

The risk management related to nanomaterials. An occupational dynamics between science and law

Nanosafe – 8th November 2016 Eric DRAIS, PhD

Notre métier, rendre le vôtre plus sûr

www.inrs.fr

Content

1 Background on risk management
2 Key issue
3 Prevention cultures as negotiated process
4 Conclusion
5 Outlook

Background

Occupational exposures as a priority goal

Plenty of nanomaterials exposures at the workplace

Workers

Researchers, students, maintenance technicians, cleaning and transport technicians

Production technicians, engineers, maintenance technicians, cleaning and transport technicians, temporary workers

Technicians, researchers, maintenance technicians, cleaning and transport technicians, temporary workers

Main challenges towards nanomaterials risk management

Guidances, standards and regulations increase

Definitions: ISO, Scenhir, etc.

Registries: R-Nano, etc.

Occupational Exposures Limits: NIOSH, INRS, etc.

Risk assessment methods: CB, NanoSafer, etc.

Key issue

Approaches in risk management remain dispersed

Risk management: permanent redesigning and tinkering

Measurement

Identification
Characterisation
Quantitative valuation

Management

Evaluation
Programs
Acceptability
Decision making
Communication

Policy

Rules

Trust

Powers

Controversies

Many alternatives in risk management: an example

- **☑** Control banding (ANSES)
- ✓ Decision tree
- ✓ NanoSafer
- **✓**Etc...

Bandes de maîtrise:

BM1: ventilation générale BM2: ventilation locale

BM3: vase clos

BM4: consulter un spécialiste

			BE1	BE2	BE3	BE4
	Bandes de danger	BD1	BM1	BM1	BM1	BM2
		BD2	BM1	BM1	BM2	BM3
		BD3	BM2	BM2	BM3	BM4
		BD4	BM3	BM3	BM4	BM4

Bandes de potentiel d'exposition

Hybridization between precaution and prevention principles

Precaution	Prevention	
Environnemental law	Labor law	
Public health	Occupational health	
Public authority responsability	Employer responsability	
Research process	Evaluation process	
Obligation of means	Obligation of results	
Temporary	Permanent	

Hybridization between precaution and prevention principles

EHS policies:

« X is supporting a risk management based on case-by-case approach where the precautionary principle is adjusted according to experts advice »

« Y manage a multidisciplinary community to assess the safety of potential exposed workers and to deliver reasonable measures in case of suspected risks »

The endogeneity of Law (L.B.Edelman)

A prevention role for scientists in innovation process

Prevention cultures as negociated process

A comparative study between french and american labs

IDEX Paris-Saclay, ANR-11-IDEX-0003-02 + PEPS CNRS

Thanks to Susan SILBEY (MIT) and Jérôme PELISSE (Sciences Po Paris)

Four laboratories observed

Fields	France	United States (MA)
	Nanocap Laboratory	BS Laboratory
Nanomedecine	(Saclay, CNRS-	(MIT)
Translational and applied	University)	
focus, organic materials in large labs	Liposomes, polymers	Polymers
	120 members	170 members
	Carbon Lab	Cristal Group
Nanoelectronic	(Saclay, CNRS)	(MIT)
Basic and more fundamental	Carbon nanotubes and	Cadmium and
focus, mineral materials in smaller labs	metallic particles	heavy metals.
	30 members	Quantum Dots
		25 members

A same risk management framework

Conventions and international standards

Governemental guidance

City or district guidance

Business confederations requirements

> Academic and professionnal rules

> > Company requirements

> > > Teams rules

Typical organizational prevention cultures

Safety conditions	France	USA
Resources	Nanocap Laboratory EHS guidelines EHS officers Regular safety training	BS Laboratory Strong EHS management system MIT dedicated EHS officers for nanohazards EHS representative in labs Biosafety training before entry
Work division		Strong work division between graduates and PI and between different research fields Many temporary workers (graduates, etc.) with high turnover
Control	Control by peer	Control by principal investigators (PI) and lab' administrators
	Compliance	Potential safety drifts and failures
Results	Safety as per professional rule	Safety as obligation
Nesuits	Carbon Lab EHS guidelines EHS officers	Cristal Group MIT management system
Safety culture	Eng officers	Few graduates with low turnover (graduate thesis duration=4 years) Safety rotating responsabilities
	Control by peer	
	Compliance	Informal neighborhood team control
	Safety as per professional rule	High safety level Safety as ethical imperative

Risk management: permanent compromises

Conclusion

Clarifying priorities and values for risk management

Organizing effective consultation and participation about risks

- Representation of the various recipients
- Sufficient time
- Debate rules
 - Free participation
 - Possible controversies
 - Decision mode commonly agreed
 - Consensus
 - Vote
 - ...
 - Etc.

Outlook

The scientist and the reflective work: from science to law

Notre métier, rendre le vôtre plus sûr Thank you for your attention

