

Release from copper-treated wood – a summary of results from the SUN project

Nicole Neubauer¹, Jana Navratilova², Evgenia Oenem-Siakou³, Joerg Habicht³, Lorette Scifo⁴, Chiara Civardi⁵, Marcos Sanles⁴, Bernard Angeletti⁴, Jerome Rose⁴, Frank von der Kammer², Wendel Wohlleben¹

(1) BASF SE, Material Physics (2) University of Vienna, Dept. of Environmental Geosciences, 1090 Vienna, Austria (3) BASF Wolman GmbH (4) CEREGE UR 34 Aix Marseille University - CNRS – IRD (5) Empa, Swiss Federal Laboratories for Materials Science and Technology

Nanosafe 2016

Sustainable Nanotechnologies

Materials

As copper (Cu) is a major fungicide used for wood protection, it was chosen as a case study in the *EU project SUN* (Sustainable Nanotechnologies) to investigate environmental and health risks during the lifecycle of Cucontaining wood preservatives.

3 types of Cu-treated wood:

- acrylic paint containing CuO nanoparticles
 - → CuO_acryl, reference: acryl

- water-based impregnations solution containing soluble Cu-amine
 - → CuAmine
- water-based impregnations solution containing basic copper carbonate (CuCO₃ x Cu(OH)₂) nanoparticles

\rightarrow CuCO3

Release scenarios

I) **Spontaneous release** during weathering [EN 927-6]

II) *Release induced* by immersion & mechanical stress [validated protocol from NanoRelease initiative (1)]

III) Leaching in water [EN 84]

IV) *Wipe testing* [NIOSH guideline 9102]

V) Release during *sanding*

+ *Effectiveness testing* [EN 113, Pinus sylvestris L., 16 weeks]

(1) W. Wohlleben, C. Kingston, J. Carter, E. Sahle-Demessie, S. Vázquez-Campos,
 B. Acrey, C.-Y. Chen, E. Walton, H. Egenolf, P. Müller and R. Zepp, NanoRelease:
 Pilot interlaboratory comparison of a weathering protocol applied to resilient and labile polymers with and without embedded CNTs (to be submitted to Carbon)

SUN

Scenario 1: Spontaneous release during weathering (CEREGE)

- Weathering adapted from EN 927-6 (12 weeks)
- Release sampling method:
 run-off water sampling
- Detection & characterization:

ICP-MS of run-off waters (dissolved and particulate Cu)

source: atlas-mts.de

Scenario 1: Spontaneous release during weathering (CEREGE)

SUN

Scenario 2: Release induced by immersion & mechanical stress (BASF)

- Weathering according to EN 927-6 (12 weeks) with mimicked condensation step in climate chamber (24h, 0 W/m², dry/wet 116/4 min)
- **Release sampling method:** (Wohlleben et al., 2014)

Immersion of aged surface in H_2O (+ 0.5 g/I SDS)

1) Shaker (24)

Detection & characterization of released fragments:

analytical ultracentrifuge (AUC) ICP-MS

Scenario 3: Leaching according to EN 84 (UVIENNA)

daily flux of **116 mg Cu/m²d** for CuAmine_1 (**4.2%** of initial Cu within 14d) and **127 mg Cu/m²d** for CuCO₃_1 (**4.0%** of initial Cu within 14d)

- daily flux of CuO_acryl & reference acryl is significantly lower (100 fold)
- higher flux for weathered sample (2.4% of initial Cu, 21% after aging), also for reference \rightarrow contamination during weathering 8

SUN

Scenario 3: Leaching according to EN 84 (UVIENNA)

single particle ICP-MS:

- No particulate release for CuCO3_1
- Particulate release for CuO_acryl
- Released particle number dependant on sampling time point
- Cu release from aged samples solely in ionic form

Scenario 4: Wipe testing (BASF)

according to NIOSH guideline 9102

2.5 cm

formulation	weathering	Cu content [mg Cu/l]	Cu content [mg Cu/m ^{2]}		
CuAmine_1	no	0.06	0.8		Cu release higher
CuAmine_1	8 weeks	-	3.5		at higher Cu conc.
CuAmine_2	no	0.18	2.4	•	
CuCO3_1	no	0.16	2.1		
CuCO3_1	8 weeks	-	2.7	release	
CuCO3_2	no	0.15	2.0		

10 cm

Scenario 5: Release during sanding (BASF)

- Release dominated by wood
- ICPMS of aerosol & sampled dust: high Cu from CuO_acrylic despite low total mass

Summary

Particulate release seems to be dominated by wood (immersion, sanding)

 Cu release evidenced in all case but mainly in ionic form, (except for as-produced CuO_acryl)

 Cu release from acrylic paint is significantly lower compared to impregnated wood.

 Ionic release correlates strongly with effectiveness

Thank you for your attention!

Sustainable Nanotechnologies