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Why Communication Matters? 
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×10 every 5 years 

Computation energy efficiency trend 1) 

1) H. Tamura, “Looking to the Future: Projected Requirements for Wireline Communications Technology,” IEEE Solid-State Circuits Magazine, Vol. 7, No 4, pp. 53 – 62, 2015. 

Communication energy efficiency trend 1) 

×2.4 every 5 years 

2) 

2) M. Horowitz, “Computing's energy problem (and what we can do about it),” IEEE International Solid-State Circuits Conference, pp. 10 – 14, Mar. 2014 

~30% of energy for communication 

? ? 
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Communication in Ubiquitous Computing 
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 20 pJ/Operation 

 ADD Op. of two 64-bit operands 

 30% energy for communication 

 Total budget: 0.31 pJ/bit 

 Communication: 0.1 pJ/bit  

The envisioned ubiquitous computing ecosystem1)  

1)S. Borkar, “Role of Interconnects in the Future of Computing,” IEEE Journal of Lightwave Technology, Vol. 31, No. 24, pp. 3927 – 3933, Dec. 2013. 
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Why wireline on short distances? 
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1)  T. Tikka, et al., “A 40 GHz wireless link for chip-to-chip communication in 65 nm CMOS,” Journal of Analog Integrated Circuits and Signal Processing, Springer, 
Vol. 83, No. 1, pp. 23-33, Apr. 2015. 
2) C. Sun et al., “Single-chip microprocessor that communicates directly using light,” Nature, vol. 528, no. 7583, pp. 534–538, 2015 
3) D. A. B. Miller, H. M. Ozaktas, “Limit to the Bit-Rate Capacity of Electrical Interconnects from the Aspect Ratio of the System Architecture”, Elsevier Journal of 
Parallel and Distributed Computing,” Vol. 41. No. 1, pp. 42 – 52, Feb. 1997. 

 Wireless (RF) 
 Antennas are large for on-chip use 

 Energy efficiency: 55 pJ/bit1) 

 Wireless (Optical) 
 Requires laser 

 Energy efficiency: 1.3 pJ/bit (15 pJ/bit including laser)2) 

 Bandwidth density: 300 Gb/s/mm2 

 Latency: ~100 ns 

 Wireline 
 Size limited by BEOL rules 

 Latency per 1 mm length: ~7 ps (0.5 c in copper wires with SiO2 dielectric) 

 Throughput: 1016 bit/s (1.25 PB/s, limited by skin effect and dielectric loss)3) 

 Bandwidth density: 5 Tb/s/mm2 (ExaNoDe) 

 Latency: ~1 ns (ExaNoDe) 
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Chip-to-Chip Communication Link in ExaNoDe  
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Low Swing Signaling Scheme 
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State-of-the-Art Low Swing Transmitters 
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1) J. C. Garcia Montesdeoca, “CMOS Driver-Receiver Pair for Low-Swing Signalling for Low-
Energy On-Chip Interconnects,” IEEE Transactions on VLSI Systems, Vol. 17, No. 2. Feb 2009 
2) M. S. Lin, et al., “An extra low-power 1Tbit/s bandwidth PLL/DLL-less eDRAM PHY using 0.3V 
low-swing IO for 2.5D CoWoS application,”  IEEE Symposium on VLSI Technology, Jun. 2013 

Threshold voltage based 

asymmetric buffer1) 

Compact design 

Two voltage domains 

 
Threshold voltage based 

symmetric buffer1) 

One voltage domain 

“Large” low swing 

 

Self-timed delay based buffer2) 

One voltage domain 

Adjustable output swing 

Requires bus weak keepers 

Sensitive to parameter variability 
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State-of-the-Art Low Swing Receivers 
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1) J. C. Garcia Montesdeoca, “CMOS Driver-Receiver Pair for Low-Swing Signalling for Low-Energy On-
Chip Interconnects,” IEEE Transactions on VLSI Systems, Vol. 17, No. 2. Feb 2009 
2) Y. Liu, et al., “A Compact Low Power 3D I/O in 45nm CMOS,”  ISSCC 2012 
3) K. J. Lee, et al., “Low-Swing Signaling on Monolithically Integrated Global Graphene Interconnects,” 
IEEE Transactions o n Electron Devices, Vol. 57, No.12, Dec. 2010 

Threshold voltage based 

asymmetric buffer1) 

Compact design 

Two voltage domains 

 

Comparator-based RX3) 

Differential operation 

High sensitivity and speed 

Requires clock and reference 

“Traditional” level shifter1) 

Compact design 

“Limited” low swing (min VTH of M2) 

 

 Diode-gated sense amplifier shifter2) 

Compact design 

Requires precise clock alignment 

Sensitive to parameter variability 

 

D43D 2018 Workshop, Grenoble, France, July 2018 

Copyright © 2018 The University of Manchester 



Proposed Low Swing Transmitter 
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Variability Compensation in TX 
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Variability compensation in RX 
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Transceiver Trimming 
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 Exascale Manchester Interconnect (EMI) v1.0: 
 Energy: 44.5 fJ/bit, Speed: 2 Gb/s/wire (SDR), bandwidth: 256 Gb/s (128-wire link), 5 Tb/s/mm2 

 Advanced body biasing scheme for parameter variability trimming  

 Up to 3× less power consumption compared to a standard full swing solution (< 0.1 pJ/bit) 

 Over 5× less switching noise compared to a standard full swing solution 

 Latency: 2 clock cycles from TX to RX (0.41 ns for level conversion and signal propagation) 

EMI v1.0 Transceiver in 28nm FDSOI  
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EMI v1.0 Transceiver in 28nm FDSOI  
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1-bit line @ 2 Gb/s (clock shielding) – EYE DIAGRAM  

Full Swing Transceiver

E = 128 fJ/bit

EDP = 19 ns×fJ

LATENCY = 0.152 ns

Channel IN (TX with pre-emphasis)
Channel OUT (RX)

E = 44.5 fJ/bit

EDP = 18 ns×fJ

LATENCY = 0.41 ns
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EMI v1.0 Transceiver in 28nm FDSOI  
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1-bit line @ 2 Gb/s (clock shielding) – SWITCHING NOISE  

EMI v1.0 RMS NOISE 0.53 mAFull Swing RMS NOISE 2.46 mA
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Energy vs Area 
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Summary 
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 The challenge is to reduce energy below 0.1 pJ/bit across an SoC 

 Wireline communication offers high efficiency, high speed, 

reliability and security 

 Looking for improvements on the physical layer (ExaNoDe) 

 Low swing signalling 

 Hardware trimming and training 

 Looking for improvements on the transport layer (EuroEXA) 

 Reordering encoding 

 Error correction 

 Multi-level encoding 

 


