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Opportunity – 3D Memories are happening!
� 2011: heterogeneous 3D-integration

� 3D Memory Stacking

� 2012: Hybrid Memory Cube (HMC) Proposal by Micron
� 2013: HMC Consortium � HMC V1.0 Specifications

� Flexible and Abstracted Serial Interface

� 2015: First commercial HBM Chip (AMD)

� Revisit Near Memory Computation
� In the HMC’s (or HBM’s) controller die

� We are exploring the “Smart Memory Cube (SMC) ”  concept
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The Smart Memory Cube (SMC)

3

Vault 
Controller

Vault 
Controller

Vault 
ControllerS

ta
nd

ar
d 

H
M

C
 In

te
rf

ac
e

Logic Base (LoB)

Link 
Controller

Main Ports

HPP

Generic

PIM

PIM Ports
LPP

LPP

Link 
Controller

HPP

HPP

LPP

Memory Dies

Main 
Interco.

Featuring a specialized interconnect on the Logic Ba se (LoB)
� Providing sufficient bandwidth to the main links

� Extra bandwidth to any generic Processor in Memory (PIM)
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Rationale

� Most recent works exploit motivation (2): BANDWIDTH
[Ahn, ISCA’15], [Sura, CF’15], [Zhang, HPDC’14],  [Islam, Euro-Par’14], …

� However, motivation (2) is not valid in HMC

� HMC Can deliver all its internal bandwidth to the outside world

� In current HMC the advantage of PIM over the external world is 
vicinity to the memory (lower access latency and energy ) and 
not higher bandwidth.

4

We will show that, even in this case , PIM 
is highly competitive

Literature:
1. Latency reduction: vicinity to the main storage
2. Higher bandwidth: TSVs instead of Pins

(1) E=EMEM+ELINK

(2) MBUF= bw WT
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…

…

� Scalability potential for PIM
� Much larger aggregate bandwidth seen by “distributed” PIMs
� E.g. each cube work on one video frame 

� Power management in serial links
� Only active when necessary

Scalability
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PIM for Machine Learning: NeuroStreams
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Neurostream
� Inference

� Well covered, but  “low” memory requirements, FP precision 
not needed, very well-suited for  systolic architecture

� Compute layer, only keep results, advance

� Training
� Long data dependency chain
� Intermediate results must be stored
� Cannot fuse ReLU with convolution
� Derivatives tricky (ReLU, Maxpool)
� FP precision is required

� Offloading
� Only 3 nested hardware loops
� Convolution needs 6 loops
� Processor must issue many small operations
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Neurostream (NS) [1]
� Inference only

� Uses off-the-shelf ADD/MUL units
� Limited control on internals

� Slow, critical path in the FPU

� High control overhead
� 3 nested hardware loops
� 2 address generators

� 2 NST per processor core

� Requires specifically arranged data
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Focus Shift towards Training

v1 v2 Network Training Accelerator (NTX) [2]
� Inference and training
� Uses custom FMAC unit

� Full control on internals

� Fast

� Low control overhead
� 5 nested hardware loops
� 3 address generators

� 8 NST per processor core

� No data layout requirement

[1] Azarkhish et al, "Neurostream: Scalable and energy efficient deep learning with smart memory cubes,” in IEEE TPDS 2018.
[2] Schuiki et al, “A Scalable Near-Memory Architecture for Training Deep Neural Networks on Large In-Memory Datasets,” to be published.
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� Main data path is a single-cycle partial 
carry save FMA

� Expansion of float operands to fixed-point

� Multiplication and addition in fixed-point
� Single-cycle
� Tuneable performance by increasing number of 

partial sums

� Conversion to float after accumulation
� Partial sums are accumulated
� Conversion from fixed-point to float

� Heavily pipelined
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Architecture FMAC
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≈300 bit fixed-point

32 bit float
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� FMA operands arrive as memory streams
� Maskable to 0/1 to disable add/mul

� Optional ReLU on FMA result

� Comparator for finding max/min
� Index counter for finding argmax/argmin

� Enables maxpool derivatives

� Output can be masked to 0/1
� Enables ReLU derivatives

� Fire-and-forget datapath
� Command pushed into FIFO
� Consumes fixed number of input items
� Produces fixed number of output items
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Architecture Data Path
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Architecture Address Generation

Used as read addresses Used as write address� 5 nested hardware loop counters
� 16 bit counter register
� Configurable number of iterations
� Once last iteration reached:

� Reset counter to 0

� Enable next counter for one cycle

� 3 address generation units
� 32 bit address register
� Each has 5 configurable strides, one per loop
� One stride added to register per cycle
� Stride corresponds to the highest enabled loop

� Allows for complex address patterns
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Architecture Coprocessor
� Processor configures operation via memory-mapped registers
� Controller issues AGU, HWL, and FPU micro-commands based on configuration

� Reads/writes data via 2 memory ports (2 operand and 1 writeback streams)

� FIFOs help buffer data path and memory latencies
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Architecture Processing Cluster
� 1 processor core controls 8 NTX coprocessors

� Attached to 128 kB shared TCDM via a logarithmic interconnect

� DMA engine used to transfer data (double buffering)

� Multiple clusters connected via interconnect (crossbar/NoC)
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Architecture HMC Integration
� HMC is split into independent vaults (DRAM controllers)

� Main interconnect routes traffic between serial links and vaults

� Clusters attach to this interconnect
� Full view of the HMC memory space
� Access to other HMCs via serial links
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N
T

X

Level 0
Level 1
Level 2

Level 3
Level 4

� Up to 5 nested loops can be offloaded to NTX
� Loops should describe a reduction for best performance
� Covers convolutions, fully connected layers, and more

� Accumulator initialization and writeback is configurable

� For example a DNN convolution:
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Programming Model Loops

for (int k = 0; k < K; ++k)

for (int n = 0; n < N; ++n)

for (int m = 0; m < M; ++m) {

float a = b[k];

for (int d = 0; d < D; ++d)

for (int u = 0; u < U; ++u)

for (int v = 0; v < V; ++v) {

a += x[d][n+u][m+v] * w[k][d][u][v];

}

y[k][n][m] = a;

}
Store Level = 3

Init Level = 3

Perform outermost loop 
level on processor core.
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� Cluster has limited memory (~128 kB)

� DNN data sets are usually multiple GB

� Tile input data into chunks that fit in 128 kB

� Use double buffering to hide latency while 
NTX are processing current chunk
� Write back last iteration’s result
� Preload next iteration’s input data

� NTX run independently; processor free to 
orchestrate data movement with the DMA

� Consider the tiled DNN convolution:
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Programming Model Tiling

for (int tk = 0; tk < TK; ++tk)

for (int tn = 0; tn < TN; ++tn)

for (int tm = 0; tm < TM; ++tm) {

// load tile inputs x, w, b with DMA

for (int k = 0; k < K; ++k)

for (int n = 0; n < N; ++n)

for (int m = 0; m < M; ++m) {

float a = b[k];

for (int d = 0; d < D; ++d)

for (int u = 0; u < U; ++u)

for (int v = 0; v < V; ++v) {

a += x[d][n+u][m+v] * w[k][d][u][v];

}

y[k][n][m] = a;

}

// store tile outputs y

}

Iterate over tiles of the 
input data

Iterate over pixels in 
the current tile

Perform 
convolution 
for current 
pixel
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C++ API Example

for (int tk = 0; tk < TK; ++tk)

for (int tn = 0; tn < TN; ++tn)

for (int tm = 0; tm < TM; ++tm) {

load_tile(x, w, b);

for (int k = 0; k < K; ++k)

for (int n = 0; n < N; ++n)

for (int m = 0; m < M; ++m) {

float a = b[k];

for (int d = 0; d < D; ++d)

for (int u = 0; u < U; ++u)

for (int v = 0; v < V; ++v) {

a += x[d][n+u][m+v] * w[k][d][u][v];

}

y[k][n][m] = a;

}

store_tile(y);

}

Tiled convolution:

ntx_api ntx;

dma_api dma;

ntx.cfg_loops(5, {N,M,D,U,V}, ...);

for (int tk = 0; tk < TK; ++tk)

for (int tn = 0; tn < TN; ++tn)

for (int tm = 0; tm < TM; ++tm) {

dma.start_read(x, w, b);

for (int k = 0; k < K; ++k) {

ntx.cfg_ptrs(x, &w[k], &y[k]);

dma.wait_read();

ntx.issue_cmd(ntx_api::MAC);

}

ntx.wait_ready();

dma.start_write(y);

swap_buffers();

}

Tiled convolution with NTX:

Configure loop bounds 
once for the entire 
kernel

Start reading input data

Point NTX at the 
address of the input 
data

Wait for the input data 
to be loaded (overlaps 
with previous NTX 
computation)

Start next computation

Wait for computation to complete

Start writing back output data
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Execution Sample
� All 8 NTX perform the main computation

� DMA writes back results of last computation and reads inputs for next

� Processor core orchestrates operation, computes addresses, pads input data
� NTXs require no control once started
� DMA is capable of 2D transfers; core issues multiple small transfers for 3D/4D tensors
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� How much did we gain over the initial 
inference engine?

� 1.5x speed up (fast custom accumulator)

� 4x less control cores (less control overhead)

� Inference:
� 1.2x speed up
� Same energy efficiency

� Training (NS-subset):
� 1.6x speed up
� 1.4x higher energy efficiency
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Results versus Neurostream
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� How much Gflop/s of compute do we get per 
W of power?

� Comparison of NTX against GPU in similar 
technology node

� 28 nm: 2.5x more vs. Nvidia TitanX

� 14 nm: 2.7x more vs. Nvidia Tesla P100

� A note on Nvidia V100:
� Tensor cores operate on float16
� Real float32 efficiency likely 30 Gflop/Ws
� 12 nm NTX likely around 2.1x gain [1]
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Results versus GPUs

© NVIDIA

[1] O. Abdelkader et al, "The Impact of FinFET Technology Scaling on Critical Path Performance under Process Variations," at ICEAC, 2015.
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� Assume 25W of power budget in HMC [1]

� Investigate different number of NTX clusters per HMC:
� 28 nm: 16, 32, 64
� 14 nm: 16, 32, 64, 128, 256, 512

� Scale voltage and frequency to fit into budget:
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Results Power Budget

[1] Y. Eckert, N. Jayasena, and G. H. Loh, “Thermal feasibility of die- stacked processing in memory,” in WoNDP, 2014. 

Logic node

DRAM node

Bounded by HMC-
internal bandwidth
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� Match an Nvidia DGX-1 with HMCs
� Two Intel Xeon CPUs, eight Tesla P100
� 3.2 kW total, 2.4 kW due to GPU
� 84.8 Tflop/s of compute

� Scenario 1: Match 3.2 kW power envelope
� 3.1x increase in compute (258.9 Tflop/s)
� 129 HMCs, 128 NTX clusters each

� Scenario 2: Match 84.8 Tflop/s of compute
� 2.1x power reduction (1.53 kW)
� 43 HMCs, 128 NTX clusters each
� Energy bill: –$1808 per server and year
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Results Data Center
Match power with different HMC configs

Match compute with different HMC configs
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� How much Gflop/s of compute do we get per 
mm2 of silicon area?

� Comparison of NTX against GPU in similar 
technology node

� 28nm: 2.7x more vs. Nvidia K80

� 14nm: 4.4x more vs. Nvidia 1080Ti

� GPU dies are huge (>500 mm2)

� NTX fits easily into HMC (21 mm2 each)

� Silicon in HMC manufactured anyway, but is 
unused; virtually zero additional cost
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Results Deployed Silicon
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� Transprecision Computing
� Save precious DRAM bandwidth
� Custom number formats

� Use float8, float16

� Logarithmic numbers?

� On-the-fly data type conversion in DMA

� Tensor DMA
� Often bottlenecked by 2D DMA
� Processor needs to issue many small transfers
� 4D/5D DMA could transfer large tensors independently

� Automated Mapping of Kernels
� Starting from Compute Graph, e.g. TensorFlow
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Future Work
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� NTX beyond Machine Learning
� Sparse matrices/vectors
� General stencil operations
� Operations under Winograd/FFT transform (sparsity!)

� HBM (High Bandwidth Memory)
� Consumes less power than HMC
� Gaining traction with GPUs
� Multiple vendors; HMC only produced by one company
� Direct access to DRAM via usual DDR interface

� Other Memory Substrates
� Non-volatile memory?

3 July 2018Luca Benini / Fabian Schuiki 25

Future Work

© AMD


