RULES AND RATES OF RELEASE FROM NANO-ENABLED PRODUCTS:

 CORRELATING PROCESS, PRODUCT MATRIX AND NANOMATERIALWendel Wohlleben (BASF SE)
 with original data from Richard G. Zepp (USEPA. NERL, Athens GA, USA); E. Sahe-Demessie (US EPA, NRMRL, Cincinnati OH, USA). Socorro Vázquez-Campos (LEITAT, Terraśsa

Examples of nano-enabled products

Co-continous inorg-org scratch-resistent coating

iGloss ${ }^{\circledR}$

SlentiteTM
Organic aerogel insulation

CSH seed crystals as cement accelerator

Surface-passivated inductive metals

ENM-slurry polishes wafers by CMP

Ultrafiltration by designed porosity

We create chemistry

Chem Soc Rev

Industrial applications of nanoparticles
Cite this: DOI: $10.1039 / \mathrm{c} 4 \mathrm{cs} 00362 \mathrm{~d}$

1. Highlights from reviews: state of release science
2. Release protocol reproducibility
3. Rates and rules of release
4. Complex scenarios
"Release assessment regards the detachment of a fragment from a larger whole, such as a consumer product during use, and includes the release mechanism, form of the released entity, release scenario, probability of release, and lifecycle simulation, if relevant."

As a rule, the "form of the released entity" is not identical to the pristine ENM.

[^0]
Release

Versions of this scheme for fibers:
Hirth et al (2013) abeasf
J. Nanoparticle Res. 15:1504.

Harper et al (2015) O. NanoRelease
J. Physics Conf. Ser. 617012026

This scheme:
Duncan et al. (US-FDA)
ACS Applied Materials \&
Interfaces (2014) 7: 20-39.

Transformation

Release

NanoRelease 2014
Stephan Froggett et al.
Part. Fiber Toxicol 11:15

US-FDA 2014
--BASF
We create chemistry
Timothy V. Duncan et al. ACS Applied Materials \& Interfaces 7: 20-39.

Transformation

Release Processes

NanoRelease 2014
Stephan Froggett et al. Part. Fiber Toxicol 11:15

Compare transformation / release review by D. Mitrano et al., Environ. Int. 77 (2015) 132-147

Machining

Weathering

Incineration

Washing

Form of release (54 studies combined)

We create chemistry

Release Rates
 \& Metrics

Release Processes

N

320 different scenarios on NEPs: textiles, thermosets, thermoplastics, coated surfaces, sprays, and other articles including cement, ceramics, dental fillings and laser printer toners.

- Mechanical treatment: ca. 10^{5} to 3×10^{10} particles/s.
- (after weathering: up to 2.7×10^{6} particles/s).
- Artificial weathering: ca. 10^{1} to $10^{5} \mathrm{mg} / \mathrm{m}^{2}$ fragments containing ENM (at UV ca. $150 \mathrm{MJ} / \mathrm{m}^{2}$)
- including ca. 10^{-4} to $10^{3} \mathrm{mg} / \mathrm{m}^{2}$ ENM, (for comparison: 10^{-3} to 10^{2} particles $/ \mathrm{s}$)
- alternative release metric: 10^{-1} to $10^{3} \mathrm{mg} / \mathrm{MJ}$
- Pump sprays: 1.1×10^{8} particles/g. Propellant sprays: 8.6×10^{9} particles $/ g$.
- First wash and rinse of textiles: 0.5 to 35% of initial $\mathrm{Ag} / / 0.01$ to 3.4% of initial Ti.

The characteristics of the released particles varied from consisting of pure NM to fully matrixembedded NM depending on the products and processes.

Release Rates

Quantitative material releases from products and articles containing manufactured nanomaterials: A critical review Antti Joonas Koivisto, Alexander Christian Østerskov Jensen, Kirsten Inga Kling, Asger Nørgaard, Anna Brinch, Frans Christensen, Keld Alstrup Jensen (NRCWE + COWI), submitted (2016)

Release Rates

Release Processes
 Matrix
 ENM

A pilot interlaboratory comparison ...Environ Chem (2014) 11:402
\rightarrow aging+sampling process is more critical than analysis

Quantitative material releases from products and articles containing manufactured nanomaterials: A critical review Antti Joonas Koivisto, Alexander Christian Østerskov Jensen, Kirsten Inga Kling, Asger Nørgaard, Anna Brinch, Frans Christensen, Keld Alstrup Jensen (NRCWE + COWI), submitted (2016)

Scratching at the tip of the iceberg? Release nanomaterials compared to production volumes

```
    Produktion (nano + non-nano) GLOBAL LINEAR SCALE
```


As alternative approach with same conclusion, compare:
Ministère de l'Environnement, de l'Énergie et de la Mer (2015) Éléments issus des déclarations des substances à l'état nanoparticulaire

This substance-specific market data from IHS Chemical Economics Handbook (various reports, 2014-2015); supplemented with: Freedonia, World Kaolin (2012). FutureMarkets, Zinc Oxide (2012) Lux Research, CNT, graphene (2015)

Scratching at the tip of the iceberg? Release nanomaterials compared to production volumes

Interim summary on „release" state of science

Knowledge is based on a relatively narrow range of ENM and matrices, which is not fully representative for all materials in EU regulatory focus.

Reproducability is good intra-lab but limited inter-lab.
\rightarrow Extract mechanism of matrix and ENM modulations only from same-lab studies.

We need:

- Inter-laboratory standardization of metrology to characterize and quantify released entities
- Systematic comparison of release phenomena to extract rules on process, matrices, ENM.
- Diversification beyond $\mathrm{Ag}, \mathrm{CNT}, \mathrm{SiO}_{2}, \mathrm{TiO}_{2}$ to assess release from the high production volume materials in scope of the EC regulatory nanodefinition.
- Exploration of combined stresses and secondary fragmentation.
- Exploration of fate, uptake, effects of released entities on humans and the environment

Reproducibility of release protocols

1. Aging of neat matrix vs. NEP
2. Sampling of release
(sophisticated)
3. Analysis of fragments / leachates
(ISO available)

Interlab comparison on weathering release 160 specimen PA and epoxy, w/ and w/o mwCNT

Wendel Wohlleben ${ }^{1}$, Christopher Kingston ${ }^{2}$, Janet Carter ${ }^{3}$, E. Sahle-Demessie ${ }^{4}$, Socorro Vázquez-Campos ${ }^{5}$, Brad Acrey ${ }^{6}$, Chia-Ying Chen ${ }^{6}$, Ernest Walton ${ }^{7}$, Heiko Egenolf ${ }^{1}$, Philipp Müller ${ }^{1}$, Richard Zepp ${ }^{6}$ *

Carbon (2016), accepted
Aging in 2 US, 2 EU labs (ISO 4892)

BASF - Ludwigshafen, Germany

EPA - Cincinnati OH USA

EPA - Athens GA, USA

LEITAT - Barcelona, SPÁ́N

Interlab comparison on weathering release 160 specimen PA and epoxy, w/ and w/o mwCNT

Sampling + analysis in 1 US, 1 EU lab

Each sample in 10.0 mL leaching fluid (EPA Method 1311)

For each 4-mL aliquot apply the following analyses:
\rightarrow TEM "characterize which structures are observed"
\rightarrow washing or dilution, sonicate, place drop on TEM grid, evaporate water.
\rightarrow ICP-MS "tracer elements of ENM", here Co
\rightarrow with acid digestion of any released fragments
\rightarrow UVVis "absorption/scattering of leaching fluid"
\rightarrow Absorbance Ultracentrifugation (AUC) or Field Flow Fractionation (FFF)
"characteristic size of free ENM" / "absorption in size range $5-100 \mathrm{~nm}$ "
\rightarrow de-agglomeration by addition of SDS to $10 \mathrm{~g} / \mathrm{L}$, batch sonication 1 h .

Interlaboratory comparison: exemplary TEM scans

Epoxy_CNT
Aged at LEITAT Analyzed at BASF

Form of release, TEM statistics from interlab comparison

More than 400 TEM images were evaluated manually. Fibrillar structures were identified as MWCNTs, if all three rules were in line with the MWCNT positive control:

- observed hollow core
- matching diameter between 5 nm and 20 nm
- matching length (not longer than $2 \mu \mathrm{~m}$).

Excellent reproducibility.
Minor subjectivity in categories F vs. G

F - H as in the release systematics by Harper et al. 2015

Rate of Release:
ICP-MS statistics: quantitative agreement

. NanoRelease

- N=8 statistics, aged at four different labs; no outliers removed.
- Discrepancy at P4 sonic-sampling is due to EPA ICPMS w/o digestion.
- Note 16-fold lower content of mwCNT in epoxy vs. PA; hence ICPMS is consistent with UVVis and AUC: much higher release rate from epoxy than from PA matrix.
- Opposite sign of modulation by ENM:

CNT-PA < PA but CNT-epoxy > epoxy.

Rate of Release:

UVVis spectroscopy
both absorbance (260 nm) and turbidity ($\Delta \lambda_{10 \mathrm{D}}$) evaluations are consistent

- High dynamic range, same ranking as conventional absorbance reading
- Excellent discrimination of low-high release

We create chemistry

UVVis λ_{100} increase vs pure medium

Pilot inter-laboratory weathering test: Conclusions

■ 160 specimen of epoxy ($0 \%, 0.25 \%$ CNT) and PA (0%, 4\% CNT); no UV stabilizer

- 4 labs (2 US, 2 EU) aging by UV and rain (ISO 4892), then shipping for analysis.
- 1 lab (CAN) dry sampling by tape \rightarrow SEM, EDXS
- 2 labs (1 US, 1 EU) immersion fluid sampling \rightarrow TEM, ICPMS, UVVis, AUC, FFF

■ Quantitative agreement, often within error bars, within factor $\mathbf{2}$ in worst case.
■ ICPMS, UVVis, TEM, AUC consistent. Immersion protocol recommended as voluntary standard. Epoxy-CNT recommended as high-release control material, PA-CNT as low-release material differing in "form" and "rate" of release.

- Remaining deviations relate primarily to differences of the aging (inhomogeneity of UV and spray, surface contaminations (EDXS))
- Form and rate of release can be quantified using ISO-aging/processing + sophisticated sampling + ISO-analytics.

Stick to a single protocol, explore materials, extract rules of release

We create chemistry

NanoRelease weathering protocol applied to 27 materials of PE, PU, PA, POM, epoxy, cement with organic, metal-oxide, carbonaceous nanomaterials

Aging all by ISO 4892-2, pure matrix in parallel to nanocomposite

Sampling by worst-case approach

immersion bath sonication,
1h
\rightarrow TEM "check which structures are observed"
\rightarrow AUC "fragment mass in size ranges $2 \mathrm{~nm}-150 \mathrm{~nm}$ and $2 \mathrm{~nm}-10 \mu \mathrm{~m}$ "
NanoRelease
\rightarrow Size-selective quantification
Where applicable, supported by rankings by:
\rightarrow ICP-MS with acid digestion of any released fragments
Analysis by a sub-set of the NanoRelease protocol
\rightarrow UVVis "absorption/turbidity of leaching medium"

Matrix determines weathering release rates

ENM modulates

- CNT, CB reduce release from PA, PU, POM, cement: \rightarrow entanglement, passivation
- CNT, ZnO increase from epoxy \rightarrow

Susceptible matrix for temperature, radicals

- SiO_{2} increase release from PA, PU

Matrix determines weathering release rates

only nano-releases < 150 nm

ENM modulates

- CNT, CB reduce release from PA, PU, POM, cement: \rightarrow entanglement, passivation
- CNT, ZnO increase from epoxy \rightarrow

Susceptible matrix for temperature, radicals

- SiO_{2} increase release from PA, PU

Key parameters that rule form and rate of release from nano-enabled products

Process

Mechanical machining:
\rightarrow Dominated by composite fragments
\rightarrow ENM protrude if matrix is cross-linked
\rightarrow Release rates scale $\times 10^{4}$ with shear

Chemical degradation:
\rightarrow Release rates scale $\times 10^{5}$ with matrix
No release of free ENM by machining, unless composite contains agglomerates

Same or lower mechanically induced release, if ENM well dispersed in matrix
Same or higher release, if ENM reactivity matches matrix susceptability
We create chemistry

Exploit similarities in form and rate of release for grouping \& modeling

Process

1. Compare to established simulation of similar process: \rightarrow metrics and form

Same or lower mechanically induced release, if ENM well dispersed in matrix Same or higher release, if ENM reactivity matches matrix susceptability
3. ENM release modulation for each process:

- Washing/leaching: potential to transform (ion release vs particle release)
- Machining: potential to agglomerate or to mechanically stiffen (release sizes)
- Weathering \& incineration: ENM reactivity matching matrix susceptibility:
- catalytically accelerate matrix degradation (ZnO by UV; $\mathrm{Fe}_{2} \mathrm{O}_{3}$ by incineration)
- passivate the underlying matrix (CB, CNT by UV, clays by incineration)

Where next?

\rightarrow Complex scenarios, secondary fragmentation

Primary fragmentation
 1. Sanding to simulate "full stop"

Natural rubber

+ 40\% Carbon Black
+ 4\% mwCNT

Secondary fragmentation

1. Sanding to simulate "full stop"

NR_CB_CNT_sanding

Wohlleben, Kuhlbusch and teams, Environ Sci nano (2016) 3:1036

Sample	Scenario to be simulated	Fraction below 5pm \% of total solids (gravimetry)	
		NR_CB	NR_CB_CNT
sanding fragments, sonicated in M4	Freshly generated tread wear	0.7 \%	0.7 \%
sanding fragments, UV irradiated in M4, sonicated	Tread wear with direct run-off into surface water	1.6 \%	1.7 \%
sanding fragments, UV irradiated, sonicated in M4	Tread wear with delayed run-off into surface water	4.0 \%	4.5 \%

- UV aging does induce secondary fragmentation.
- "in run-off" aging significantly less secondary fragmentation vs. "on the road"
- maximum free ENM is 0.045 \% of the tread wear.

Environ Sci nano (2016) 3:1036

Complex Scenarios based on Nowack et al. Environ. Sci. Technol. 2016, 50, 2747 full life cycles, secondary fragmentation / leaching, ecotox effects of pigmented plastics

MANUFACTURING
USE
DISPOSAL
Koivisto et al. (now) + Scifo et al, 14.15 session + Soritiou et al, 17.15 session

Complex scenarios: CuO vs Cu -amine vs. $\mathrm{Cu}(\mathrm{OH}) \mathrm{CO}_{3}$

Transformation to ions and release determines effectiveness of wood protection
insufficient sustainability of CuO_coating

(LICARA nanoscan) \rightarrow stop development.

Testing DIN EN113 (Coniophora puteana 62)

Please join the release sessions today

MANUFACTURING	11.15 h	
Auditorium Platine		

CONCLUDING CONCEPTS

Dan Hodoroaba, BAM Johannes Mielke, BAM Frank Babick, TU Dresden
Hubert Rauscher, JRC-Ispra

Nicole Neubauer
Philipp Müller
Sabine Hirth Robert Landsiedel ...many more...

Jerome Rose \& Lorette Scifo, CEREGE SUN Bernd Nowack, EMPA
Joonas Koivisto, Keld Jensen, NRCWE Many more...

Thomas Kuhlbusch, IUTA Yaobo Ding, IST Julie Mueller, Nanocyl Iňigo Larraza Alvarez, Acciona

- NanoRelease 300 experts...some trom the core team here:

Scratching at the tip of the iceberg?
 Matrix materials compared to production volumes

The tip: high-performance composites: \$ 5 bn epoxy
Freedonia, High-Performance composites (US) (2016)
The iceberg: Consumer goods: $€ 350$ bn other plastics Plastics Europe, Fact Sheet (2015)

[^0]: narg
 Including the .NanoRelease State of the Science Report.
 S Harper, W Wohlleben, M Doa, B Nowack, S Clancy, R Canady, A Maynard
 J. Physics Conf. Ser. 617 (2015) 012026 (open access)

