

3D sequential integration : review of opportunities and technology updates

<u>P. Batude</u>, L. Brunet, C. Fenouillet-Beranger, F. Andrieu, J-P. Colinge, D. Lattard, E. Vianello, S. Thuries, O. Billoint, P. Vivet, C. Santos, B. Mathieu, B. Sklenard[,] C.-M. V. Lu, J. Micout, F. Deprat, E. Avelar Mercado, F. Ponthenier, N. Rambal, M.-P. Samson, M. Cassé, S. Hentz, J. Arcamone, G. Sicard, L. Hutin, L. Pasini, A. Ayres, O. Rozeau, R. Berthelon, F. Nemouchi, P. Rodriguez, J-B. Pin, D. Larmagnac, A. Duboust, V. Ripoche, S. Barraud, N. Allout, S. Barnola, C. Vizioz, J.-M. Hartmann, S. Kerdiles, P. Acosta Alba, S. Beaurepaire, V. Beugin, F. Fournel, P. Besson, V. Loup, R. Gassilloud, F. Martin, X. Garros, F. Mazen, B. Previtali, C.Euvrard-Colnat, V. Balan, C. Comboroure, M. Zussy, Mazzocchi, O. Faynot and M. Vinet

Outline

3D sequential characteristics

3D sequential opportunities

Process integration

with or wo interconnects

Top active creation: **Future MOSFET channel**

Top MOSFET process

BEOL

Lithography alignment

e.g: 28nm node: 3σ<5nm

Slide 6

3D sequential integration

Thin active layer (10 to 100nm) → Small 3D via Aspect Ratio → Small Parasitic C

Sequential ≠ Packaging integration

Packaging integration Sequential integration (e.g.: TSV, copper to copper bonding..) Image: Comparison of the comparison of t

Alignment made during bonding 3σ min = 250nm

Alignment by lithography 3σ = 5nm (28nm stepper)

3D contact density

[1]: L. Brunet et al., VLSI 2016, [2] I. Sugaya et al., ASMC 2015, [3] J. De Vos, 3DIC 2016 [4] L. Peng et al., EPTC 2016 [5] D. Zhang et al. TSM 2015

Slide 9

Outline

Computing applications

Alternative computing architecture

Sensor interface (More than Moore)

Overall goal: describe technology requirements for specific applications

Computing applications: Boosting the FET performance

3D sequential offers the N & PFET stacking opportunity

N/P stack: the integration engineer's holy grail

If for each FET polarity, one were to pick the best possible:

Channel material

Gate stack

- Stressors
- Contact metallurgy

- Surface orientation
- Device Architecture

...then 3D sequential spares numerous litho steps and process selectivity challenges vs. co-planar

P. Batude et al., IEDM 2009 (Leti)

T. Irisawa et al., VLSI 2014 (AIST)

V. Deshpande et al., IEDM 2015 (IBM)

Interconnect delay supression: the designers' holy grail

Extracted from Geoffrey Yeap, Qualcomm's VP of technology IEDM 2013

Interconnection delay \rightarrow logic blocks and gate scale

IC gain performance by wirelength reduction CMOS/ CMOS stacking

Gain in interconnection delay \rightarrow CMOS/ CMOS stacking

- Depends on the technology node
- Depends on the application
- Requires dedicated 3D P&R tools ^[1,2]

[1] K. Arabi et al., ISPD 2015 [2] O. Billoint et al., ISPD 2015

Full custom design: FPGA application

Stacking of 14nm FDSOI

Full custom design: FPGA application

Stacking is more efficient than scaling the MOSFET

The ultimate technology for back-bias

Outline

Computing applications:

Motivation for 3D sequential technology implications

Alternative computing architectures

Sensor interface (More than Moore) Overall goal: describe technology requirements for specific applications

Technology for computing application

 $\sum_{WV}^{M_{z}} CMOS \text{ on top and bottom levels}$ $\sum_{WV}^{M_{z}} Intermediate BEOL$

Si based technology

100% performance for top and bottom MOS

- A Bottom tier: what maximum thermal budget to keep perf at 100%?
- B- Top tier: How achieving LT Top FET with 100% perf?

Bottom MOSFET stability

Bottom MOSFET thermal budget PW Will be summarized as «500°C 5h»

[1]: P. Batude et al., VLSI 2015

Interconnection stability

ULK is stable up to 500°C 2h RC stability validated for Cu at 500°C 2h

[1] C. Fenouillet-Beranger et al., *SSDM 2015*,[2]: V. Lu et al., VLSI 2017

Slide 21

Top tier: towards a 500°C HP CMOS integration

Rmk: * For 14 nm FDSOI and ULK interconnections

Low temperature junctions

Low-temp. 28nm FDSOI

L. Pasini et al., VLSI 2015

SPER activation

Low-temp. FinFET gate last & SAC

J. Micout et al., IEDM 2017

Low temperature silicon epitaxy

Selectivity and crystallinity validated at 500°C Obtained by cyclic and deposition etch

V. Lu et al., VLSI-TSA 2017

Low temperature process tool development helps

Ex: ALD Nitride Ofset spacer replacement

400°C SiCO spacer has been integrated succesfully Gain in delay thanks to low k value

Illustration of the TB footprint reduction

Top FET thermal budget is well below the 500°C 5h limit

Top channel quality

Si Thin film transfer by SOI bonding

SOI transfers above MOSFETs demonstrated in 300mm Low thermal budget<400°C Perfect cristalline quality and thickness control

300mm fab 3D demonstration

- ✓ Nanometric lithography alignment at wafer scale
- ✓ 3D contact size=100nm ✓ 10 nm thin top active layer
- ✓ BEOL \rightarrow FEOL transition demonstrated (NiPtSi)

300mm fab 3D demonstration

A Tsiara, VLSI 2018 First time analysis of performance and reliability of a 3D seq. scheme

Outline

Computing applications: Following More Moore

Alternative computing architectures

Sensor interface (More than Moore)

Global intention:

describe technology rquirements for specific applications

Alternative Computing to Von Neuman architecture

Computating immersed in memory

ightarrow 3D sequential is an opportunity to break the memory wall

N3XT Computing system [1,2]

X 1000 gain in consumption expected with computing near memory

Neuromorphic computing

Brain-inspired computing cube

- High contact density mimics the high interconnectivity of neurons
- RRAM mimics the synapses

Alternative computing:

Applications: Near memory computing

Neuromorphic computing

- High number of stacked layers needed

Top MOS TB ~500°C 2h / Max TB tier 1= 500°C 5h \rightarrow Maximum 2 stacked layers

-Transistors performance is not the bottleneck

Interest for Ultra low TB MOSFETs (400°C)

Alternative computing: Ultra low TB FETs (400°C)

Slide 33

Alternative computing: Quantum computing

Spin-based quantum dots must be coupled to each other in a dense array

Stacked error code correction layer to adress every qubit in the array

Outline

Computing applications: Following More Moore

Alternative computing architectures

Sensor interface (More than Moore)

Global intention: describe technology requirements for specific applications

Sensor interface: Application examples: image sensor

Sensor interface: Application examples

Arrays of resonant NEMS for mass spectroscopy applications

Sensor interface

Analog device needed

Different partitionning depending of the sensor type (front side or back side)

Front side sensor (NEMS of FS image sensor)

Back side sensor (Back side photodiode)

Analog devices integration in 3D sequential

Analog FET thermal stability :

Relaxed nodes are mostly used:

- Thicker Ni-based salicides \rightarrow increased stability [1] 🙂
- Eventually Co-based salicides \rightarrow up to 700°C TB max [2]
- iBEOL not necessarily needed between FETs

Low-temperature analog MOSFET development:

Gate lengths are relaxed :

- Thin channel is not mandatory (RSD epitaxy supressed) 🙂

- R_{access} optimization is less critical Increased constraint on gate stack quality

Conclusion

3D sequential is demonstrated in a 300mm industrial environment

Bottom tier (MOSFET and interconnection) max TB =500°C

All the process modules for top HP FET are within this 500°C TB limitation

Computing is the most demanding application in terms of device I_{ON}/I_{OFF} performance

Conclusion

Applications

Technologies

Thank you to all Cool Cube[™] co-authors

This work is partly funded by:

French authorities: NANO 2017 program, EQUIPEX FDSOI11 Europe: FP7 COMPOSE3, ST-IBM-LETI Alliance program and by Qualcomm.

Acknowledgements:

AMAT for their support. Coventor for this process flow illustrations

Thank YOU for your attention