Silicon Photonics for Neuromorphic Computing

Acceleration of Deep Neural Network training

Folkert Horst, IBM Research - Zurich
Overview

- **Neuromorphic computing ➔ Artificial Deep Neural Networks**
 - Training of deep neural networks
 - Processing of synaptic weights
 - Need for non Von-Neumann computing architectures

- **Analog synaptic weight storage and processing in crossbar arrays**
 - Electric crossbar arrays
 - Optical crossbar array using holographic storage and signal processing

- **Integrated optical crossbar array in Silicon Photonics**
 - Optical components
 - Holographic storage medium

- **Summary & Outlook**
Neuromorphic computing = Brain inspired computing

Motivation: The outstanding features of the (human) brain:

- **Power efficiency** (human brain consumes \(\sim 20 \) W)
- **Remarkable pattern recognition performance:** Recognition of (subtle) patterns buried in noise

Brain at neural network level:
- Human brain: \(\sim 100 \) billions neurons
- Each neuron is connected to 1’000 – 10’000 other neurons by synapses
- Signal transmitted by a synapse is adjustable: “synaptic weight”

Neuron level:
- Signaling between neurons: Spikes, spike trains
- Neuron activation: “Leaky Integrate and Fire”
- Learning: Adjustment of the synaptic weights
 - Spike Timing Dependent Plasticity: “Neurons that fire together wire together”
Brain inspired computing:

Brain-like Neural network:
- Omni-directional signal flow
- A-synchronous pulse signals
- Information encoded in signal timing
- Difficult to implement efficiently on standard computer hardware

Deep Artificial Neural Network:
- Better fit to standard hardware:
 - Feed-forward sequential processing
 - Information encoded in signal amplitude
 - Multiply and Accumulate for weighted connections
 - Neuron activation: (soft) threshold function
- Training: Backpropagation Algorithm
Artificial Neural Network: Computations

Components:
- Layers of neurons
- Synaptic interconnections

Mathematical operations:
- Thick lines: signal vectors
- W: Synaptic weight matrix
- σ: per-element neural activation function (sigmoid)

\[
x \sigma(x) \xrightarrow{W_1} \sigma \xrightarrow{W_2} y
\]
ANN Training: Backpropagation algorithm

Training case \(x \) with target response \(t \):

1. Forward Propagate \(\rightarrow \) Response \(y \)

2. Determine output error:

3. Backward Propagate: Find neuron input signals that contributed most to the error

4. Find weights that were active, and that contributed to the error. Adjust weights to reduce error:
 \[\Delta w_{ij} = -\eta \delta_i x_j \]

5. Repeat for many, many different testcases
Efficient training of Deep Artificial Neural Networks:

- **Training by Backpropagation Method:**
 - Forward Propagation: $W_{1,2}.$
 - Backward Propagation: $W^T_{2,3}.$
 - Weight Update: $\Delta W_{1,2}.$

- **Many large matrix operations**
 - Scale $\propto N^2$

- **Large training datasets:** Thousands of training cases

Weight matrix processing has limited efficiency on standard Von Neumann systems:

- (Mostly) Serial processing
- Low computation to IO ratio \rightarrow Memory bottleneck

To accelerate weight matrix processing: Borrow some concepts from the brain:

- Analog signal processing
- Fully parallel processing
- Tight integration of processing and memory

- Crossbar arrays

Analog crossbar arrays:

Electrical crossbar array:

Challenge: Tunable weights

- Update must be proportional to signals on row and column
 - Symmetric increase and decrease of weight
 - ~1000 analog levels required
- Difficult to find material systems that meet these requirements
Optical crossbar arrays: Holographic storage and signal processing

Weight Storage:

Interference pattern:

Photorefractive effect:

Stored diffraction grating:

Synaptic weights are stored as refractive index gratings in a photorefractive material:

- Grating are written by two interfering optical beams
- Photorefractive effect: Optically active electron traps + Pockels effect → refractive index grating
- Linear and symmetric process
Optical crossbar arrays: Holographic storage and signal processing

Synaptic weight processing:

- **Diffraction grating readout:**
 - $W \cdot S_1$

- **Write a second grating:**
 - S_1
 - S_2
 - $W_1 \cdot S_1^+ \cdot S_2$

- **Multiply & accumulate on two gratings:**
 - $W_1 \cdot S_1^+ \cdot W_2 \cdot S_2$

Synaptic weight gratings diffract light from optical input beams to optical output beams

- Different input/output signals are encoded by different beam angles in the crystal.
- There is a unique grating for every input-output beam combination.
- Optical signaling: amplitude & phase → **Bipolar signals and weights**
Optical crossbar arrays: Weight processing operations

- Add lenses to shape the optical beams:
 - Arrays of point sources \rightarrow collimated beams under different angles \rightarrow arrays of point images

- All weight processing operations for backpropagation supported
Optical crossbar arrays: Integrated Solution

Concept demonstrated in 3D free-space optics

- In the 90s (Hughes Research Laboratories)
- Backpropagation training of ANNs shown
- Large setup, slow electro-optics, stability issues

Our approach: Miniaturize using Integrated Optics

- Electro-optic conversion and beam shaping optics on a Silicon-Photonics chip
- Memory: Photorefractive thin film on silicon

Yuri Owechko and Bernard H. Soffer, "Holographic neurocomputer utilizing laser diode light source", 1995
Photonic weight processing unit: Building blocks

Beam shaping optics:

- Converts between point sources and plane waves
 - Parabolic collimating mirrors
 - Curved/tilted focal planes for aberration correction.
Photonic weight processing unit: Building blocks

Transmitter array:
- Encodes input vectors onto arrays of coherent optical sources.
- Control of amplitude and phase
- Based on standard Si-Photonics components

Si-Photonics hardware:

Receiver array:
- Detects amplitude and phase of output signals
- Standard Si-Photonics detector array
Photonic weight processing unit: Building blocks

Photorefractive interaction region:
- Stores synaptic weights as refractive index gratings
- Photorefractive material: Semi-Insulating GaAs
 - Matches Si-Photonics wavelength range
 - Compatible with III-V on Silicon processes

Two-wave mixing in bulk GaAs crystal ≈ single synapse:

- Low asymmetry
- High dynamic range
- Bipolar weight storage
- To be confirmed in thin film
Photonic weight processing unit: Building blocks

Integration of the photorefractive layer:

- Bonding technology as demonstrated for other III-V on Si projects:
 - Gain layers for integrated light sources
- Oxide bonding to Silicon-photonics stack

- Vertical directional coupling for efficient coupling of light between Si-photonic and GaAs layers

Summary and Outlook

- **Optical holographic storage and signal processing:**
 - Provides all necessary operations for accelerating training and evaluation of Deep Artificial Neural Networks

- **Integrated photonic synaptic weight processor:**
 - Silicon Photonics for electro-optical conversion and beam shaping
 - GaAs photorefractive layer for holographic weight storage and processing

- **First step: Demonstration of principle**
 - 8 x 8 matrix using in-house facilities
 - BRNC cleanroom @ IBM - Zurich

- **Next: Large scale demonstrator**
 - Si-Photonics foundry
 - III-V integration support required
Acknowledgements

IBM Research – Zurich, Switzerland

Co-funded by the European Union Horizon 2020 Programme and the Swiss National Secretariat for Education, Research and Innovation (SERI)