FROM RESEARCH TO INDUSTRY

DESIGN AND EVALUATION OF A DIFFUSION CHARGING DIFFERENTIAL MOBILITY CLASSIFIER TO MONITOR PERSONAL EXPOSURE TO AIRBORNE NANOPARTICLES

Quentin Renot¹, Michel Pourprix¹, Jean-Baptiste Sirven², Simon Clavaguera¹ November, 08th 2016 ¹Univ. Grenoble Alpes, CEA Tech LITEN, **PNS**, DTNM, F-38000 Grenoble, France ²Univ. Paris Saclay, CEA DEN, **SEARS**, DPC, F-91191 Gif-sur-Yvette, France

www.cea.fr

OUTLINE

General information

Context Project goal

Collector information

Principle Description

Results

Diffusion charging zone Field charging zone A posteriori analysis

Conclusion & Perspectives

Context

- Increase of utilization and production of nanomaterials in research and industry
 - Discussions on potential health impacts caused by inhalation of particles

- Current scarcity of hazard data in nanotoxicology
 - Particle capacity to reach and deposit in the deep alveolar regions of lungs
 - Exposure can be hazardous
 - Studies realized on cells or on animals but complicate to extrapolate to human

To assess the efficiency of risk management measure, it is necessary to determine the personal exposure

Project goal

- Developing a global solution to evaluate the personal exposure to particles
- Validate a collection device based on electrostatic precipitation principle, coupled with on-line and off-line particles analysis
 - User friendly
 - Sampler (off-line analysis)
 - Monitor (on-line analysis)
 - In a broad range of size particles

Electrostatic precipitator developed

Wide scope

- Environmental, Health and Safety issues
- Worker protection
- Inhalation toxicology

COLLECTOR INFORMATION

Principle

Five stages

- Airborne particles capture
- Particles charge by two mechanisms (field and diffusion charging)
- Particles collection on a metallic substrate by size-dependent zone
- On line measurement of concentration
- Off line analysis of chemical composition, spatially resolved by Laser Induced Breakdown Spectroscopy (LIBS)

FROM RESEARCH TO INDUSTRY

COLLECTOR INFORMATION

Diffusion charging zone

RESULTS

ELPI stages 1 & 2 (40-70 nm)

- Charger ON / Trap ON / Device OFF
 N = 49.3 ± 4.8 p/cm³
 - $N = 49.3 \pm 4.8 \text{ p/cm}^{3}$ $N_{charge} = I / (N.e.Q)$ $N_{charge} = 2.1$ $N_{charge} = 2.1$

Diffusion charging zone

 $= 1 = 1.4 \pm 0.2$ fA

Field charging zone

- Evaluation of particles collection Corona needle 4000 V
- Experimental set up

NPs		Atomizer	\mathbb{H}	DMA (SMPS TSI 3080)	Neutralizer	Field charging	Counter
Suspension						(⁸⁵ Kr)	zone

- Device configurations
 - Positive voltage
 - Different flowrates
- Three samples
 PSL 190 nm
 PSL 490 nm
 PSL 900 nm

FROM RESEARCH TO INDUSTR

Field charging zone

RESULTS

■ 3500 - 4000 V

 Collection of initially neutral or monocharged particles

Final concentration : 0 µg/m3 (100%)

Field charging zone

- Evaluation of particles collection
 - Positive voltage
 - **—** Three sizes (200, 495, 900 nm)
 - Four flowrates (0.25, 0.5, 1, 2.5 L/min)

- Very good results of collection efficiency
- But collection on substrate? Loss to walls?
- Optimization of field charging zone by numerical calculation (COMSOL Multiphysics™) ■ To improve ratio :

Particles on substrate
Particles collected

RESULTS

Collection zone – A posteriori analysis

CONCLUSIONS

Conclusions

Diffusion charging zone - Characterization of the aerosol Promising and encouraging electric state

Collection zone - Possible particle sorting knowing the aerosol electric state - DMA principle

Field Charging zone

- Collection efficiency > 95%
- Optimization of this part by numerical calculation

Off line analysis to aerosol estimation

- Spatially resolved analysis
- LOD & LOQ for Ag in µg/m³

Perspectives

On line measurement - Current measurement at the substrate surface (fA range) - High sensitivity electrometers integration in our device

Calibration base for LIBS analysis

- Best conditions (min SNR)
- Standard calibration

Innovation

results for future

- Sampler and monitor
- Coupling on line measurement and chemical analysis
- Discrimination between nanoparticle exposure and submicro, microparticle exposure

Thank you for your attention !

simon.clavaguera@cea.fr

Commissariat à l'énergie atomique et aux énergies alternatives					
Centre de Grenoble 38054 Grenoble Cedex	DTI				
T. +33 (0)4 38 78 44 00 F. +33 (0)4 38 78 51 75	SEI				

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019