

ILLUSTRATING EXAMPLE

- > Question:
 - > What is the personal exposure during handling of low quantities of MWCNTs in a fume hood?

> Answer:

- > No own measurement data available;
- No quantitative exposure models available;
- > Measurement data described in literature.
- Question:
 - How comparable are these measurement data to the real situation?
- > Answer/solution:
 - > We need a read across approach for exposure data!

BACKGROUND – PREVIOUS WORK

Systematic review 131 emission scenarios (SD2) Literature was 'normalized', 'backwards calculation' procedure Correcting for different workplace circumstances

E. Kuijpers, C. Bekker, D. Brouwer, M. le Feber, W. Fransman, Understanding workers' exposure: Systematic review and data-analysis of emission potential for NOAA, Journal of Occupational & Environmental Hygiene, accepted for publication 21-10-2016

3 | Read across of exposure data

RESEARCH QUESTIONS

- > The market for nanomaterials is increasingly expanding with potentially more workers exposed.
- > It would be expensive, impracticable and time consuming to carry out case-by-case studies with individual exposure measurements for each chemical under every circumstance.
- > For hazard data read-across is used while for exposure read-across is not used (also not for non-nano).
- Control banding tools need more data and understanding of data for development into (semi-) quantitative exposure models.
- > An in-depth read-across approach could help both for:
 - Current exposure assessment questions (see example);
 - > (Near) future modelling development.

METHOD

- 1. Expert judgement for the identification of potential relevant variables for similarity, relevance and quality based on current model.
 - > Similarity (product/substance/material properties);
 - Relevance (scenario related);
 - > Quality (study related).
- 2. Assessment by review of the relevance of these variables.
- 3. Determining the similarity, relevance and quality scoring methodology.
- 4. Expert judgement questionnaire for validation step 1 and 2.
- 5. Update similarity, relevance and quality scoring.
- 6. Implementation in GN tool.

RESULTS (1)

Similarity	Relevance	Quality
Chemical composition	Energy of the activity	Measurement type
Dustiness/viscosity	Activity type	Data description
Moisture content	RMM / local controls	Measurement duration
Coating	Work area information	Online/offline measurements
Weight fraction	Scale process/production volume	Contextual information
State (liquid/solid)	Exposure route	Near-field / far-field
Agglomeration	Exposed population	
Aggregation		
Charge		
Primary particle size		
Density		
Surface area		
Particle form		

TNO innovation for life

RESULTS (2) - SIMILARITY

Equation 1: (CC * MF) + (WF * MF) + (St * MF) + (PPS * MF) + (PF * MF)/MF_{Total}

>	CC: chemical composition	Weight fraction	< 1%	1 – 10 %	11 – 50 %	50 – 90%	>90%
>	WE: Weight fraction	< 1%	1	0.7	0.1	0.1	0.1
		1 – 10% 11 – 50%	0.7	1	0.7	0.1	0.1
>	St: State of the substance	50 – 90%	0.1	0.1	0.7	1	0.7
>	PPS: primary particle size	>90%	0.1	0.1	0.1	0.7	1
>	PE [,] particle form	Similarity		Importance	Multiplier		
Ň	ME: importance multiplier factor	Chemical com	position	High	5x		
>	MF _{TOTAL} : Sum of multipliers	State (solid/liq	uid)	Very high	10x		
		Primary particl	le size	Low	1x		
		Particle form		Medium	3x		
		Weight fraction	1	High	5x		

RESULTS (3) - RELEVANCE

Equation 2: $(A_e * MF) + ((SD * A_t) * MF) + (RMM * MF) + (S * MF) + (C * MF) / MF_{Total}$

- > A_e: Energy of the activity
- > SD: Source domain
- > A_t : Activity type
- > RMM: Risk management and local controls
- > S: Production volume/scale
- C: Work area information
- MF: importance multiplier factor
- MF_{Total}: Total multiplying factor

	Energy of the activity	High	Medium	Low
⋟	High	1	0.7	0.4
	Medium	0.7	1	0.7
	Low	0.4	0.7	1

	Source domain	Relevance	Importance	Multiplier
	1: Syntheses	Activity type	Very High	10x
		RMM/local control	Medium	Зx
		Work area information	Low	1x
>		Production/use rate	low	1x
	2: Handling and	Energy of the activity	High	5x
	transfer of bulk	Activity type	High	5x
	powdered MNO's	RMM/local control	Medium	3x
		Work area information	Medium	Зx
		Production/use rate	Medium	Зx

Medium

Зx

RESULTS (4) - QUALITY

Equation 3: (Bm * MF) + (Mt * MF) + (Om * MF) + (Ci * MF) + (D * MF) + (NfFf * Mf)/MF_{Total}

		Contextual information	Score when	Score when	information is
>	Bm: Background measurement		information is present	absent	
>	Mt: Measurement type	Description of activity	1	0.5	
>	Om: Offline measurements	Substance	1	0.5	
		Particle size	1	0.7	
>	CI: Average score contextual information	Indoor / outdoor	1	0.8	
5	D: Duration	Work area	1	0.8	
		Production volume / use	1	0.8	
>	NfFf: Near-field far-field	rate			
		RMM / local controls	1	0.5	
>	MF: Importance multiplier factor 🥿	Mean contextual		Mean of above	e scores
		information quality			
>	MF _{TOTAL:} : Sum of multipliers	Quality	Imr	ortance	Multiplier
		Bm: Background measure	ment Hig	า	5x
		Mt: Measurement type	Hig	า	5x
	X	Om: Offline measurements	s Ver	y High	10x
		D: Duration	Mee	dium	Зx
		NfFf: near-field far-field	Lov	1	1x

Contextual information

RESULTS (5) - OVERALL SCORES

Sum up the three similarity, relevance and quality scores and divide them by three.

Available studies		Score	Overall score (averaged value)ª
Study 1	Similarity	0.7	0.83
	Quality	0.8	
	Relevance	1	
Study 2	Similarity	0.6	0.67
	Quality	0.9	
	Relevance	0.5	

^a Study accepted when score is > 0.3

RESULTS (6) - UNCERTAINTY

- > Similarity, relevance and quality scoring is based on conservative values.
- > Uncertainty below combined score is less compared to uncertainty above combined score.

Combined score	Uncertainty factor 5% Cl	Uncertainty factor 95% CI
1	0	0
0.8 – 0.99	2x	5x
0.5 – 0.79	5x	10x
0.3 - 0.49	10x	50x
<0.3	out	out

CONCLUSION AND FUTURE RESEARCH

- Read-across for exposure data is helpful as:
 - Available measurement data is efficiently used;
 - > It is less expensive, practicable and less time consuming compare to own measurements.
- However, it is still challenging as:
 - Data availability for certain variables is an issue;
 - If no information is available use the worst case;
 - User friendliness of the system (with many questions) is an important issue.
- > Questionnaire need to **validate** current ideas.
- **Balance** need to be tested between the assessed variability and real data.
- > Any **input** for improvement is highly appreciated.

> THANK YOU FOR YOUR ATTENTION

Remy Franken Esther Zondervan-van den Beuken Wouter Fransman

Take a look: TIME.TNO.NL

Ioannis Basinas Araceli Sanchez Shanzad Rashid Karen Galea

innovatio

for life

Maidá Domat

Carlos Fito

RESEARCH ITENE

GUIDE

GuideNano project (FP7/2007-2013) grant agreement №604387