

Lithography Setup and process variability assumptions for silicon chip manufacturing:

LETI Day's Lithography Workshop July 6th 2018

Bertrand Le-Gratiet

Senior Member of technical staff / Lithography metrology department Digital Front End Manufacturing / Technology R&D Process Development

With special thanks to

Laurène babaud Project leader RD lithography

Maxime Gatefait Project leader RD lithography scanner applications

Outline

Outline

Front-End Manufacturing

	Techno	Node	Comment
	CMOS (Moore)	120-90-55-40-28	Classical More Moore
	SOI (FD and others)	65-28	Low power differentiation + Automotive
	Specialized Image sensors	I175-140-110- G140	Mix Moore + specific PIXEL integration Front Side / Back Side / Wafer bonding / 3D / Hybrid bonding / Stitching / Color and µlens processes
	eNVM	110-90-55-40-28	MCU + Secure & Automotive / Very stringent in term of reliability (request < ppm levels)
	BiCMOS	55	High Speed devices, complex integration > 60 masks
	Si Photonics	25G-50G	Curvilinear shapes (new Gen need immersion)

Outline

LITHOGRAPHY & PATTERNING HALLENGES in IC manufacturing

Technology Innovation Process

ADVANCED R&D

TECHNOLOGY DEV & QUAL.

MANUF. SUPPORT

Technology Maturity Process

* APC Advanced Process Control (Run2Run / subrecipe etc..); SPC (Statistical Process Control: Control chart tool and process drift monitoring)

Outline

LITHOGRAPHY & PATTERNING CHALLENGES in IC manufacturing

Technology Maturity Process

The Process Assumptions Challenge

- Some design rules are set at the limit of process capabilities.
- In-line control (CD) plan must secure variability
- SPC is most of the time performed per layer, little visibility on interlayer interactions (except OVL)

Motivation: The Process Assumptions Challenge

- Some design rules are set at the limit of process capabilities.
- In-line control (CD) plan must secure variability
- SPC is most of the time performed per layer, little visibility on interlayer interactions (except OVL)

Motivation: The more we shrink the more we challenge tool capabilities (process margin reduces very significantly)

Motivation: The more we shrink the more we chalenge tool capabilities (process margin reduces very significantly)

Motivation: The more we shrink the more we challenge tool capabilities (process margin reduces very significantly)

Technology Maturity Process

Technology Maturity Process

2- initial setting

	Exposure technology type: 248, 193, 193i, 193i NTD
	Planarization solution if needed: Barc/Trilayer
	Antireflective solution if needed: DBARC/BARC/TARC
1- Choice of litho	Solution for adhesion : DBARC/BARC/preatment.
process type	Resist Thickness range: Implant Conditions / Etch budget
	Resist stack preliminary choice
	Top coat solution if needed
	Litho exposure tool (From available Scanner List: 365 / 248 / 193 / 193i)
	Mask Grade & type
2- Mask	Mask type for 193nm: binary, att PSM, OMOG
	OPC
	MONITORING feature choice
3- Metro CD	Choice of Pattern type sensitive to focus: CD/pitch, stack, orientation (if non symetrical illum is used)
	IF Pattern type, CD, pitch, orientation and stack; spatial repartition
4 Matra OVI	OVL Pattern type, intra field spatial repartition, layers n-1 for overlay
4- WEUD OVL	Measurement quality (TIS, residual)
	Initial Track recipe
	HMDS T⁰C and time
5- Track regine	EBR rules (chemical + optical)
5- Hack recipe	Dev type LD, GP nozzle, ADR stream (BKM)
	Double check PAB / PEB T ^o C and time.
	BTM recipe, barometric spin curve link.
6- Scapper	Illumination choice
0- Scanner	Job scanner
7- Scanner: Setting	R2R/APC Nominal Setup
Nominal	R2R/APC JOB tuning:
Nominal	R2R/APC loop mgt> Energy, Overlay.
8-MES: creation Capability	Capability list in the MES (association Litho Cluster / layer process enablement)

Motivation: Sometimes the challenge is not where you would think it is.

The k factor is a representation of the complexity to achieve a given CD or Focus control within specification. The smaller it is the more challenged the tools are due to variability control.

Example of 28nm node

	Focus	Best Focus determination
	Dose	Best Dose/Slope determination
	Process Window DOF/EL	EL/Dof Pocess window determination
		If above Criteria not achieved: Resist benchmark, ARC, PEB/PAB T°C opti, Dev recipe, illumination screening/DOE, mask/OPC optimization
	Desist Budest	Resists thickness validation: dry etch layer.
	Resist Budget	Resists thickness validation: implant layer.
	CD bias	CD Bias during etch process (Photo-Etch Bias) or during implantation (Resist shrink during implant)
5	OPC check	OPC Check
	R2R Set up	Regulation limits, links, feedback models, effects
.0	Track recipes naming	track recipe/module recipes and monitoring recipe naming
at '	Tool matching: illum	Scanner matched illumination
izi je	Tool matching: Focus	Scanner specific focus offset
<u>a</u> . P	Monitoring: inline	Control plan definition CD/Overlay: number of wafers, number of sites, IF sites
4 5	Monitoring: resist	Monitoring resist & BARC (thickness & conta)+ PCM def.
- sn	Alignment Strategy	Revision of best alignment strategy after process/stack stabilisation
pu	Resist codification	Resist code for procurement; Specifications: water content, solvent content, viscosity or film thickness,
	Luning	metal conta, sensitivity or CD, particle contamination
	Def	PWQ, std def inspection
		MEEF evaluation for Mesdim (mandatory for Symphony setup).
		MEEF evaluation for critical pitch or pattern.
	MEEF	If needed: Resist benchmark, PEB/PAB T°C opti, illumination screening/DOE, mask/OPC optimization,
		assist features
	Resist profiles	X sections (+Tilted SEM if interesting)
	Rework	Rework process validation
	Symphony Set up	Dose Nom, slope, Focus, MEEF
	Throughput & cascading	Throughput assessement vs cluster target + cascading issue? (bake T°)

What Variability is made off ? What do we see?

27

What Variability is made off ? What do we see?

28

Setting up the Control Plan look beyond 29

Setting up the Control Plan look beyond 30

VARIABILITY CONTEXT (Expl: 10⁷ chips supply – chip size 7x7mm²)

Millions of transistors to make 1 chip.

• IntraChip variability

Pattern SHAPE , OPTICAL proximity Effect , Pattern DENSITY effects on ETCHING, POLISHING etc...

12 Chips per Mask (3x4 chip matrix)

• Intrafield variability chip to chip

MASK uniformity, SCANNER LENS uniformity, Pattern DENSITY effects on ETCHING, POLISHING etc...

✓ 960 Chips per Wafers (100 Mask exposure 3mm wafer edge exclusion)

- Intrawafer variability
- TOOL PROCESS CHAMBER uniformity

- 24000 Chips per Lots (25 wafers per lot)
 - Wafer to wafer variability
 - TOOL CHAMBERS MATCHING

- ✓ 10.000.000 Chips is 440 Lots (Waferfab Yield 95%)
 - Lot to lot process variability
 - TOOL MATCHING, TOOL DRIFT OVER TIME

Process variability

- ✓ Variability is made of random and systematic signatures
- Many signatures can be explained through a carefull context management & pre-treatment.
- ✓ Some signatures are clearly systematics and associated to a context
 - They can be wafer to wafer (begin to end batch effect, chamber/chuck matching)
 - They can be intrawafer (process chamber signature, PEB, DEV, Deposition)
 - They can be Intrafield (product induced topography, Mask effects, Lens...)

Low k1 lithography = IT

- For advanced technologies, advanced process correction are needed to achieve product specifications:
 - On some context more than 5000 corrections parameters per lot are sent to scanner to adjust Dose, Focus, Leveling, Lens, stage position,...
- To drive and control such type of correction and especially in CR300 High mix Fab context : Advanced IT-Litho system is mandatory
- Such IT/Litho System:
 - Improve and secure Product Performances
 - Minimize impact on Litho Resources
 - Improve Product Turn rate
 - Increase Scanner return on investment

low k1 lithography means.

Intrication Process / Data / IT management.

« Holistic » & « Computational » Lithography

Sub Recipe Management

- Currently when a lot is processed @ critical litho process steps
 - > 40 Run2Run parameters are sent by APC to the scanner to expose lot at best condition
 - <u>in addition</u> high order process correction are automatically sent to scanner to correct for current lithographic process error or for non lithographic past or future process step error
 - such advanced process correction named subrecipe are sent to scanner via .xml file
 - each subrecipe file can contain up to 1000 variables to adjust Dose, Focus, Leveling, Lens, stage position,...
 - Up to 10 subrecipes are sent to scanner per lot

Dose Mapper

- Dose Mapper (DOMA) subrecipe: Dose Control
 - To Correct for Intrafield CD dispersion linked to reticle writing error
 - To Correct for Interfield CD dispersion linked to etch fingerprint

Advanced correction type Dose Mapper

IMPORTANT to KNOW:

DoseMapper cannot correct CD gradient > 1% Dose / mm Dose Correction are clipped at +/- 3% when OPC is used

OBSERVATIONS:

DOMA helps reducing and stabilizing uniformity. Some product have large Gain some don't.

Baseliner

- Baseliner subrecipe: Focus and OVL control
 - To correct for scanner intrinsic focus and overlay fingerprint and drift

-Same Subrecipe Correction on All lots - Dynamic Correction updated every weeks or after scanner PM

AGILE (level sensor error corrections)

IMPORTANT to KNOW:

AGILE corrects for optical sensor errors which are stack dependent. Delta AGILE / lot_n vs lot_ref is constantly monitored to avoid uncontrolled focus shift

OBSERVATIONS:

AGILE helps reducing and stabilizing focus control uniformity. Some product have large Gain some don't.

OverlayMapper

- Overlay Mapper : OVL control (mandatory for On product OVL spec < 8nm)
 - To correct for Scanner illumination overlay distortion
 - To correct for Reticle to Reticle XY writing error
 - To Correct for non Lithographic process step pattern shift

Complex IT Architecture

CONCLUSION

Bertrand Le-Gratiet | Tel: +33 438922471 | Mobile: +33 786879521 Digital Front End Manufacturing & Technology Senior Member of technical staff | Lithography metrology department Bertrand.le-gratiet@st.com

STMicroelectronics 850 Rue Jean Monnet 38920 CROLLES | FRANCE ST online: <u>www.st.com</u> | Follow us on twitter: <u>@st_world</u>

