Effect of carbon black nanoparticles on methane/air explosions: Influence at low initial turbulence

David Torrado, Pierre-Alexandre Glaude & Olivier Dufaud

Laboratoire Réactions et Génie des Procédés LRGP - Nancy

CONTEXT

Nanoparticles used to modify:

- Resistance
- Surface modification
- Rheology
- Magnetization

High Specific Surface

- → Advantageous on :
- Catalysis
- Biomaterials
- Biological applications

Necessity of studies on the toxicity and explosion hazards of combustible nanoparticles

EXPLOSION OF NANOPARTICLES

Previous works have shown:

- The ignition sensitivity can increase for nano-dusts
- Similar explosion severity for µm- and nanoparticles
 - \rightarrow Dispersion of a highly loaded cloud \rightarrow Utopic
 - → Fast agglomeration / enhancing sedimentation

Unlikely to occur at normal industrial conditions

However... Simultaneous gas/vapor and dispersed nanoparticles Hybrid mixture explosion

① Could the explosion be modified by the presence of nano-dust at low turbulences levels?

2 Could an initial concentration of carbon black nanoparticles increase the severity of a hybrid mixture explosion?

PRESENTATION CONTENTS

EXPERIMENTAL SETUP

Tested by:

- Differential Mobility Analyzer (DMA)
- Ultrafine Condensation Particle
 Counter (UCPC)

Burnt gases were analysed by μGC

IGNITION DELAY TIME - TURBULENCE

CARBON BLACK PARTICLES

PRINTEX XE2

Materials & Methods

CORAX N550

lgnition delay tv (ms)	Powder concentration (g/m ³)				
	0	0.5	2.5		
0	Gas Concentration (%v.): 5.5 - 7 - 8 - 9 - 12				
60					
120					
Minimum Explosible Concentration (Carbon Black): 60 g/m ³					

Introduction

Page 7

PRESENTATION CONTENTS

DISPERSION STABILITY

Nanopowders	Time after dispersion (s)	Mean Mobility Diameter (nm)	Concentration (particles/cm ³)	Ambiance Concentration (particles/cm ³)
Printex XE2	20	245	2.1x10 ⁵	6x10 ³
	190	241	1.5x10 ⁵	
Corax N550	20	346	2.4x10 ⁵	
	180	350	1.5x10 ⁵	

- Similar mobility diameter after 20 and 190 seconds
- 2 Agglomeration phenomena is limited because of the low powder concentration
- ③ A stable dust cloud of agglomerates is generated Ignition delay times (t_v)→ Present @ 60 & 120 ms

At quiescent conditions (not dispersed at high pressure):

Higher explosions severity for initial CH₄ fractions 5.5-8%
 → Same trends for Printex XE2 and Corax N550

At u' = 1.04 m/s (t_v 120ms):

1) Similar trends compared to the quiescent system

Higher influence at higher specific surface \rightarrow Deagglomeration of powder

2 Turbulent quenching for Printex XE2 \rightarrow No explosion at 12% v/v CH₄

Printex XE2/Methane/Air mixture under quiescent conditions.

Dispersion of a cloud of carbon black affects the combustion reaction

Even at **low concentrations of dust**

Modifications on the combustion reaction could be related to:

1 Radiation heat exchange

2 Flame surface changes

Results

The highest (dP/dt)max is obtained

 \square Maximum conversion of CO to CO₂

Variables that promotes the conversion of CO₂

- 1 Carbon black addition for Fuel lean mixtures
- Increase on the initial turbulence level

Complex interactions between the turbulence and the combustion reaction are evidenced

→ Test on inert powder

CONCLUSIONS

Dust clouds of the carbon particles studied remain highly stable after the dispersion

→ Mean mobility diameter Printex XE2 ~ 240nm Corax N550 ~ 370nm

- → Agglomeration phenomena is limited because of the low concentrations of powders
- Explosion severity of methane/air mixtures increases when low concentrations of carbon black nanoparticles are added Even at low initial turbulence
- The specific surface area of particles have a great influence on the explosion severity

-> Deagglomeration phenomena at high turbulence systems

Effect of carbon black nanoparticles on methane/air explosions: Influence at low initial turbulence

David Torrado, Pierre-Alexandre Glaude & Olivier Dufaud

Laboratoire Réactions et Génie des Procédés LRGP - Nancy

