

GDDR6

G
D

D
R

6

G
D

D
R

6
G

D
D

R
6

G
D

D
R

6

RISC V

ML1 MLN…

8 Gb
32 x 12 Gbps

Total:
8 GB

384 GBps
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Interposer

> Fanout package used to support high pin count 
small ICs

Microbump

4-6 BEOL Wiring layers

TSVs

Bumps

Fanout Package
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Interposer Design – Memory 
Interfaces
> Configurable Mem IF

Mem
Control

NOC

Mem
Control

NOC

Mem
Control

NOC

Mem
Control

NOC

Mem
Control

NOC

Mem
Control

NOC

Mem
Control

NOC

Mem
Control

NOC
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ML Scale to Task

RISC VCPU

Up to 8 FC DNN 
accelerators

Up to 8 CNN 
accelerators

Up to 8 LSTM 
accelerators*

HTM accelerator*

DNN DNN DNN DNN

DNN DNN DNN DNN

CNN CNN CNN CNN

CNN CNN CNN CNN

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

HTM

+
8 GB

384 GBps
In

8 channels

*Training and inference
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Application

> Video 
description
� HTM for 

anomaly 
detection
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Conclusions

Deep Neural Networks
� Real applications results in large networks

◊ 100M+ weights

� SRAM is useful but DRAM backing is needed
� Better solution:  Modified 3D DRAM that rivals SRAM 

power efficiency and bandwidth
� Can hide DRAM latency

Configurable 2.5D Accelerator

Bandwidth Capacity Energy/bit latency

SOA SRAM N * 86 Gbps N * 1 Mb 500 fJ/bit 1.2 ns

Modified DiRAM4 130 Tbps 64 Gb 133 fJ/bit 15 ns
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