FROM RESEARCH TO INDUSTRY

LASER INDUCED BREAKDOWN

SPECTROSCOPY, A METHOD TO MEASURE AND CHARACTERIZE THE PERSONAL

EXPOSURE TO AIRBORNE PARTICLES

Quentin Renot¹, Simon Clavaguera¹, Michel Pourprix¹, Jean-Baptiste Sirven² | November, 07th 2016 ¹Univ. Grenoble Alpes, CEA Tech LITEN, **PNS**, DTNM, F-38000 Grenoble, France ²Univ. Paris Saclay, CEA DEN, **SEARS**, DPC, F-91191 Gif-sur-Yvette, France

www.cea.fr

General information

Context Project goal Principle

LIBS information

Principle Interest

Results

Qualitative analysis Quantitative analysis

Conclusion & Perspectives

Context

- Increase of utilization and production of nanomaterials in research and industry
 - Discussions on potential health impacts caused by inhalation of particles

- Current scarcity of hazard data in nanotoxicology
 - Particle capacity to reach and deposit in the deep alveolar regions of lungs
 - Exposure can be hazardous
 - Studies realized on cells or on animals but complicate to extrapolate to human

To assess the efficiency of risk management measure, it is necessary to determine the personal exposure

Project goal

- Developing a global solution to evaluate the personal exposure to particles
- Validate a collection device based on electrostatic precipitation principle, coupled with on-line and off-line particles analysis
 - User friendly
 - Sampler (off-line analysis)
 - Monitor (on-line analysis)
 - In a broad range of size particles

Electrostatic precipitator developed

Wide scope

- Environmental, Health and Safety issues
- Worker protection
- Inhalation toxicology

GENERAL INFORMATION

Principle

Five stages

- Airborne particles capture
- Particles charge by two mechanisms (field and diffusion charging)
- Particles collection on a metallic substrate by size-dependent zone
- On line measurement of concentration
- Off line analysis of chemical composition, spatially resolved by Laser Induced Breakdown Spectroscopy (LIBS)

More information about device functioning in PS2-9, 8th November

LIBS INFORMATION

Principle

3 - Plasma species excitation

- 20 mm diameter Copper substrate
- 4 Radiation emissions, characteristic of chemical composition
- Advantages
 - No sample preparation
 - Fast analysis
 - Spatially resolved, one spot \approx 100 250 µm
 - Disadvantages
 - Reproducibility and accuracy discussed
 - Destructive analysis

Interest of LIBS for this project :

Spatial resolution Analysis for each size-dependent zones at the substrate surface

Fast analysis

RESULTS

Qualitative analysis

- Obtaining "top hat" laser beam
- Optimization of Signal to Noise Ratio

Qualitative analysis

- Obtaining "top hat" laser beam
- Optimization of Signal to Noise Ratio

Signal optimization – SNR improvement

RESULTS

- First selection of five metallic materials for substrate Cu, Ti, AI, Zn, Ni
- Selection of five particulate materials for deposit TiO₂, ZnO, SiO₂, Ag, Al₂O₃
- Choice of 16 couples "substrate / particles" without spectral interferences from databases

Qualitative analysis

- Obtaining "top hat" laser beam
- Optimization of Signal to Noise Ratio

Signal optimization – SNR improvement

Ag deposit on Zn substrate

Qualitative analysis

- Obtaining "top hat" laser beam
- Optimization of Signal to Noise Ratio

Signal optimization – SNR improvement

 \rightarrow Optimal delay for Ag deposit : **3 - 4 µs**, for three different substrates

8

RESULTS

- Obtaining "top hat" laser beam
- Optimization of Signal to Noise Ratio

Signal optimization – SNR improvement

 \rightarrow SiO₂ three different substrates / three different optimal delays

Calibration – Ag example

- Realization of controlled deposits (0.25, 0.5, 1, 2, 2.5 & 3 hours)
 - Ag particlesOn Cu substrate and Zn substrate
- First quantification of deposit by XRF analysis using existing calibration
- Calibration by LIBS
 - Normalization
 Determination I_{Ag}/I_{Substrate}
 - Determination of LOD and LOQ
 - LOD 3σ/a
 LOQ 10σ/a

Quantitative analysis - Calibration and LOD, LOQ determination

Calibration – Ag example

Ag deposit on Zn substrate

RESULTS

Estimation of airborne concentration :

During 8h sampling at 1L/min, it is possible to detect a particle aerosol of 3.9 µg/m³ and to quantify an aerosol of 12.5 µg/m³

Quantitative analysis - Calibration and LOD, LOQ determination

Calibration – Ag example

Ag deposit on Cu substrate

RESULTS

During 8h sampling at 1L/min, it is possible to detect a particle aerosol of 0.6 µg/m³ and to quantify an aerosol of 1.9 µg/m³

- Studies of the shot energy, the substrate materials, the substrate rugosity, ...
 - Determination of reference material for substrate (Cu or Zn)
- Calibration and determination of LOD and LOQ

LIBS system

Final precipitator permits to collect particles along concentric circles with a size dependent radius

A radius = A particle size

With LIBS, possibility to shot along concentric circles

- A LIBS analysis by radius, so by size
- Quantification and chemical composition determination for each size
- Provide a global analysis of the deposit
 - Size distribution
 - Chemical composition
- Extrapolation to the aerosol

Thank you for your attention !

simon.clavaguera@cea.fr

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Grenoble 38054 Grenoble Cedex T. +33 (0)4 38 78 44 00 F. +33 (0)4 38 78 51 75	DR ⁻ DTI SEI
--	-------------------------------

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019