Quantification and Cytotoxicity of released carbon nanotubes from an epoxy-based nanocomposite

Lukas Schlagenhauf, Tina Buerki-Thurnherr, Yu-Ying Kuo, Adrian Wichser, Peter Wick, Frank Nüesch, Jing Wang*

*jing.wang@ifu.baug.ethz.ch

Institute of Environmental Engineering, ETHZ Zurich, Switzerland; Air Quality and Particle Research, Empa, Switzerland.

Materials Science & Technology

Motivation

Schlagenhauf, Chu, Buha, Nüesch, and Wang, (2012), *ES&T*, 46, 7366 – 7372, DOI: 10.1021/es300320y.

Air Quality & Particle Technology (APR)

Introduction

Different states for CNTs after an abrasion process

Embedded

Protruding

Free standing

There is a need to differentiate between the embedded CNTs and the potentially dangerous protruding and free standing CNTs.

→ Approach: Label the CNTs with ions that are released when immersed in an acidic solution. The ion concentration can be measured by ICP-MS.

Quantification method

Schlagenhauf, Buerki-Thurnherr, Kuo, Wichser, Nüesch, Wick, and Wang (2015), *ES&T*, 49, 10616–10623, DOI:10.1021/acs.est.5b02750.

Ion loading capacities

Ion uptake and release capacity of Baytubes for Pb^{2+} ions and the release of catalyst ions (Mn^{2+} and Co^{2+})

Theoretical detection limit ICP-MS: 6 ng CNT (Pb), 3 ng CNT (Mn & Co)

Abrasion experiments

- a) Abrasion area, particle collection
- b) Particle analysis: particle size distribution, surface area, particle concentration
- c) Particle sampling: image analysis, particle composition
- d) Pump

Nanocomposite samples

Control samples

- Release of ions when CNTs are immersed in the resin?
 - Disperse CNTs in resin
 - Dissolve resin only
 - Ion concentration in resin?
- Diffusion of ions through epoxy particles?
 - One epoxy sample with dissolved ions
 - Measure ion relase from the abraded particles

Release comparison

- Two samples with 1 wt% CNTs
- Two different curing agents
 - Curing agent D-230, no release of free standing CNTs detected by microscopy
 - Curing agent Epikure 3402, release of free standing CNTs detected by microscopy

Abraded particle size distribution

Particle size distributions of the three samples measured by SMPS (13 - 573 nm)

Particle size distributions of the three samples measured by APS (0.54 - 19.81 μ m)

Quantification of exposed CNTs

Reletance samplesison

Conversion for a 1 wt% CNT composite and the abrasion of 1 g of particles: 4000 ppm = 40 μ g of CNTs are present in the respirable fraction and are either protruding or free standing.

Collection of ultrafine particles

Collection of particles < 100 nm by MOUDI

Quantification of free-standing CNTs

Release comparison

1 wt% CNT D-230 epoxy	— Average values
1 wt% CNT Epikure 3402 epoxy	T Standard deviation

Weathering study

Exposure to UV light :

An accelerated weathering tester equipped with a UVA-340 lamp, corresponding to the light intensive in Florida at noon.

Immersion in water bath :

The diffusion of water can cause reversible or permanent change in the material properties.

Schlagenhauf, Kianfar, Buerki-Thurnherr, Kuo, Wichser, Nüesch, Wick and Wang, Nanoscale, 2015.

ATR-FTIR measurement: surface chemistry

- A quasi-stable state was reached between 500h and 1000h
- Sample surface fall-off after an UV exposure between 1000h and 1500h

Air Quality & Particle Technology (APT)

Impact on topography

- No change of the surface topography after 1000h of water bath
- Delamination of top surface layer after 1000 h of UV exposure
- UV light exposure damaged the surface in both micro and nano range

Quantification of exposed CNTs

No increased release of exposed CNTs after the exposure to UV light up to 1500 h or immersion in water.

Schlagenhauf, Kianfar, Buerki-Thurnherr, Kuo, Wichser, Nüesch, Wick, and Wang (2015), *Nanoscale*, 7, 18524 – 18536, DOI: 10.1039/C5NR05387K .

Toxicity tests

CNTs but not abraded particles have effects on the viability of THP-1 macrophpages and A549 epithelial cells and oxidative stress.

Conclusions

- Release of extruded and free-standing CNTs from nanocomposites during abrasion is observed and quantified by a newly developed ion-labeling method.
- No increased release of exposed CNTs after the exposure to UV light up to 1500 h or immersion in water.
- Even though the CNTs have toxic effects, the abraded particles do not show significant toxicity.
- Material properties affect CNT release and general conclusions cannot be made for different nanocomposites.

Thanks for your attention

ETH zürich

Materials Science & Technology

No release by weathering alone

Our study

Surface delamination and no CNTs were exposed.

Nguyen et al. (2011)

CNT network exposed on the surface.

Possible factors for the difference

- Our samples were thicker, thus stronger resistance;
- The humididy in our experiments was lower, thus more brittle.

Weathering study

Exposure to UV light

ATR-FTIR measuremet: No changes for water bath Strong degradation for UV

Immersion in water bath

Impact on topography: No changes for water bath Delamination of top surface layer after 1000 h of UV exposure

Released particles: Only protruding, but no free standing CNTs detected

20

Peaks on the ATR-FTIR graphs

Peak (cm ⁻¹)	Excitation
3700 - 3100	OH and NH stretching vibration
1740	C=O stretching vibration
1650	C=O stretching vibration
1608	C=C stretching vibration
1581	C=C stretching vibration
1510	C=C stretching vibration
1460	CH ₃ - and CH ₂ - deformation, CH ₂ -O deformation
1370 - 1390	CH ₃ symmetric deformation
1295	C-N stretch aromatic amine, C-C stretching, vibration aromatic ring
1245	C-O-C aromatic ether stretching deformation,
	bridge between benzene rings
1180	C-C symmetrical stretching vibration
1100	C-O-C out of plane deformation in aromatic rings,
	C-N symmetrical stretching vibration
1037	C-O symmetrical stretching
930	Antisymmetric deformation of epoxy ring
827	Aromatic C-H out of plane deformation