

# A rigorous protocol for evaluating the effectiveness of gloves against nanoparticles in solution

Ludwig Vinches<sup>a</sup>, Mohamed Zemzem<sup>a</sup>, Stéphane Hallé<sup>a</sup> Caroline Peyrot<sup>b</sup>, Kevin J. Wilkinson<sup>b</sup> Nathalie Tufenkji<sup>c</sup> <sup>a</sup> École de technologie supérieure <sup>b</sup> Université de Montréal <sup>c</sup> McGill University



November 7-10, 2016 – Grenoble (France)

#### Context

## • Majority of the studies use engineering nanoparticles (ENP) in aerosol

Graphite – 30/40 and 80 nm (Golanski et al. 2009) TiO<sub>2</sub> – 10 nm (Golanski et al. 2009) Silver – 10 to 150 nm (Park et al. 2011)

# -> Few studies with ENP in solution

## • Simulate the occupational use of the gloves



**Repeated mechanical deformations** (Dolez et al. 2011) **Microclimate in the glove (sweat)** (Lambers et al. 2006, Vinches et al. 2016)

# → Development of a test setup

How to measure the real quantity of ENP which passes through the gloves ?
 Use the right devices (Vinches et al. submitted)
 Evaluate the losses of ENP (Vinches et al. submitted)



Vinches et al. - nano

Summarize the different necessary steps to evaluate the effectiveness of disposable protective gloves against ENP in solution

## Nitrile rubber gloves





# **Commercial gold suspension**

5 nm, PVP, 0.05 mg/mL in MilliQ water

TEM diameter = 5.0 ± 0.6 nm Hydrodynamic diameter (DLS) = 9.2 ± 0.6 nm



### Setup to simulate the hand flexing and the microclimate into the glove (sweat)



#### Methodology

# **Origins in the loss of nanoparticles**



# Evaluation of the effectiveness of gloves in FOUR steps



#### **Step 1 – Selection of compatible storage bottles**

- Preparation of a gold suspension at a nominal concentration of 10  $\mu$ g/L (concentration expected based on previous work) in physiological solution at pH = 6.
- Storage in bottles of six different chemical compositions.
- ICPMS analysis after 0, 24, 48 and 72 hours.

## **Restitution coefficient (%)**

|                           | After 24 hours | After 72 hours |
|---------------------------|----------------|----------------|
| Glass                     | 100            | 100            |
| Polycarbonate             | 75             | 65             |
| Polypropylene             | 70             | 50             |
| Teflon                    | 65             | 50             |
| Low Density Polyethylene  | 60             | 40             |
| High Density Polyethylene | 50             | 30             |

# Use of <u>glass bottles</u> as storage bottles for gold nanoparticles in solution

### **Step 2 – Evaluation of the loss coefficient for the test**

- Preparation of two gold suspensions at a nominal concentration of 10  $\mu$ g/L and 100  $\mu$ g/L in physiological solution at pH = 6
- $\bullet$  The physiological solution replaced by the 10 or 100  $\mu g/L$  gold suspensions
- No commercial nanoparticle suspension in the exposure chamber



#### **Step 3 – Mechanical deformation (MD) tests**



Vinches et al. - nanger 16

#### **Step 4 : Gold nanoparticle penetration: ICP-MS results**

|                       | M±SD (μg/L)<br>(n=10) | Maximal<br>Concentration (µg/L) | Minimal<br>Concentration (µg/L) |
|-----------------------|-----------------------|---------------------------------|---------------------------------|
| NBR-1a<br>(Feb. 2015) | 0.446 ± 0.162         | 0.782                           | 0.319                           |
| NBR-1b<br>(Feb. 2015) | 0.530 ± 0.524         | 1.802                           | 0.172                           |
| NBR-2<br>(Sept. 2015) | 1.662 ± 2.994         | 10.028                          | 0.162                           |
| NBR-3<br>(March 2014) | 0.273 ± 0.132         | 0.477                           | < LOD                           |

- 1. Passage of gold nanoparticles through this model of nitrile glove indicating its low effectiveness
- 2. A 13 fold difference in the maximum for different batches
- 3. !! The oldest batch of gloves offers the best protection against gold nanoparticles and the newest batch offer the worst protection !!

# RIGOROUS METHODOLOGY TO EVALUATE THE EFFECTIVENESS OF PROTECTIVE DISPOSABLE GLOVES AGAINST NANOPARTICLES IN SOLUTION

## **IDENTIFICATION OF FOUR IMPORTANT STEPS**

- 1- Determine the most suitable storage bottles for the sampling solution
- 2- Evaluate the loss coefficient of the sampling protocol
- 3- Perform the permeation test
- 4- Measure the permeation of ENPs through disposable protective gloves

# Clean the different parts of the test setup to minimise contamination.

Limitation of this methodology : The four steps must be performed for each type of nanoparticles in solution

## **Effectiveness results :**

- Significant concentrations of gold nanoparticles observed in the sampling solution
- Depending on the batch and on the box (variability in the manufacturing process)
- Permeation of ENP due to a loss of integrity of the elastomer (MD and swelling)

Thanks for the financial support of :





#### And with the contribution of :

#### Aoued Belhadj, Mehdi Ben Salah, Nidal Boutrigue from ETS Madjid Hadioui, Laura Lemarchand from Université de Montréal







# Thank you for your attention







