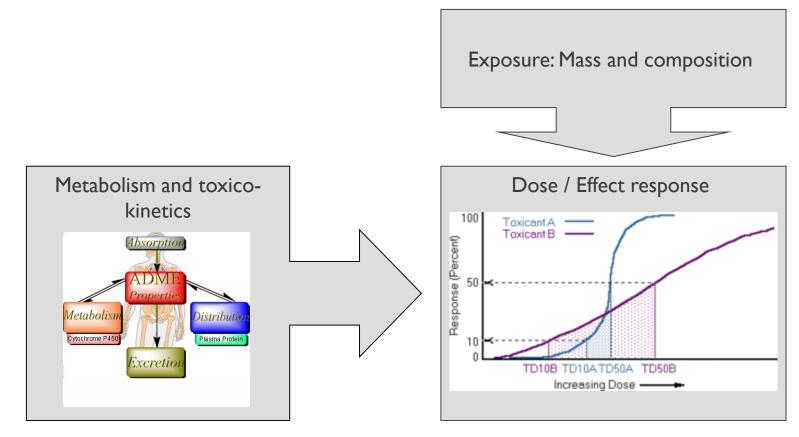
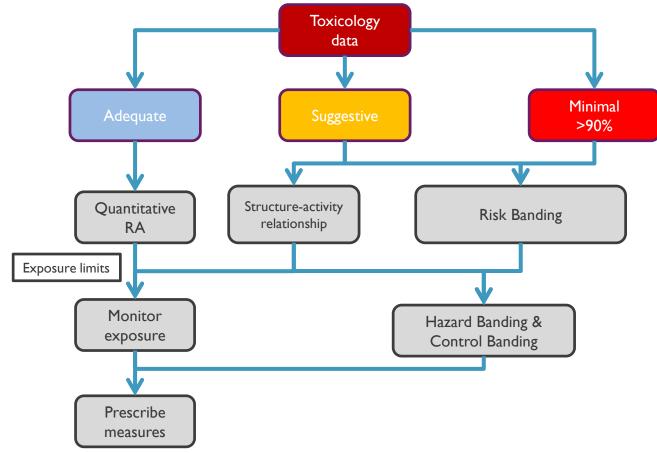
BANDING APPROACH FOR ENGINEERED NANOMATERIAL RISK ASSESSMENT AND CONTROL ALAIN PARDON, NAUSIKAA VAN HOORNICK, DIMITER PRODANOV


- Core CMOS
 - transistor dimensions smaller than 5nm.
 - new materials and transistor architectures,
 - processing technologies,
 - 3D system integration
- Heterogeneous integration and flexible electronics
 - Imagers, photonics, chemical sensors
- Internet of things
- Health applications
 - In vitro diagnostics, bioreactors
- Power applications
 - photovoltaics

<u>Goal</u>: creating the solutions and building blocks for a better, healthier life in a sustainable environment – through innovations in nanoelectronics.

WHY BANDING APPROACH?

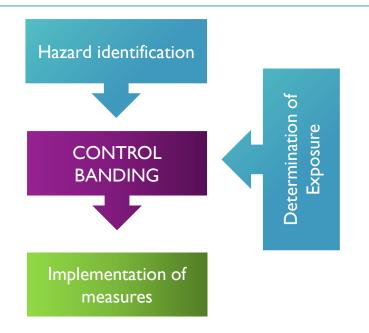
CONVENTIONAL RISK ASSESSMENT PROCESS FOR BULK MATERIALS



ເງຍ

CONVENTIONAL PROCESS NOT APPLICABLE FOR NANOMATERIALS

- Not enough data available:
 - How does the metabolism deal with nanomaterials?
 - What kind of toxicokinetic mechanisms are playing?
 - What is the dose/effect relationship of nanomaterials?
- Fast evolution of use of nanomaterials in day-to-day life
 - Quantification of data takes too long
 - \rightarrow can we refer to bulk material?
- Extrapolation of data from bulk materials is challenging
 - Properties of the nanomaterial are substantially different from the bulk material

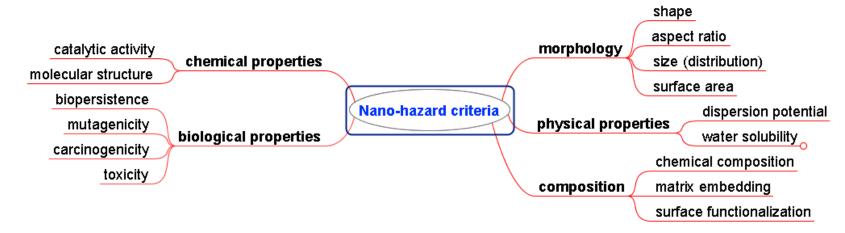

METHODS THAT CAN BE USED

ເງຍອ

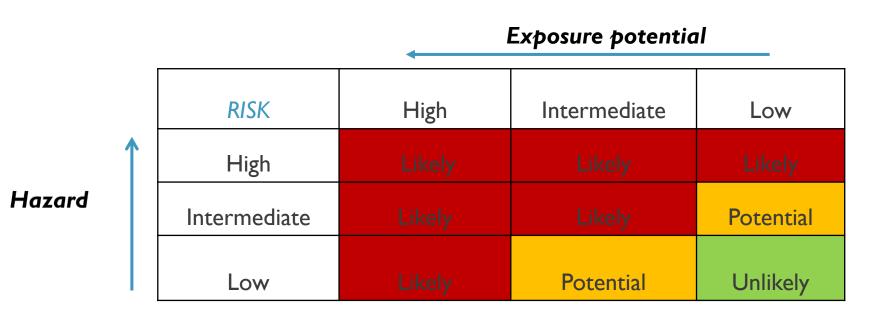
CONTROL BANDING

Control banding is a qualitative risk management process developed originally by the pharmaceuticals industry, and used by the British Health an Safety Executive (HSE) in the *COSHH Essentials* model (HSE, 1999; Oldershaw, 2001). It can be defined as: A strategy or process in which a single control technology (such as general ventilation or containment) is applied to a defined range or band of exposure to a chemical (such as 1-10 mg/m3)(Schulte et al, 2008), that falls within a given hazard group (such as harmful by inhalation or irritating to respiratory system

THE PRECAUTIONARY PRINCIPLE IN PRACTICE:


BANDING APPROACH AT IMEC

OECD Nanohazard Parameter Set



Simplified to parameters that are available in practice:

ເກາຍc

CONTROL BANDING – RISK BANDS ARBITRARY – AS SET BY IMEC

ເກາຍc


EVALUATE HAZARDS → KNOWN PROPERTIES CLASSIFICATION AS HIGH HAZARD

Solubility and dispersion capacity	Size and shape	Toxicity of the bulk material
water insoluble material	Powders with diameter<10nm	Toxic bulk material
Bio persistent material	High aspect ratio	Material contains transition metals
Material with high dispersion capacity	Fiber or needle structure	Material is functionalized by adding toxic products
		Material has a highly reactive surface
·umec	Acc V Spot Magn Dot WD Exp 500 nm 500 kV 30 102400x TLD 47 1 http://www.imec.be	

EVALUATE HAZARDS \rightarrow KNOWN PROPERTIES CLASSIFICATION AS INTERMEDIATE OR LOW HAZARD

Intermediate hazard Low hazard

Particles with diameter>10nm but <100nm

matrices


Water soluble materials

ENM with irregular shape

Materials that are dissolved in liquids

Materials that are embedded in fixed

ເກາຍc

EVALUATE EXPOSURE POTENTIAL CLASSIFICATION AS HIGH EXPOSURE POTENTIAL

Proximity and duration of exposure Kind of activity

Operations in the breathing space <0.5m

Mechanical manipulations (sanding, polishing,...)

Spraying of aerosols with ENM

Mechanical cleaning of process chambers

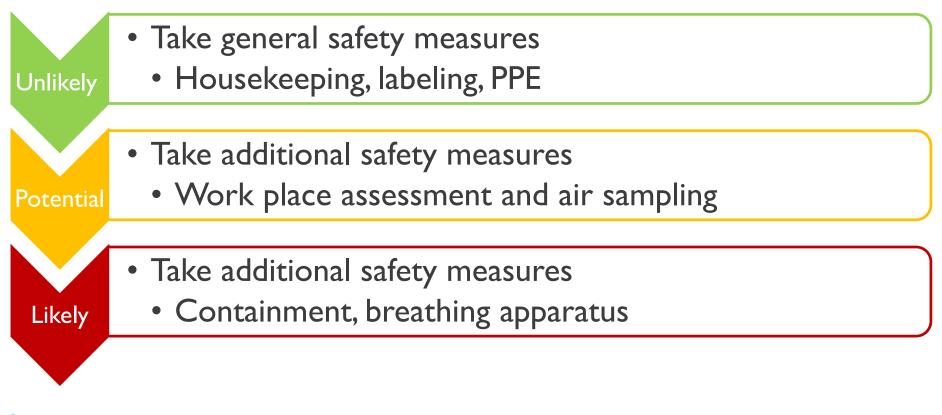
Cleaning of particle traps

EVALUATE EXPOSURE

CLASSIFICATION AS INTERMEDIATE OR LOW EXPOSURE POTENTIAL

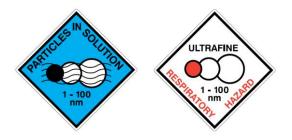
Intermediate exposure Low exposure Manipulations in 'near field': >0.5m <1m Manipulations in 'far field': > I m Duration <4uur/dag, 3 days/week Quantity of ENM < Ig Cleaning of reactors with wet tissues Quantity of ENM > Ig

ເກາຍດ


RISK BANDS CAN NOW BE SET TO DEFINE MEASURES

Exposure potential High RISK Intermediate Low Л High Hazard Intermediate Potential Unlikely Potential Low

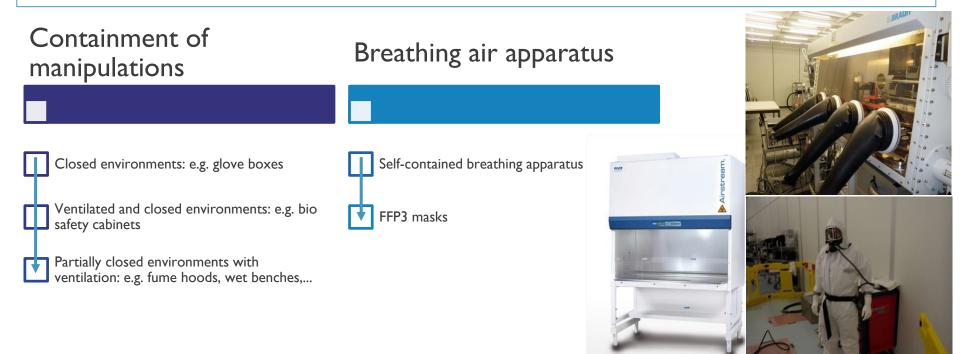
ເງຍອ


RISK CONTROL STRATEGY BASED ON RISK BANDS

RISK CONTROL STRATEGY

SAFETY MEASURES RISK UNLIKELY

- Signposting, Labeling
 - On receptacles
 - On entrance doors of labs
- Containment
 - Storage of materials in closed receptacles
- PPE
 - Lab coats
 - Chemical resistant gloves
 - Safety goggles
- Training
 - Basic training nano safety
 - Optional (depending on activities: advanced nano safety
- Housekeeping practices
 - working on clean benches


ADDITIONAL SAFETY MEASURES RISK POTENTIAL

- Workplace assessments
 - = further identifying the potential routes of exposure
- Air sampling
 - If potential routes of exposure are identified

ADDITIONAL SAFETY MEASURES RISK LIKELY

High/Intermediate Hazard or High/Intermediate Exposure Potential = Protect yourself !

ເງຍ

- In order to determine the hazard and exposure potential of the nanomaterial use is made of questionnaires
- A risk band can be derived from the hazard and exposure potential
- Risk banding gives us the opportunity to easily define the measures that need to be taken when an experiment will be started
- Measurements are part of the risk assessment and provide us with means to lower the risk level

Thanks for the attention

embracing a better life