PREDICTION OF EMISSIONS AND EXPOSURE TO MICRO- AND NANOPARTICLES IN INDUSTRIAL ENVIRONMENTS

CASE STUDY IN THE CERAMIC INDUSTRY

C. Ribalta, ¹ A. Salmatonidis, ² A.S. Fonseca, ¹ M.Viana, ¹ M.C. Minguillón, ³ A. López-Lilao, ³ S. Estupiñá, ³ M.J. Ibáñez, ³ E.Monfort

> ¹IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain ²NRCWE, Lersø Parkallé 105, 2100 Copenhagen, Denmark ³ITC, Av. Vicent Sos Baynat s/n, 12006 Castellón, Spain

Carla Ribalta | IDAEA-CSIC carla.ribalta@idaea.csic.es

OUTLINE

- Scope
- Methodology
- Results:
 - Spatial variability
 - Exposure assessment as a function of:
 - Material
 - Operating conditions
 - Air extraction system
- Conclusions

SCOPE

Ceramic industry

Impacts on workers exposure

e –

Motivation: also potential impact on nanoparticle exposure (process-generated nanoparticles)

Dry powders different nature

Respiratory related disease

Coarse particles

Milling: mechanic process to reduce materials particle size

Used in traditional ceramic production processes and ceramic pigments manufacturing. Dry process for mixing and material preparation. <u>Frequent process!</u>

<u>GOAL</u> \rightarrow To quantify how particle emissions and workplace exposure are affected by material properties and process conditions during a mechanic process (milling)

METHODOLOGY

Materials	Shape	Uses	d50 (μm)			/	/ /	
Silica sand	Spherical	Ceramics production	120	Silica sand -				
Quartz 1	Spherical	Materials preparation, forming, glazing or firing.	14	Quartz 1 -				
Quartz 2	Spherical	Pigment production for the colouration of glazes.	3.8	Quartz 2 -				
Quartz 3	Spherical	Used in rubber compounds.	2.7	Quartz 3 -				
Kaolin	Laminar	Traditional ceramics production. Cement and metallurgical industries	5.8	kaolin -		/	/	T
				1) 10	2	0	120

Process conditions (aspiration, milling speed, particle separation):

High energy conditions

Low energy conditions

Frequently used!

um

METHODOLOGY

Device	Information	Range	Image
CPC butanol	Number concentration	4-1500 nm	
NanoScan	Number concentration/Size	10-420 nm	
DiSCmini	Number concentration/Size	10-700 nm	<u> In</u>
Grimm	Mass	0.25-32 µm	
Cassette (Au TEM grids)	Particles image	<10µm	

METHODOLOGY

- -Grimm
- -DiSCmini
- -Cassette

Carla Ribalta | IDAEA-CSIC carla.ribalta@idaea.csic.es -Grimm

Spatial variability

Particle exposure generally higher in the breathing zone

Temporal background: minimum 15-20 minutes prior measurements

Exposure assessment

Temporal series for Quartz 2

RESULTS

Exposure assessment

Milling process

suggest accumulation) Low: increase and decrease High: more constant levels

PM₁₀ (High energy)

Significant if : Exposure > 3σ+BG

PM_{2.5} and PM₁ only significant for Silica and kaolin!

Number concentration (High energy)

Influence of operating conditions

Mass concentrations

Higher particle emission with high energy conditions

Workers exposure can be reduced changing operating conditions

Influence of input material

Number size distribution (0.4-10 um)

RESULTS

Influence of operating conditions

Size

Highest reductions for Silica and Q3

diameter

dN/dlogDp

Carla Ribalta | IDAEA-CSIC carla.ribalta@idaea.csic.es

CONCLUSIONS

- Impact on mass concentrations, significant for all materials (PM₁₀=69-226, PM_{2.5}=18-45, PM₁=5-12 μg/m³)
- Impact on particle number concentrations, significant for one material (30713-49155 cm⁻³)
- Operating conditions influence particle exposure and diameter
- Mean diameters detected (<420 nm): 43-53 nm</p>
- Size distribution = trimodal (diameters 0.4-0.5/2/4 µm)
- Extraction had a positive impact on particle mass concentrations reduction, but negative on particle number concentration
- Further studies:
 - to compare with dustiness laboratory tests (ongoing)
 - to see the potential impact on exposure of the increase in operating time due to the use of lower energy conditions

ACKNOWLEDGEMENTS

- Spanish Ministry of Science and Innovation CGL2015-66777-C2-1-R
- ITC technical staff
- SIINN ERA-NET and the European Commission

MINISTERIO DE ECONOMÍA

Y COMPETITIVID

GOBIERNO DE ESPAÑA

Thank you for your attention

 $PM_{2.5}$ (High energy)

PM_{2.5} (Low energy)

Carla Ribalta | IDAEA-CSIC carla.ribalta@idaea.csic.es

PM₁ (High energy)

PM₁ (Low energy)

Carla Ribalta | IDAEA-CSIC carla.ribalta@idaea.csic.es

Particle number

60000 60000 3.8 50000 50000 1.0 40000 40000 1.2 N (cm⁻³) N (cm⁻³) 30000 30000 20000 20000 ᆂ 10000 10000 0 0 BG Silica Silica BG Q1 Q1 BG Q2 Q2 BG Q3 Q3 BG KaolinKaolin BG Q1 Q1 BG Q2 Q2 BG Q3 Q3 BG KaolinKaolin Material Material

Number concentration (High energy)

Number concentration (Low energy)

Silica sand

Quartz 1

Kaolin

Carla Ribalta | IDAEA-CSIC carla.ribalta@idaea.csic.es

							-		
nigh energy	Number	PM10	PM2.5	PM1.0	low energy	Number	PM10	PM2.5	PM1.0
Silica-1	2.9	1.9	2.8	1.3	Cilica cand				
Silica-2	3.0	1.1	1.7	1.0		-	-	-	-
Silica-3	2.5	1.1	1.8	1.0	QS60-1	0.98	0.55	0.66	0.8
Silica-4	2.4	0.8	1.3	0.8	QS60-2	0.98	0.45	0.58	0.9
Silica-TOT	2.7	1.3	1.9	1.0	QS60-3	0.84	0.40	0.52	0.9
QS60-4	0.4	1.2	1.1	0.9	QS60-TOT	0.93	0.47	0.58	0.94
QS60-5	0.4	1.2	1.0	0.7	0101-1	0.23	2.00	0.21	0.3
QS60-6	0.4	1.0	0.8	0.6		0.23	2.00	0.21	. 0.5
QS60-TOT	0.4	1.1	0.9	0.7	QI01-2	0.26	1.14	0.19	0.3
2101-4	0.5	2.6	0.3	0.3	QI01-3	0.41	1.04	0.21	0.44
QI01-5	0.5	2.0	0.3	0.3	QI01-TOT	0.30	1.39	0.21	0.4
QI01-6	0.4	2.8	0.4	0.3		0.52	1.07		0.6
QI01-TOT	0.5	2.5	0.4	0.3	QELUI-I	0.52	1.07	0.05	0.0
QEL01-4	0.7	1.0	0.6	0.3	QEL01-2	0.43	0.69	0.56	0.4
DEL01-5	0.7	0.7	0.5	0.3	QEL01-3	0.39	0.73	0.47	0.3
QEL01-6	0.8	3.0	1.7	0.4	QEL01-TOT	0.45	0.83	0.63	0.4
QEL01-TOT	0.7	1.6	0.9	0.3	kolin-1	0.28	14.61	9.00	2.9
olin-4	0.1	5.8	2.7	0.8					
kaolin-5	0.1	7.2	3.1	0.9	kaolin-2	0.28	8.34	4.38	1.62
aolin-6	0.1	5.1	2.3	0.7	kaolin-3	0.54	7.57	4.73	1.6
aolin-TOT	0.1	6.0	2.7	0.8	kaolin-TOT	0.37	10.17	6.04	2.0

