Radiolabeling as a versatile tool in nanosafety research – Accurate quantification in complex media

Stefan Schymura¹, Heike Hildebrand^{1,} Iarsolav Rybkin^{1,2}, Thomas Fricke³, Alexander Mansel¹, Marcel Neugebauer⁴, Anette Freyer⁵, Tomaz Rijavec², Ales Lapanje², Marko Strok², Thomas Lange⁵, Uwe Holzwarth⁶, Neil Gibson⁶, Karsten Franke¹

¹ HZDR, Institute of Resource Ecology, Leipzig, Germany ² Jozef Stefan Institute, Environmental Sciences, Ljubljana, Slovenia ³ Vita34 AG, BioPlanta, Leipzig, Germany ⁴AUD, Chemnitz, Germany ⁵IOM, Leipzig, Germany ⁶ European Commission, Joint Research Centre, Ispra, Italy

Motivation

Many studies in the field of nanosafety research "do not offer any kind of clear statement on the safety of nanomaterials"^[1], as methodological problems considerably hinder the reliable detection of nanoparticles (NPs)^[2] at the predicted low environmentally relevant concentrations^[3].

The radiolabeling of nanoparticles has the potential for detecting nanoparticles at minimal concentrations in complex matrices, even against a same-element background, with unprecedented experimental ease, making it a versatile tool for NP release, transport, and uptake studies.

Radiolabeling methods Radiosynthesis Radiochemistry Activation In-diffusion **Recoil-labeling** [5] [6] [7] ⁴⁸Ti(p,n)⁴⁸∨ ¹⁴⁰Ce(n-γ)¹⁴¹Ce p+ ⁷Li compound MWCNT e.g.: [^{110m}Ag]Ag NPs e.g.: [¹²⁵]]CNTs e.g.: [⁷Be]MWCNTs e.g.: [⁴⁸V]TiO₂ NPs e.g.: [¹³⁹Ce]CeO₂ NPs stable nuclide e radioactive nuclide

Cyclotron techniques

Method Halflife **Activity Detection limit Particle** [^{110m}Ag]Ag 250 d 1.5 MBg/mg 33 ng/L

A/A0[%]

[8]

	Radionuclide production Established nuclide production routines: ¹¹ C, ¹⁸ F, ⁴⁵ Ti, ⁶⁴ Cu, ¹³⁵ La ⁸⁹ Zr ⁴⁸ V ⁵¹ Cr	Radiosynthesis	[¹⁰⁵ Ag]Ag [⁶⁴ Cu]CuS [⁶⁴ Cu]SiO ₂ [⁶⁵ Zn]CdSe/ZnS [⁷⁵ Se]CdSe	41.3 d 12.7 h 12.7 h 244 d 119.8 d	0.65 MBq/mg 0.45 MBq/mg 1.0 MBq/mg 0.69 MBq/mg 0.10 MBq/mg	77 ng/L 111 ng/L 50 ng/L 73 ng/L 504 ng/L
		Radiochemistry	[¹²⁴ I]CNT [¹²⁵ I]CNT [¹³¹ I]CNT [¹²⁵ I]fulvic acid	4.2 d 59.4 d 8.0 d 59.4 d	8.0 MBq/mg 19.9 MBq/mg 3.7 MBq/mg 1.4 MBq/mg	6 ng/L 2 ng/L 14 ng/L 37 ng/L
Cyclotron	⁸⁵ Sr, ^{56/58} Co, ^{86/88} Y,	Recoil-labeling	[⁷ Be]TiO ₂ [⁷ Be]MWCNT	53.0 d	0.3 MBq/mg 0.18 MBq/mg	170 ng/L 275 ng/L
Image: Notice for a sector of a sec		Activation	[⁴⁸ V]TiO ₂ [¹³⁹ Ce]CeO ₂ [¹⁴¹ Ce]CeO ₂ [¹⁹⁴ Au]Pt	16.0 d 137.6 d 32.5 d 1.6 d	15.2 MBq/mg 0.97 MBq/mg 0.25 MBq/mg 0.76 MBq/mg	3 ng/L 52 ng/L 202 ng/L 66 ng/L
		In-diffusion	[^{110m} Ag]Ag [⁴⁵ Ti]TiO ₂ [⁴⁴ Ti]TiO ₂ [¹³⁹ Ce]CeO ₂	250 d 3 h 49 a 137.6 d	1.0 MBq/mg 140 MBq/mg 10 kBq/mg 1.24 MBq/mg	50 ng/L 0.4 ng/L 5 μg/L 41 ng/L

Application: (Nano-)Particle Tracing

Release from solids:

Release of $[^{48}V]$ TiO₂ NPs from UV-degraded surface coatings

Interaction with soil bacteria: Dissolution of [141/139Ce]CeO₂

Conclusion

Visualization and quantification of complex processes in

[141Ce]Ce3

JRC-TAF-23,119,167,168,341,348 03X007881

03X0144A