D43D Workshop 2018, Grenoble

From 2.5D to 3D Layout Design Environment: Status & Future Challenges for Advanced 3D Packaging

Thomas Brandtner 2018-07-03

Acknowledgement

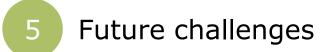
Parts of presented chip package co-design environment have been developed inside the following EU funding projects:

MEDEA+ CoSiP
 Chip/Package/System Co-Design
 An Enabler for Compact System-in-Package Solutions

CATRENE SiPoB-3D

Co-Design for System-in-Package-on-Board. Managing Complexity and Diversity to Create Novel 3D Compact Systems.

Agenda



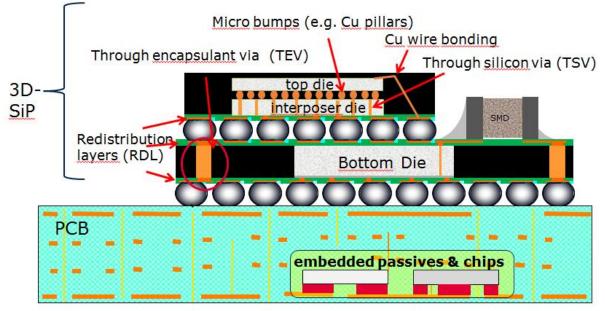
2

4

Challenges for 2.5D & 3D co-design methodology

- Assembly Design Kits
- 3 Common chip-package layout design environment
 - Structured, efficient co-design data exchange

infineon

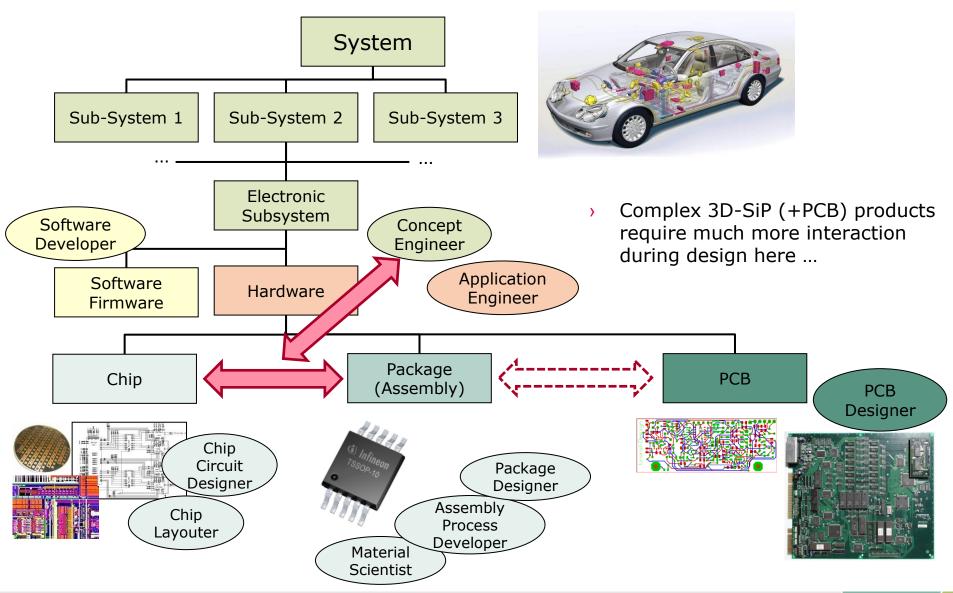

Agenda

- Challenges for 2.5D & 3D chip-package-(PCB) co-design methodology
- Design complexity
- Distributed design teams
- Communication
- Assembly Design Kits (ADKs)
- 3 Common chip-package layout design environment
 - Structured, efficient co-design data exchange
- Future challenges

Degrees of Freedom in IC/PCB System Design

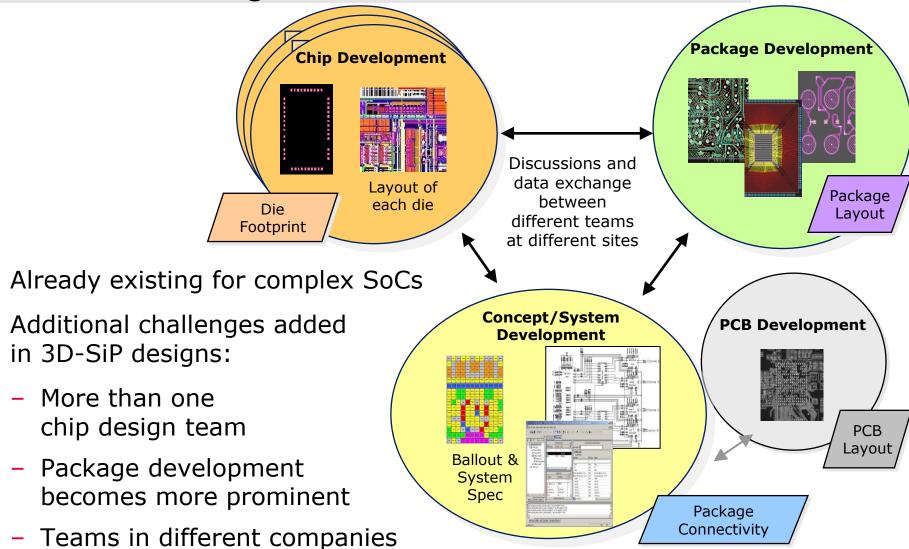
Additional degrees of freedom like

- > exploitation 3^{rd} dimension \rightarrow miniaturization, increase of electrical performance
- > mix of chip technologies \rightarrow choose the best in terms of cost & performance
- > re-use of existing chips \rightarrow faster time-to-market
- \rightarrow mix of devices of different vendors \rightarrow vendors can focus on their core competence


> ..

are available for overall system optimization for a given application

- \rightarrow advantages for customer and concept engineers
- → challenge for design engineers



Engineering Roles in Complex System Design

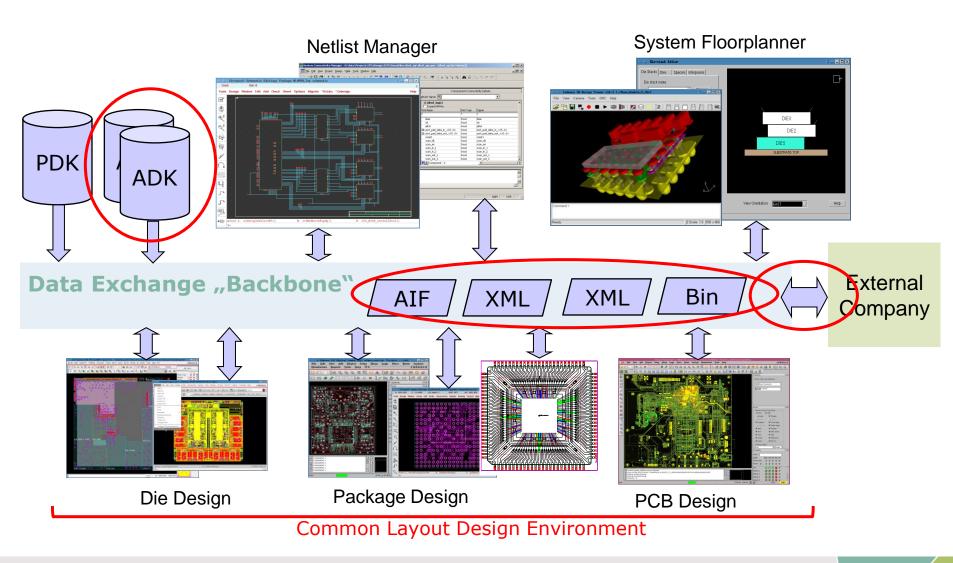
Distributed Design Teams

>

>

Communication is a Must

- > Management tasks: Coordination, alignment, project planning, ...
- Design tasks "Engineering Change Order" (ECO) loops
 - Technical alignment & discussions → human centric tasks
 Design Methodology can help by
 - defining clear workflows
 - defining clear roles & responsibilities
 - Design data exchange → software tool centric tasks
 Design Methodology can help by
 - providing novel automation features (EDA)
 - defining easy-to-use tool flows
 - defining easy-to-use & complete file data formats


Improving Chip-Package-(PCB) Co-Design Methodology

- > Goal: Make design tasks less error prone and faster
 - → Simplify ECO loops
 - → Reduce number of ECO loops
- Several solutions have been developed in EU funding projects CoSiP and SiPoB-3D
- > and have been rolled out successfully within Infineon:
 - Assembly Design Kits (ADK)
 - Common chip+package layout environment
 - Structured, efficient co-design data exchange
 - within the same semiconductor company \rightarrow "CoSiP Backbone"
 - between different companies \rightarrow "SiPoB-3D Gateway"

Infineon SiP Codesign Environment

Copyright © Infineon Technologies AG 2018. All rights reserved.

Agenda

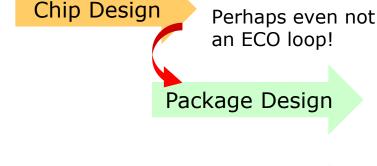
Challenges for 2.5 & 3D co-design methodology

- Assembly Design Kits (ADKs)
- Parallel development
- Learning from chip design:
 PDK (frontend process design kit) → ADK
- Infrastructure & content
- Common chip-package layout design environment
- Structured, efficient co-design data exchange
- Future challenges

Disadvantage: It seems that we will need lots of ECO loops. Difficult to organize in distributed teams.

Copyright © Infineon Technologies AG 2018. All rights reserved.

Typical human approach: Reduce number of ECO loops

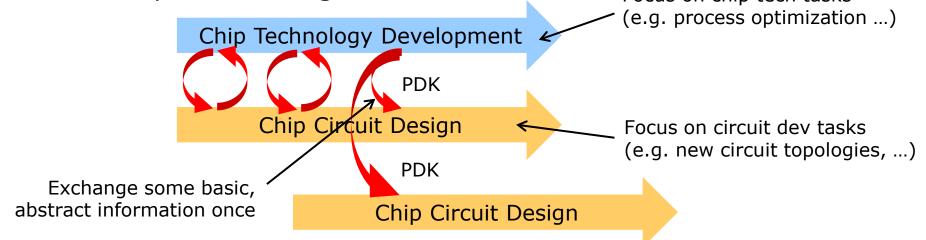

- What would we like to achieve?
 - → Parallel design
 - → Global optimization

 \rightarrow Sequential design steps

and focus on local optimization

Overall product not optimized

Reduce Number of ECO-Loops (1)

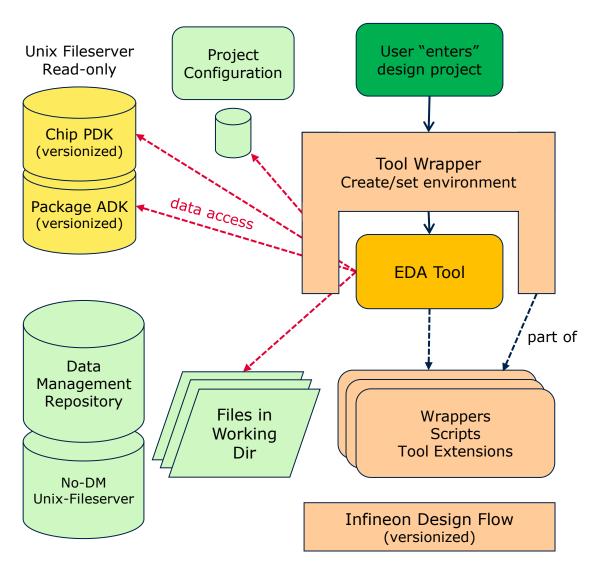

Chip Design

Package Design

Reduce Number of ECO-Loops (2)

- How to enable teams to work in parallel, but with less ECO loops?
- Let's learn from other areas in semiconductor industry ...
 → PDK ... process design kits
 Focus on chip tech tasks

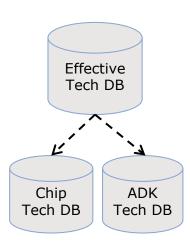
- Decoupling of chip technology development and chip circuit design
- Most efficient, if PDK can be re-used in further chip circuit designs

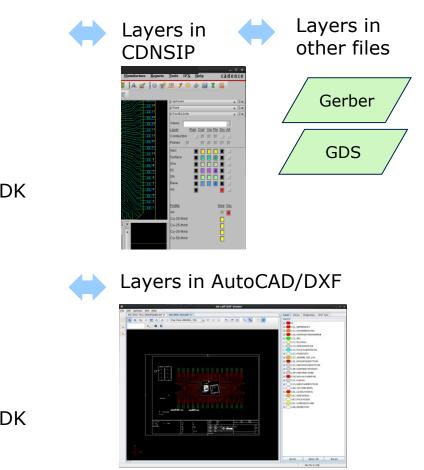

The Idea of ADK is Born!

- > ADK ... Assembly Design Kit
 - Abstraction of assembly technology specific information and constraints like design layers, rules, materials, ...
 - Should be defined and compiled by
 - In-house assembly / packaging / backend department
 - Assembly subcon (just like a PDK is offered by chip foundry)
- Obstacles for ADK introduction:
 - No common foundation like a common design tool landscape because of big differences in assembly technologies
 - Additional effort for some contributors. Examples:
 - Need to express assembly design rules in a more abstract way
 - Less flexibility after the release of an ADK

Design Infrastructure Including ADKs

- > Project configuration
 - PDK
 - One or more ADKs
- > Traceability by
 - Read-only project configuration
 - Design flow version
 - PDK + ADK versions

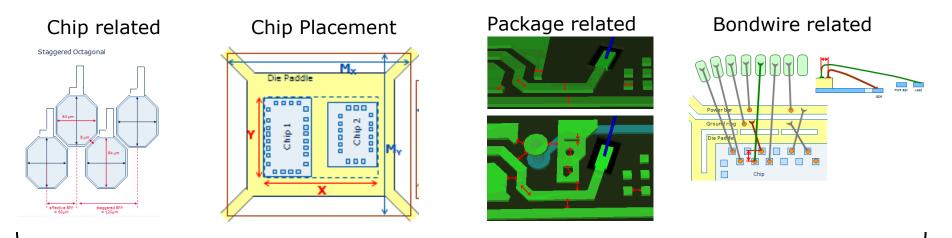



ADK Content – Examples (1)

 Layer definition & layer mapping (support of different layout design tools)

Virtuoso Layerstack (chip + package layers combined together Based on incremental technology database)

Layers	AV	NV	AS		NS R	•	
A - 45	-					_	
Active:	LF_Bondwire_Au drawing				Ľ	_	
Show:	Y All Valid Layers						
Scope:	📃 Used L	ayers On	ly				
Search:	Q Sear	ch			-	•	
^	Layer		Purpose	V	S	$ \land $	
LF_B	ondwire_Au	J C	Irawing	~	V		
LF_B	ondwire_Cu	a c	Irawing	>	V	_	
	ondwire_Al		Irawing	✓	✓	=	
LF_D	oublestitch	_AI c	Irawing	-	✓		
LF_M	3	C	Irawing	 ✓ 			
💋 LF_Downset3			Irawing	 ✓ 			
📕 LF_M2			Irawing	 ✓ 			
📈 LF_Downset2			Irawing	 ✓ 			
EF_M1			Irawing	 ✓ 			A
LF_Footprint			Irawing	 ✓ 			
LF_Footprint			oin	 ✓ 			
LF_Footprint			ext	✓	✓		
	LF_Heatslug		Irawing	 ✓ 			
LF_PI			Irawing	~			
	old_Outline		Irawing	~			
	Dutline		Irawing	 ✓ 			
LF_C			Irawing	 ✓ 			
	eadPin		ext	 ✓ 			
	ePaddle	C	Irawing	 ✓ 			
📕 LF_Pa	ackagelD	t	ext	 ✓ 			
	nalDieSize		Irawing	~	✓		
	nalDieSize		Irawing	~	✓		
	ePadBotto		Irawing	~	⊻		
	eStampBot		Irawing	 ✓ 			
	eStampTop) (Irawing	 ✓ 			
	tleblock	C	Irawing	 ✓ 			
	tleblock		narker				
LF_Ti	tleblock		ext	~			
NWell			irawing	~	⊻		
Pwell			Irawing	✓	⊻		
🗱 Diff			Irawing	✓			
💋 Poly1			Irawing	✓	_		Р
🗱 Metal			Irawing		×		P
🛐 Metali			Irawing	~	⊻		
Metal:			Irawing	V	_		
Metal	4		Irawing	~	×		
NK 🛛		C	Irawing	~	~		



Copyright © Infineon Technologies AG 2018. All rights reserved.

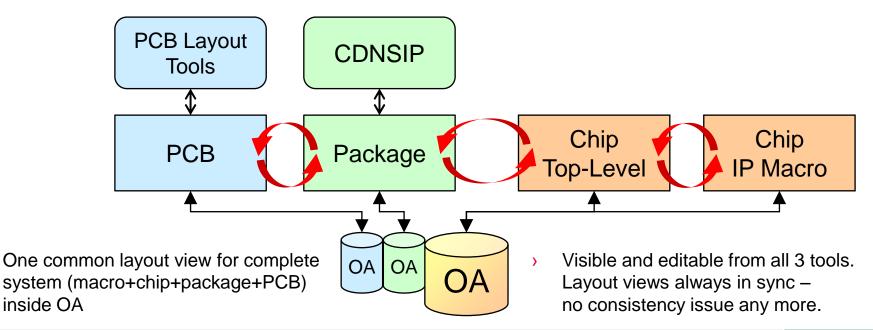
ADK Content - Examples (2)

> Assembly Design Rules

- > Different rule checking engine in use:
 - On-line checks, if available (e.g. in CDNSIP)
 - Mentor Calibre based (programmable)
 - RAVEL based (engine available in CDNSIP)
 - Checks in Skill code

Agenda

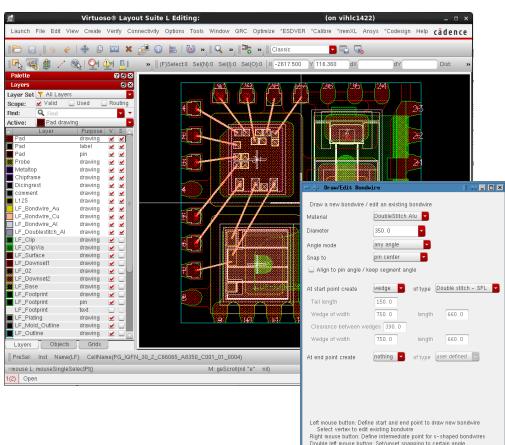
3


Challenges for 2.5 & 3D co-design methodology

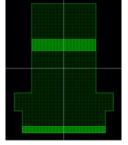
- Assembly Design Kits (ADKs)
- Common chip-package layout design environment
 - Proof-of-concept: Exploitation of existing 2.5D software
- 4 Structured, efficient co-design data exchange
 - Future challenges

Common Layout Environment

- Current situation: Different layout tools in place for chip, package layout and PCB
- ECOs and other design tasks become easier and faster, if design could be shared in one common layout environment
- > We decided for OA database & Cadence Virtuoso for a prototype because
 - it can store the complete chip layout
 - our biggest internal design community is using it



>

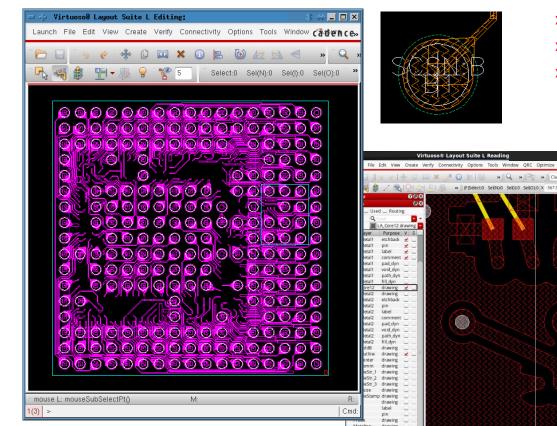

Layout Design with Bondwires

 Already in use for several package technologies like QFP, QFN, DSO, TO, SO, ...

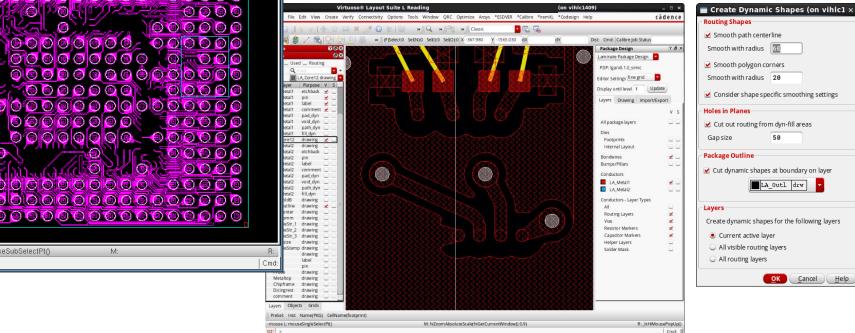
Support of

- > SiP (several chips)
- > Clips

- > Bondwire Design
 - Material, bondwire profile
 - Different end-points
 - Double stitch
 - Nailheads
 - Wedge-on-bump


Copyright © Infineon Technologies AG 2018. All rights reserved.

OK Cancel Help



Laminate & eWLB Design

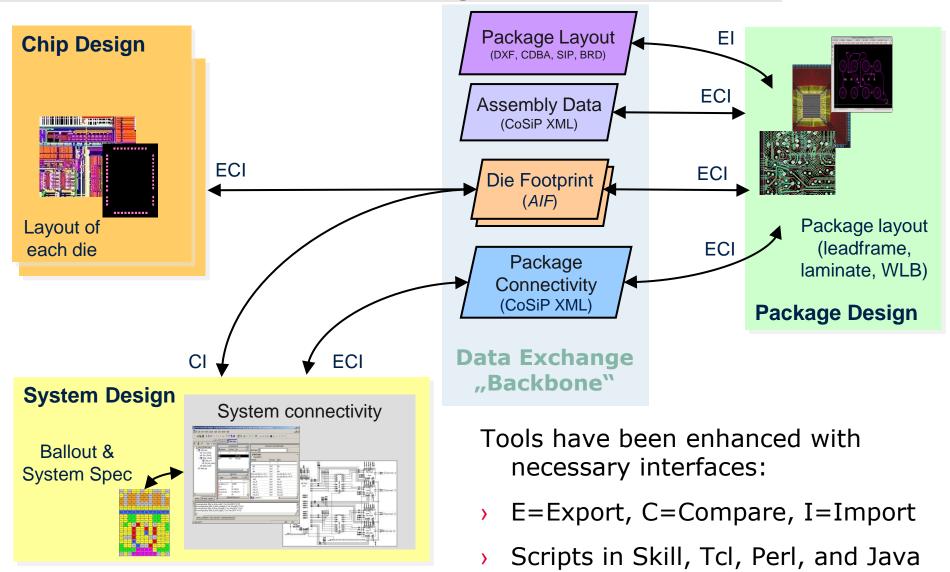
Virtuoso can also be used for eWLB & laminate design, but requires some extensions, like >

- Ballout generator
- Automatic tear drop generation >
- Padstack editor >
- Automatic smoothing & > plane cutting

Agenda

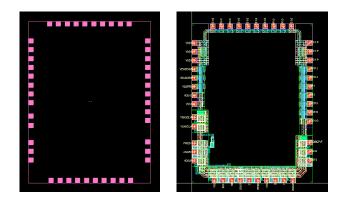
Challenges for 2.5 & 3D co-design methodology

Assembly Design Kits (ADKs)


Common chip-package layout design environment

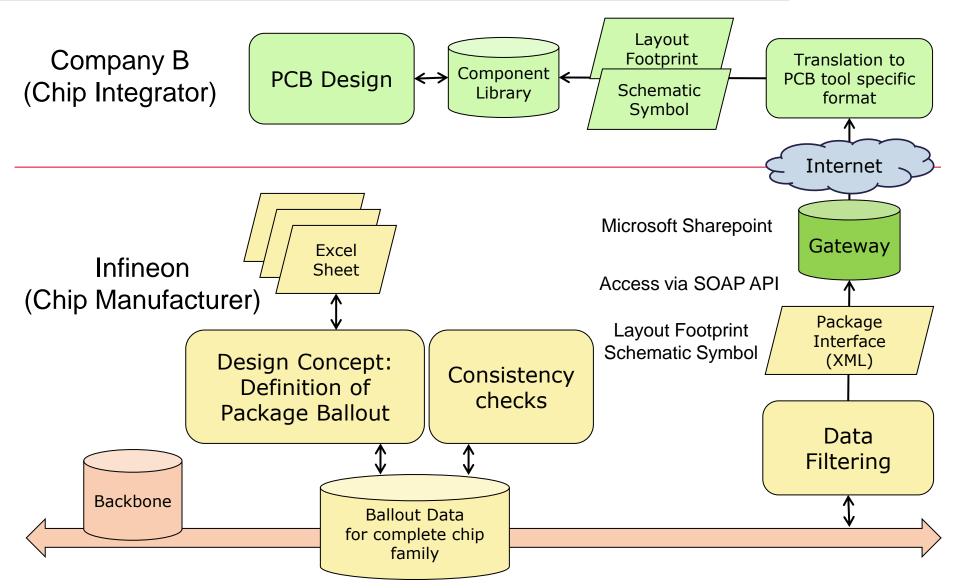
- 4
- Structured, efficient co-design data exchange
- within the same semiconductor company: "CoSiP Backbone"
- between different companies: "SiPoB-3D Gateway"

Future challenges


Versatile File-Based Codesign

Common Data Formats - Example Die Footprint

- Die Footprint
 - Die size (incl. scribe line)
 - Pin (= pad/bump/ball)
 - number
 - name from chip point of view
 - x/y coordinates
 - shapes & sizes
 - Additional shapes and properties ('constraints', like no-route regions, comments for some regions etc.)
- Potential file formats
 - AIF: proprietary (<u>www.artwork.com</u>), but ASCII
 - DDX: IEC 62258-2 (last update 2011), standard for KGD business, no focus on design
 - LPB: IEEE 2401 (2015), XML, mainly used in Japan today



Inter-Company Data Exchange "SiPoB-3D Gateway"

Copyright © Infineon Technologies AG 2018. All rights reserved.

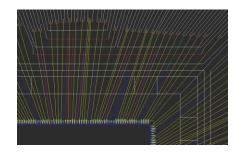
Agenda

- Challenges for 2.5 & 3D co-design methodology
- 2 Assembly Design Kits (ADKs)
- 3 Common chip-package layout design environment
 - Structured, efficient co-design data exchange
 - Conclusion & Future challenges

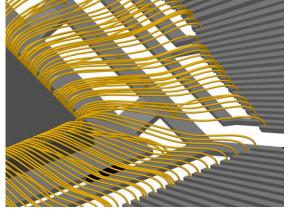
5

Conclusion & Future Challenges (1)

- Main challenge for chip-package-PCB co-design methodology is optimization of communication between design teams
- > Assembly Design Kits:
 - ADKs have been introduced successfully for package technologies in Infineon design environment
 - Future plans & challenges:
 - Exploit modular ADK concept for further applications like probing technologies and PCB design
 - Further productivity improvement would be visible, if assembly subcon/OSAT could provide ADK + "reference design flows" on their own


Conclusion & Future Challenges (2)

- > Common layout environment in Cadence Virtuoso
 - Productive SiP design in leadframe, laminate, and eWLB technologies can be carried out in a common layout environment limited to 2.5D, showing advantages by
 - speeding up ECO loops between design teams
 - ensuring that overall layout keeps in sync & defining latest version
 - acting as a source for final physical sign-off checks (and electrical simulation as well)
 - Infineon had to add several features (by Skill scripts) on its own
 - \rightarrow In some cases feature performance limits the size of SiP
 - → EDA vendors could offer solutions also fitting to biggest SiPs



Conclusion & Future Challenges (3)

 Tighter link between mostly 2.5D/2.75D (electrical) E-CAD and true 3D (mechanical) M-CAD environments

- 2.5D E-CAD with layers 2.75D with additional properties
 - Data exchange:

True 3D M-CAD tools

- Today: Typically unidirectional E-CAD→M-CAD and geometrical data only
- Future: Bidirectional including additional "electrical properties" like materials, electrical nets, ...

Part of your life. Part of tomorrow.

