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Opportunity — 3D Memories are happening!

= 2011: heterogeneous 3D-integration
= 3D Memory Stacking

= 2012: Hybrid Memory Cube (HMC) Proposal by Micron

= 2013: HMC Consortium = HMC V1.0 Specifications
= Flexible and Abstracted Serial Interface

= 2015: First commercial HBM Chip (AMD)

Through-Silicon Vias (TSVs),
e EGHE N GEpEJIGHtOIER o controler  DRAM

GPU ——
b 8

Silicon inte rposer 1024 data links / HBM stack @ 500MHz

By C. Spille/pcgameshardware.de

Package substrate

solder balls

Graphics card L PCI Express
Electrical current

Multi-layer Printed Circuit Board (PCB), up to 8 layers Display connectors

[Shmuel Csaba Otto Traian, CC BY-SA 4.0]

= Revisit Near Memory Computation
* |nthe HMC’s (or HBM’s) controller die
= We are exploring the “Smart Memory Cube (SMC) ” concept
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The Smart Memory Cube (SMC)

Logic Base (LoB)
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Featuring a specialized interconnect on the Logic Ba  se (LoB)
= Providing sufficient bandwidth to the main links
= Extra bandwidth to any generic Processor in Memory (PIM)
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Rationale

Literature:
1. Latency reduction: vicinity to the main storage
2. Higher bandwidth: TSVs instead of Pins

= Most recent works exploit motivation (2): BANDWIDTH

[Ahn, ISCA'15], [Sura, CF’15], [Zhang, HPDC’14], [Islam, Euro-Par’14], ...
= However, motivation (2) is not valid in HMC
= HMC Can deliver all its internal bandwidth  to the outside world

* In current HMC the advantage of PIM over the external world is
vicinity to the memory (lower access latency and energy ) and
not higher bandwidth.

(1) E=EvemtELn

‘ We will show that, even in this case , PIM
is highly competitive (2) Mge= bw W-
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Scalability
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= Scalability potential for PIM

= Much larger aggregate bandwidth seen by “distributed” PIMs
= E.g. each cube work on one video frame

= Power management in serial links
= Only active when necessary
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PIM for Machine Learning: NeuroStreams
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Neurostream

= |nference

= Well covered, but “low” memory requirements, FP precision
not needed, very well-suited for systolic architecture

= Compute layer, only keep results, advance 0, 0, 0,

= Training
» Long data dependency chain
= |ntermediate results must be stored Forward Pass NN\ N
= Cannot fuse ReLU with convolution Backward Pass
= Derivatives tricky (ReLU, Maxpool)
= FP precision is required

Ab; Ab, AB),

=  Offloading
= Only 3 nested hardware loops
= Convolution needs 6 loops
= Processor must issue many small operations

Digital Circuits and Systems , Integrated Systems Laboratory, D-ITET Luca Benini / Fabian Schuiki | 3July2018 | 7



Focus Shift towards Training

Neurostream (NS) [1] vl v2 Network Training Accelerator (NTX) [2]
= Inference only = Inference and training
= Uses off-the-shelf ADD/MUL units = Uses custom FMAC unit
= Limited control on internals = Full control on internals
= Slow, critical path in the FPU ‘ » Fast
= High control overhead = Low control overhead
= 3 nested hardware loops = 5 nested hardware loops
= 2 address generators = 3 address generators
= 2 NST per processor core = 8 NST per processor core
= Requires specifically arranged data = No data layout requirement

[1] Azarkhish et al, "Neurostream: Scalable and energy efficient deep learning with smart memory cubes,” in IEEE TPDS 2018.
[2] Schuiki et al, “A Scalable Near-Memory Architecture for Training Deep Neural Networks on Large In-Memory Datasets,” to be published.
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Architecture FMAC

32 bit float

(o)

FMAC partial carry-save (PCS)
arithmetic with 2 segments

+/-

RLE

Accu Reg

>

PCS
Norm

N

N

=300 bit fixed-point
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FMAC partial carry-save (PCS)
arithmetic with 2 segments
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Architecture Address Generation

= 5 nested hardware loop counters
= 16 bit counter register
= Configurable number of iterations

= Once last iteration reached:
= Reset counterto 0
= Enable next counter for one cycle

= 3 address generation units

32 bit address register

Each has 5 configurable strides, one per loop
One stride added to register per cycle

Stride corresponds to the highest enabled loop

= Allows for complex address patterns
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Used as read addresses

N\,

Used as write address

RAddro 4
\ (also use\?\lnit) RAddr1 \ KSTAddr
\\ | §
N |
AGUO AGUT AGU2

Base, Strides[0..4] Base, Strides[0..4] Base, Strides[0..4]
16b Cnt 16b Cnt 16b Cnt 16b Cnt 16b Cnt
En Done WP En Done W En Done W En Done HP{ En Done

LO L1 L2 L3 L4

AGUs & HwLoops
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Architecture Coprocessor

= Processor configures operation via memory-mapped registers
= Controller issues AGU, HWL, and FPU micrgZcommands based on configuration
= Reads/writes data via 2 memory ports opefand and 1 writeback streams)

= FIFOs help buffer data path and me lategicies
@1.5GHz \
—L— RAddro b
— (also used for Init) /RAddrI /STAddr NTX
= | 5 : e e
FMAC / = (PCS)

E_ &N arithm Carr)l{hsg‘;igments > %
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2 = / O 5 8 >
2 3 X SRS > || gl | €
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Q |/ SRR R
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& o & 5 Y ] Q
&= Reg IF Loop Bounds L0-4, Controller R ) § = 2
g Address Bases, Strides vy \ 4 v =< RS g
g C/S/IRQ i s— SIS [&
S = Init/LD/ST/Done Trigger Fifo omp <'I - 2 5= SIS
" Cmd 2 . oy ; v ! = gl |~

4P | Staging [P E equencer » ||| | Datapath 16b Index Q — §
Area S OpCode LUT Ctrl Counter 0— 5 71011 S <>

— >
@750MHz Opcode, Loop Nest Config FPU ! |~ =
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Architecture Processing Cluster

k _ TCDM Logarithmic Interconnect
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Architecture HMC Integration

= HMC is split into independent vaults (DRAM controllers)
= Main interconnect routes traffic between serial links and vaults

= (Clusters attach to this interconnect
= Full view of the HMC memory space
= Access to other HMCs via serial links

IThrough-Si licon vias (TSVs)

o IPackage substrate
(__ _DRAMBank ) (__ DRAMBank ) (___ DRAMBank ) (___ DRAMBank ) (___ DRAMBank ) (___ DRAMBank ) HMC 2.0 - :
(__ _DRrAMBank ) (__ DRAMBank ) (__ DRAMBank ) (___ DRAMBank ) (__ DRAMBank ) (___ DRAMBank ) 4 DRAM Dies DRAM Ba P . 4
-------- .
(" DramBank ) (_ DRAMBank ) (_ DRAMBank ) (_ DRAMBank ) (_ DRAMBank ) (_ DRAMBank ) 3535“6‘(% Z‘C’I‘gfs DRAM Ba oo :
---------- 5
(_ DRAMBank ) (___DRAMBank ) (__ DRAMBank ) (__ DRAMBank ) (__ DRAMBank ) (__ DRAMBank n\_) 10241 DRAM Ba Rl N
it per page * K
5
Vault Ctrl 0 Vault Ctrl 1 Vault Ctrl 2 Vault Ctrl 3 Vault Ctrl 4 Vault Ctrl 5 s
N
5
h
Main LoB Interconnect (256b @ 1GHz) :'
s
B
g
5
Serial |Serial || Serial || Serial N
‘S Banko Bank1 Bankz :
T 64| | X J
g S 2 N
N — . .
S | |3 TCDM Logarithmic Interconnect Considered Configurations s
S =
S % () b NTX 16 (small) .'.
= 32 A - 5
IS m=16 clusters -
= 64 Y 32\ n=1 cores per cluster K
y y k=8 NTXs per cluster N
Ld/st NTX @ 1.5 GHz K
I I I $64 NTX 64 (big) s
m=64 clusters N
n=1 cores per cluster »
128kB L2 Cluster 1 k=8 NTXs per cluster .
T NTX @ 1.5 GHz :'
SoC ~| Clusterm N
@750MHz g
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Programming Model Loops

= Up to 5 nested loops can be offloaded to NTX g

. . *Mcor‘ (13 = 0; 13 < L3; 13++) { 5

= Loops should describe a reduction for best performance Tiex = [*AGU® | *AGU1 | *AGU2 |@. 8] S

= Covers convolutions, fully connected layers, and more gifor (12 = 0 12 < L2; 12*”) { K

L : : : Sisi S

= Accumulator initialization and writeback is configurable Zigl for (11 = 05 11 < L1; 11++) { E

= For example a DNN convolution: Perform outermost loop 1§°or‘ (16 = 0; 18 < LO; 10++) { >\

level on processor core. S T _ .

for (int k = 0; k < K; ++k) — [levelonp si3iziziziz 2 s mggﬂ@/xgﬁl@?ﬁgiwuu]§

for (int n = @; n < N; ++n) |evel4 B i el -F(x,a,b); ' ’ §

for (int m = @8; m < M; ++m) { Level3 IR =
float a = b[k]; «————————— Init Level = 3 IR

for (int d = @; d < D; ++d) Level2 LT “

for (int u B R s R s § } 2

for (int v = 9; v < V; ++v) { LevelO §} S

a += x[d][n+u][m+v] * w[k][d][u][Vv]; - »*AGU2 = £

) . S

y[k][n][m] = a; «—————— Store Level =3
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Programming Model Tiling

= Cluster has limited memory (~128 kB)
= DNN data sets are usually multiple GB
= Tile input data into chunks that fit in 128 kB
= Use double buffering to hide latency while
NTX are processing current chunk
= Write back last iteration’s result
= Preload next iteration’s input data

= NTX run independently; processor free to
orchestrate data movement with the DMA

= Consider the tiled DNN convolution:

Digital Circuits and Systems

, Integrated Systems Laboratory, D-ITET

for (int tk
for (int tn

0; tk < TK; ++tk)
0; tn < TN; ++tn)

for (int tm = @; tm < TM; ++tm)
// load tile inputs x, w, b with DMA

for (int k = 0; k
for (int n = 0; n
for (intm=0; m
float a = b[k];
for (int d
for (int u = ©;
for (int v = 0;

<
<
<

=0; d

u
\Y

K; ++k)
N; ++n)
M; ++m) {

< D; ++d)
< U; ++u)
< V; ++v)

Iterate over tiles of the
input data

{

Iterate over pixels in
the current tile

—

Perform
{ N convolution

a += x[d][n+u][m+v] * w[k][d][u][v];| forcurent

}
y[k][n][m] =
}

// store tile outputs y

pixel

Luca Benini / Fabian Schuiki | 3July 2018 | 16



C++ API Example

Tiled convolution:

for (int tk
for (int tn
for (int tm
load tile(x,
for (int k =

ifor (int n =
ifor (int m =
float a =

for (int d
for (int u
for (int v

}
y[k][n][m]

)

0; tk <
0; tn <
Q; tm <
w, b);

b[k];
=0; d
= 0; U

=0; Vv
a += x[d][n+u][m+v] * w[k][d][u][Vv];

=a;

TK;
TN;
T™;

++tk)
++tn)
++tm) {

}
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Tiled convolution with

ntx_api ntx;

dma_api dma;
ntx.cfg loops(5, {N,
for (int tk = 9; tk
for (int tn = 9; tn
for (int tm = @; tm
dma.start_read(x,
for (int k = 0; k
ntx.cfg ptrs(x,

NTX:

Configure loop bounds
once for the entire

M,D,U,V}, ...);| kemnel
< TK; ++tk)

< TN; ++tn) Start reading input data
< TM; ++t Point NTX at the

w, b); address of the input

< K; ++k) { /data

&wlk], &y[k]);

Wait for the input data
to be loaded (overlaps

iAo dE_ MV AA_dP L. T/ '__ with previous NTX

}

dma.start write(y);

ntx.wait ready(); \\\\\\\\
swap_buffers(); \ Wait for computation to complete

computation)

Start next computation

Start writing back output data
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Execution Sample

= All 8 NTX perform the main computation
= DMA writes back results of last computation and reads inputs for next

= Processor core orchestrates operation, gomputes addresses, pads input data
= NTXs require no control onde started
= DMA s capable of 2D transfgrs; core issuesymultiple small transfers for 3D/4D tensors

Core 58.2% utilization _
iy y
2 DMA Write DMA Read 28.2% utilization
()
<
8
NTXs
0
100%
O A I i L i o e AR A e e i A A e A S AL AR e A N L e
< B median 84.4%
£ § 50%
5
0%
100%
>
s¢ median 87.3%
52 50%
=
[N
0% - T T T T t t t T t t t T t t t T t t t T t t T T T T T T T T T 1
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time [ps]
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Results versus Neurostream NS NTX
Figure of Merit [10] “small”
Number of Clusters 16 16
= How much did we gain over the initial Cores per Cluster 4 L
_ _ Accelerators per Core 2 8
inference engine? Cluster Frequency [GHz] 1.0 0.75
Accelerator Frequency [GHz] 1.0 1.5
Peak Performance [Gop/s] 256 384
= 1.5x speed up (fast custom accumulator) C"fre Efficiency [Gop/s W] 116 o7
Inference
= 4x less control cores (less control overhead) Total [ms] 14.0 11.3
— Convolution [ms] 13.1 10.5
— Linear [ms] 0.08 0.07
) — Pooling [ms] 0.83 0.74
= Inference: Avg. Bandwidth [GB/s] 14.4 17.8
m ].2% Speed up Peak Bandwidth [GB/s] 51.2 57.6
o Efficiency [Gop/s W] 20.3 21.4
= Same energy efficiency —
o Training
=  Training (NS-subset): Total [ms] 56.8 34.8
. g — Convolution [ms] 54.8 1 33.1
1.6x speed up — Linear [ms] 0.65 1 0.43
= 1.4x higher energy efficiency — Pooling [ms] 1.38 1.23
Avg. Bandwidth [GB/s] 11.3 18.5
Peak Bandwidth [GB/s] 51.2 57.6
Efficiency [Gop/s W] 15.0 21.0
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Results versus GPUs

= How much Gflop/s of compute do we getper  *°[ CPU 1. S A —
W of power? S0 NS | SRR o

= Comparison of NTX against GPU in similar = S T 27
technology node g

= 28 nm: 2.5x more vs. Nvidia TitanX

- 14 nm: 27X more vs. NVIdIa TeS|a Ploo K80 M40 TitanX P100 1080Ti NS NTX 32 NTX 64

= A note on Nvidia V100:
= Tensor cores operate on floatl6
» Real float32 efficiency likely 30 Gflop/Ws
= 12 nm NTX likely around 2.1x gain [1]

TITAN X

© NVIDIA

[1] O. Abdelkader et al, "The Impact of FinFET Technology Scaling on Critical Path Performance under Process Variations," at ICEAC, 2015.
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Results Power Budget

=  Assume 25W of power budget in HMC [1]

= |nvestigate different number of NTX clusters per HMC:
= 28 nm: 16, 32, 64
= 14 nm: 16, 32, 64, 128, 256, 512

= Scale voltage and frequency to fit into budget:

I 1
g;éi @0.28GHz | | | | } Bounded by HMC-

internal bandwidth
294 @0.98GHz | |
799 @1.68GHZz | |
£VPe @2.24GHz | |
i34 @3.08GHz | |

14/30 nm

DRAMnode ——, @1.30GHz
@1.70GHz _ _ I ———————
Logic node — @2.30GHz el S
Power 0 5 10 15 20 o5
[W] B DRAMstatic [l DRAMdynamic [J Logic [] SRAM

[1] Y. Eckert, N. Jayasena, and G. H. Loh, “Thermal feasibility of die- stacked processing in memory,” in WoNDP, 2014.
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Results Data Center

Match power with different HMC configs

170 260 @
= Match an Nvidia DGX-1 with HMCs s TN e g
* Two Intel Xeon CPUs, eight Tesla P100 : 130 IS KN iiﬁ 2
= 3.2 kW total, 2.4 kW due to GPU g mop A - N 180 %
el D R SN 160 o
u 84-8 Tﬂop/S Of Compute =2 100 """"" oo Nlj”'.n'b'e'r'df'HM'C"s' TN ':' """"" | 140 Jé_
28 """"" | o Complute CapabilitY —— -i """ 120 g
] NTX 16 NTX 32 NTX 64 NTX 128 NTX 256 NTX 512 ©
= Scenario 1: Match 3.2 kW power envelope NTX Clusters per HMC
= 3.1x increase in compute (258.9 Tflop/s)
. Match compute with different HMC configs
129 HMCs, 128 NTX clusters each 10, | | 1700
100 BN - - T ---------- 1600
3 N <« U b 1500 S
- : s » N L X 1400 %
= Scenario 2: Match 84.8 Tflop/s of compute I 8 | A 1300 &
_ ° 0F - R ------- e u t— 5
= 2.1x power reduction (1.53 kW) R N S | Savedfower THT 1 1200 o
" 43 HMCs, 128 NTX clusters each S 7NN EANEIN e S S ol
= Energy bill: -$1808 per server and year 30 i i i ‘ 800

NTX 16 NTX 32 NTX 64 NTX 128 NTX 256 NTX 512
NTX Clusters per HMC
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Results Deployed Silicon

= How much Gflop/s of compute do we get per
mm? of silicon area?

= Comparison of NTX against GPU in similar

technology node 120 — : : : : : : :
GPU s ' ' . .
100 NS (Azarkhish) mmmms .. . oo pSTITIIITITTITTIIICNTE
o NTX 28nm - : : :
= 28nm: 2.7x more vs. Nvidia K80 o 80  NTX1l4nm mmmmm ... .. R REEEEEEEEE PR e
= 14nm: 4.4x more vs. Nvidia 1080Ti é 60
8 40
= GPU dies are huge (>500 mm?) 20

= NTX fits easily into HMC (21 mm? each) 0

= Silicon in HMC manufactured anyway, but is
unused; virtually zero additional cost

K80 M40 TitanX P100  1080Ti NS NTX 32 NTX 64
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Future Work

P
. | * PRECOMP
= Transprecision Computing 0an Transprecision Comput ng
. . 5 exponent mantissa
= Save precious DRAM bandwidth [T T T TIITITTIITITT] EEE binarys2
1L 3 J L 23 ]
- CUStom number formats - same dynamic range as binary32 ,
- Use f|0at8, ﬂoath |;|9_;|:|:|;|:|_:||] - much less precision than binary32 custom blnary16alt
= Logarithmic numbers? COTTTTTT] (o S e o (g€ binary e
= On-the-fly data type conversion in DMA S e
- same dynamic range as binary16 \
[-:lj - less precision than binary16 custom blnary8

1 e T e 121

= Tensor DMA
= Often bottlenecked by 2D DMA
= Processor needs to issue many small transfers
= 4D/5D DMA could transfer large tensors independently } o

- .
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= Automated Mapping of Kernels
= Starting from Compute Graph, e.g. TensorFlow

shape[1]



Future Work

= NTX beyond Machine Learning
= Sparse matrices/vectors
= General stencil operations
= Operations under Winograd/FFT transform (sparsity!)

= HBM (High Bandwidth Memaory)
= Consumes less power than HMC
= Gaining traction with GPUs
= Multiple vendors; HMC only produced by one company
= Direct access to DRAM via usual DDR interface e

Package Substrate

PHY GPU/CPU/Soc Die
0 o o N o I 0 I o I )

© AMD

= QOther Memory Substrates
= Non-volatile memory?
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