III-V/SI LASER INTEGRATION: CHALLENGES AND RESULTS

B. Szelag CEA-Leti
OUTLINE

- CEA-LETI’s Silicon Photonic Overview
- III-V device on Si Photonic – Why & How
- III-V/Si laser integration – Leti’s first results
- Toward CMOS compatible III-V/Si laser integration
LETI, TECHNOLOGY RESEARCH INSTITUTE

Founded in 1967, based in France (Grenoble) / offices in USA and Japan

1900 People

60 Startups created

2670 Patents in portfolio

60 M€ budget

315 Million budget

Optics and Photonics Division

Created in 1978
300 researchers, engineers and PhD students

500 patents in portfolio
91 new patents in 2017

60 M€ budget
90% from external revenue
OUR RESEARCH FACILITIES

NEW in 2017: PHOTONICS BUILDING

- 12600 square meters incl. offices, labs and clean rooms
- Dedicated clean rooms for III-V and II-VI materials (growth, epitaxy, process and packaging) on versatile substrate geometries up to 150 mm
- Electro-optical test and characterization facilities
- Design and simulation capabilities (process, growth, optics...)

8500m² CLEAN ROOMS for 200mm & 300mm wafers
OUR BUSINESS MODEL

One-to-One collaboration to create and transfer new technologies to our industrial partners

DIFFERENTIATION
Developing hardware technologies to obtain smaller, cheaper and smarter photonic products for our industrial partners.
SILICON PHOTONICS OFFER

A complete toolbox based on Telecoms/Datacoms, Microwave Photonics and Sensor

DEVICE LIBRARY

Passive devices O&C-band
- Waveguides
- Surface injection coupler 1D&2D
- WDM Mux/Dmux (100G-LR4)

Active devices O&Cbnd
- Modulators
- Ge on Si photo detectors
- Heterogeneous III-V on Si lasers

200mm & 300mm wafers
- Amorphous Silicon, SiNx deposition
- Deep UV 193 nm litho
- Low sidewall roughness – Si and SiNx waveguides
- Ge epitaxial growth
- p-type and n-type ion implantation
- Direct bonding and processing of III-V materials on Si

Multi Project Wafer for prototyping

FABRICATION PLATFORM

CIRCUITS & MODULES

Circuit design & Packaging tools
- Hybridation of photonic and electronic Ics
- Optical fiber attachment

TESTING

Wafer level and module testing
- 4 fully-automated on-wafer probers
- Ambient temperature up to 90°C
- Bit Error Rate measurement NRZ/PAM4 up to 64 Gbaud
- Small signal analysis up to 67 GHz (O/E, E/O, E/E)

SILICON PHOTONICS OFFER

A complete toolbox based on Telecoms/Datacoms, Microwave Photonics and Sensor

DEVICE LIBRARY

Passive devices O&C-band
- Waveguides
- Surface injection coupler 1D&2D
- WDM Mux/Dmux (100G-LR4)

Active devices O&Cbnd
- Modulators
- Ge on Si photo detectors
- Heterogeneous III-V on Si lasers

200mm & 300mm wafers
- Amorphous Silicon, SiNx deposition
- Deep UV 193 nm litho
- Low sidewall roughness – Si and SiNx waveguides
- Ge epitaxial growth
- p-type and n-type ion implantation
- Direct bonding and processing of III-V materials on Si

Multi Project Wafer for prototyping

FABRICATION PLATFORM

CIRCUITS & MODULES

Circuit design & Packaging tools
- Hybridation of photonic and electronic Ics
- Optical fiber attachment

TESTING

Wafer level and module testing
- 4 fully-automated on-wafer probers
- Ambient temperature up to 90°C
- Bit Error Rate measurement NRZ/PAM4 up to 64 Gbaud
- Small signal analysis up to 67 GHz (O/E, E/O, E/E)

SILICON PHOTONICS OFFER

A complete toolbox based on Telecoms/Datacoms, Microwave Photonics and Sensor

DEVICE LIBRARY

Passive devices O&C-band
- Waveguides
- Surface injection coupler 1D&2D
- WDM Mux/Dmux (100G-LR4)

Active devices O&Cbnd
- Modulators
- Ge on Si photo detectors
- Heterogeneous III-V on Si lasers

200mm & 300mm wafers
- Amorphous Silicon, SiNx deposition
- Deep UV 193 nm litho
- Low sidewall roughness – Si and SiNx waveguides
- Ge epitaxial growth
- p-type and n-type ion implantation
- Direct bonding and processing of III-V materials on Si

Multi Project Wafer for prototyping

FABRICATION PLATFORM

CIRCUITS & MODULES

Circuit design & Packaging tools
- Hybridation of photonic and electronic Ics
- Optical fiber attachment

TESTING

Wafer level and module testing
- 4 fully-automated on-wafer probers
- Ambient temperature up to 90°C
- Bit Error Rate measurement NRZ/PAM4 up to 64 Gbaud
- Small signal analysis up to 67 GHz (O/E, E/O, E/E)

SILICON PHOTONICS OFFER

A complete toolbox based on Telecoms/Datacoms, Microwave Photonics and Sensor

DEVICE LIBRARY

Passive devices O&C-band
- Waveguides
- Surface injection coupler 1D&2D
- WDM Mux/Dmux (100G-LR4)

Active devices O&Cbnd
- Modulators
- Ge on Si photo detectors
- Heterogeneous III-V on Si lasers

200mm & 300mm wafers
- Amorphous Silicon, SiNx deposition
- Deep UV 193 nm litho
- Low sidewall roughness – Si and SiNx waveguides
- Ge epitaxial growth
- p-type and n-type ion implantation
- Direct bonding and processing of III-V materials on Si

Multi Project Wafer for prototyping

FABRICATION PLATFORM

CIRCUITS & MODULES

Circuit design & Packaging tools
- Hybridation of photonic and electronic Ics
- Optical fiber attachment

TESTING

Wafer level and module testing
- 4 fully-automated on-wafer probers
- Ambient temperature up to 90°C
- Bit Error Rate measurement NRZ/PAM4 up to 64 Gbaud
- Small signal analysis up to 67 GHz (O/E, E/O, E/E)

SILICON PHOTONICS OFFER

A complete toolbox based on Telecoms/Datacoms, Microwave Photonics and Sensor

DEVICE LIBRARY

Passive devices O&C-band
- Waveguides
- Surface injection coupler 1D&2D
- WDM Mux/Dmux (100G-LR4)

Active devices O&Cbnd
- Modulators
- Ge on Si photo detectors
- Heterogeneous III-V on Si lasers

200mm & 300mm wafers
- Amorphous Silicon, SiNx deposition
- Deep UV 193 nm litho
- Low sidewall roughness – Si and SiNx waveguides
- Ge epitaxial growth
- p-type and n-type ion implantation
- Direct bonding and processing of III-V materials on Si

Multi Project Wafer for prototyping

FABRICATION PLATFORM

CIRCUITS & MODULES

Circuit design & Packaging tools
- Hybridation of photonic and electronic Ics
- Optical fiber attachment

TESTING

Wafer level and module testing
- 4 fully-automated on-wafer probers
- Ambient temperature up to 90°C
- Bit Error Rate measurement NRZ/PAM4 up to 64 Gbaud
- Small signal analysis up to 67 GHz (O/E, E/O, E/E)
OUTLINE

- CEA-LETI’s Silicon Photonic Overview
- III-V device on Si Photonic – Why & How
- III-V/Si laser integration – Leti’s first results
- Toward CMOS compatible III-V/Si laser integration
RECALL OF SILICON PHOTONIC BASIS

- Silicon photonic aims at integrating in the silicon microelectronic CMOS technology circuits and modules initially based on other technologies (InP, InGaAs, LNbO3, SiO2, ...)

- Making photonic integrated circuits on Silicon using CMOS process technology in a CMOS fab.

- Merging photonics and CMOS.

- Expected benefits:
 - Higher integration level
 - Low cost, high volume facilities
 - Access to mature packaging and EDA tools
 - WDM and scaling to >1 Tb/s
 - Solving electrical interconnect limits in Data centers, Supercomputers and ICs with higher capacity, lower cost optical interconnects
Silicon Photonic Links

Transmitter

Modulator: E to O conversion

Multiplexer: Signal combining

De-Multiplexer: Signal separation

Fiber coupler: PIC to fiber interface

Photo-detector: E to O conversion

Receiver

SILICON PHOTONIC BUILDING BLOCKS
HETEROGENEOUS INTEGRATION FOR SI PHOTONIC

- Growth of the III-V wafers (2'', 3'', 4'')
- Processing of SOI wafers 8'' or 12''
 (modulators, detectors, passive devices, etc.)

III-V bonding on processed SOI & InP substrate removal

- III-V material patterning,
- Metallization of lasers, modulators and detectors

CMOS fab compatible processes needed to avoid wafer downsizing and maximize the functional SOI wafer surface.
HETEROGENEOUS III-V INTEGRATION

Components

• Laser
• Electro-absorption modulator
• Semiconductor optical amplifier

To use the advantage of each material properties:

• Optical gain is provided by the III-V (InP/InGaAsP –QWs or AlGaInAs)
• The high resolution laser cavity as well as the PIC is fabricated in a 200/300mm Silicon platform (CMOS planar technology)

To localize III-V by die-to-wafer bonding

• Highly flexible approach (multiple laser-λ in the O+C+L bands / PD / EAM)
• Equivalent to multiple localized epitaxies
ADIABATIC COUPLING FOR HYBRID III-V/SI DEVICE

• Hybrid III-V on silicon lasers design
 • Adiabatic coupling [1]

⇒ Adiabatic transfer reached after 100µm

OUTLINE

- CEA-LETI’s Silicon Photonic Overview
- III-V device on Si Photonic – Why & How
- III-V/Si laser integration – Leti’s first results
- Toward CMOS compatible III-V/Si laser integration
INTEGRATED HYBRID III-V/SI LASER PAST RESULTS

Hybrid DBR @ 1,55µm
- CW operation (>60°C)
- I_{th}: 17-60mA (0.8-2.5 kA/cm²)
 - for T: 10 to 60°C
- R_s = 7.5 Ω
- Lasing turn-on voltage : 1.0 V
- $P_{Si waveguide}$ > 14 mW (20°C)
- P_{fiber} > 4 mW (20°C)
- SMSR > 40 dB

A. Descos et al., ECOC 2013

Hybrid DFB @ 1,31µm
- CW operation (>55°C)
- I_{th}: 30-50mA
- R_s = 15 Ω
- Lasing turn-on voltage : 1.2 V
- $P_{Si waveguide}$ > 20 mW (20°C)
- P_{fiber} > 3 mW (20°C)
- SMSR > 40 dB

25Gb/s laser + MZM transmitter
- 25Gb/s transmission at 1.3µm up to 10km.
OUTLINE

- CEA-LETI’s Silicon Photonic Overview
- III-V device on Si Photonic – Why & How
- III-V/Si laser integration – Leti’s first results
- Toward CMOS compatible III-V/Si laser integration
HYBRID INTEGRATED LASER: FROM III-V FAB TO CMOS FAB

1. Process & Materials
 - Patterning
 - Contact on III-V
 - Multi level BEOL
 - III-V Die Bonding

2. Laser Topography
 - III-V stack thickness = 4µm vs. PMD thickness = 1µm

3. SOI Substrate
 - SOI for laser: 500nm vs. SOI platform: 310nm

4. Laser integration impact on other devices

[Diagram showing process and materials]
HYBRID INTEGRATED LASER: FROM III-V FAB TO CMOS FAB

1. Process & Materials
 - Laser process steps cmos compatible process:
 - No noble metals
 - Conventional patterning steps (no lift-off)
 - Planarized multi-metal level BEOL
 - Collective die bonding

2. Laser Topography
 - Thick PMD for laser front side integration (FSI)
 - Laser back side integration (BSI)

3. SOI Substrate
 - Localized Si thickening on 310nm SOI:
 Damascene process with Si-Amo (FSI or BSI) or selective Si-epi (FSI only)

4. Laser integration impact on other devices
 - Additional thermal budget due to laser integration < 600°C
Ohmic contacts on III-V materials

Collective III-V die bonding

Localized silicon thickening

Multilevel planar BEOL

III-V patterning

B. Szelag et al., IEDM 2017
Localized silicon thickening – no changes in the photonic core process
III-V WAFTER/DIE BONDING ON SILICON

- III-V wafer/die bonding
- InP Substrate removal

2" III-V wafer bonding on SOI
Localized III-V die bonding on SOI
COLLECTIVE DIE BONDING WITH SILICON HOLDERS

- Efficient cleaning
- Very high transfer rate >95%
- Bonding Yield~100%
- CAD2MASK Holder mask generation during PIC design
- Additional cost for holder fabrication
COLLECTIVE DIE BONDING WITH SILICON HOLDER - EXAMPLE

- After die Bonding
- After InP grinding
- Acoustic characterization

- Transferred die:
- Transferred die without defects:
- Transferred die & bonded on more than 99% of their surface:
- Transferred die & bonded on more than 95% of their surface:

<table>
<thead>
<tr>
<th></th>
<th>P01</th>
<th>P02</th>
<th>P03</th>
<th>P04</th>
</tr>
</thead>
<tbody>
<tr>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>75%</td>
<td>73%</td>
<td>73%</td>
<td>52%</td>
<td></td>
</tr>
<tr>
<td>87%</td>
<td>84%</td>
<td>88%</td>
<td>62%</td>
<td></td>
</tr>
<tr>
<td>91%</td>
<td>85%</td>
<td>90%</td>
<td>64%</td>
<td></td>
</tr>
</tbody>
</table>
III-V PATTERNING – GAIN AREA DEFINITION

A

B

C

A

InP

InP (N-type contact)

InGaAs (P-type contact)

SIN (hard mask)

MQW

B

C

spacer

MQW underetch
III-V PATTERNING – MESA AREA DEFINITION
CMOS COMPATIBLE CONTACTS ON III-V

Best choice:
- On n-InP: Ni2P wo annealing
- OnP-InGaAs: Ni with 350°C annealing
FIRST DEMO ON 200MM SOI WAFER
OPTICAL CHARACTERIZATION

- Only 1 metal layer for this design
- Ni-based N & P contacts

- Ith: 55-65mA
- Rs = 10 Ω
- Max P-Si-waveguide > 3 mW
- Max P-fiber ≈ 1 mW
- SMSR > 40 dB (best 50dB)

@ room temperature
MULTILEVEL PLANAR BEOL

Rserie = [10W-14W]

Rserie = [4W-6.5W]
Mean 4.95 W
BACKSIDE INTEGRATION (BSI) CONCEPT

Problems:
1. III-V based device integration with not change on the baseline photonic platform (BEOL)
2. III-V based device integration compatible with a co-integration of SiN devices

Solution:
⇒ III-V post processing on the backside of the full silicon photonic platform
HYBRID LASER BSI DEMONSTRATION

- Integration scheme compatible with any photonic platform
- No impact on the Silicon photonic platform
- Modular integration
- Si photonic platform and laser integration can be done in 2 different fabs
- Only way to have ‘3D photonic’ (SiN or Si level on top of SOI) and laser on the same die
- EIC and Laser @ opposite sides of the PIC
- Demo: Passive + BSI DBR laser done with 100mm process (J. Durel et Al, IEDM 2016)
SUMMARY

• Hybrid III-V/Si laser integration on silicon photonic platform has been extensively demonstrated in CEA-LETI

• III-V die bonding is a key process module for large scale integration of III-V based device

• CMOS compatible process Hybrid III-V/Si laser integration on 200mm and 300mm SOI silicon photonic platform is currently developed

• Backside integration concept allows the convergence of Si, SiN and III-V based device on the same wafer/platform
AKNOWLEDGEMENTS

- LETI’s silicon photonic labs
- LETI’s silicon technology integration department
- STMicroelectronics silicon photonic group

- The French national program 'programme d’Investissements d’Avenir, IRT Nanoelec' ANR-10-AIRT-05
Thank you