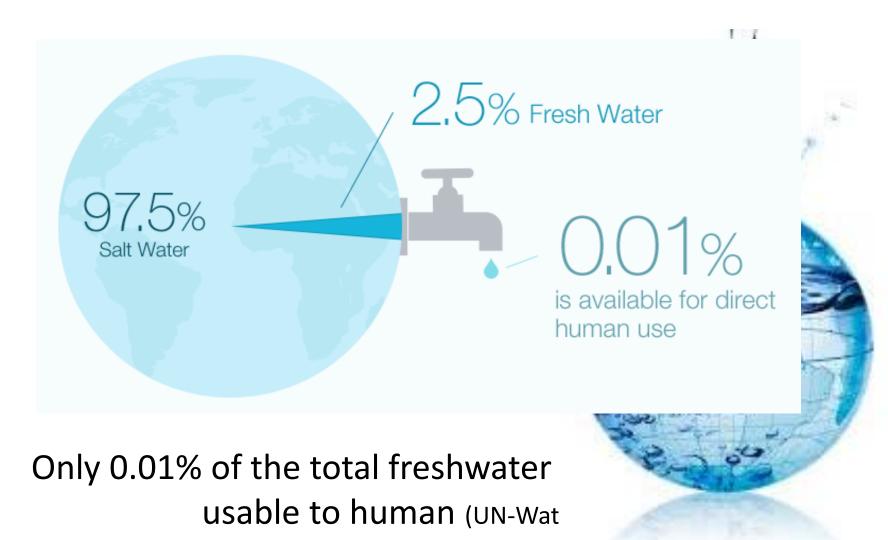


Environmental assessment of a photocatalytic degradation of contaminated water

Martina Pini


LCA WorkingGroup Department of Science and Methods for Engineering University of Modena and Reggio Emilia - Italy

NANOSAFE 2016 - Grenoble, France

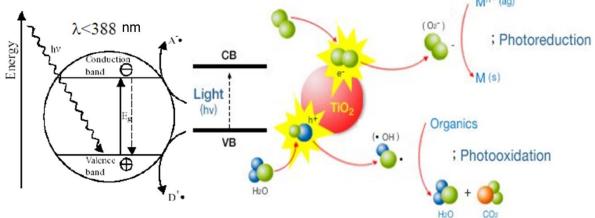
Water: A rare and precious resource

Wastewater: human-made phenomenon

- The *excessive use* and *continued mismanagement* of freshwater resources for industrial growth are increasing the contamination of the wastewater.
- A wide range of *organic compounds* is detected in industrial and municipal wastewater.
- Some of these compounds pose severe problems in biological treatment systems due to their resistance to biodegradation.

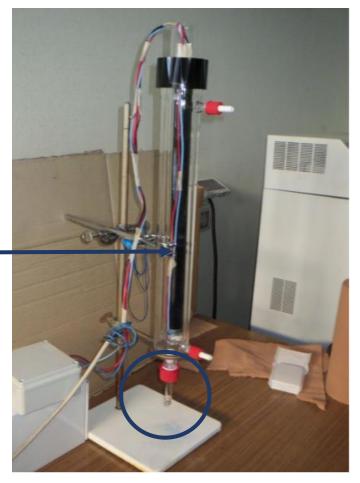
Advanced Oxidation Processes (AOPs)

- AOPs is an innovative water treament technology used for destroying recalc trart organ compounds transforming them into biodegradak
- The residue of AO for the seneration of highly ender als such as hydroxyl radicals (OH•).
- One effective methods of AOPS is the ray and oxidant such as H_2^{0} , h_3^{0} , and h_2^{0} .


 H_2O_2 / UV O_3 / UV $O_3 / H_2O_2 / UV$ UV / TiO_2 (Photocatalytic oxidation)

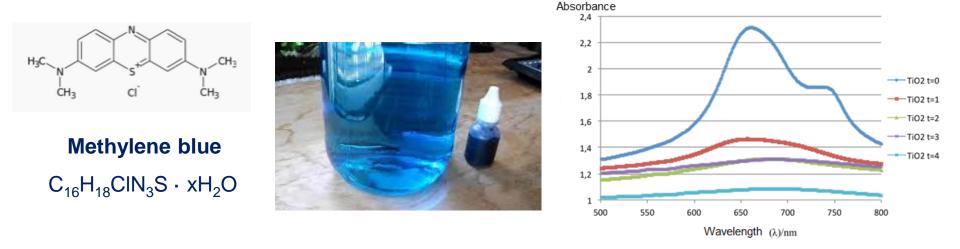
Titanium dioxide photocatalyst

- TiO₂ is a metallic oxide well known for its unique photocatalytic properties and ability to degrade organic matters.
- TiO₂ is very stable both chemically and photochemically, relatively low cost, nontoxic and insoluble in water.
- TiO₂ nanoparticles thanks to their small particle size can lead to the increase of surface area of the catalyst and *improve the photocatalytic activity* (more catalytic reactions can occur at the same time).



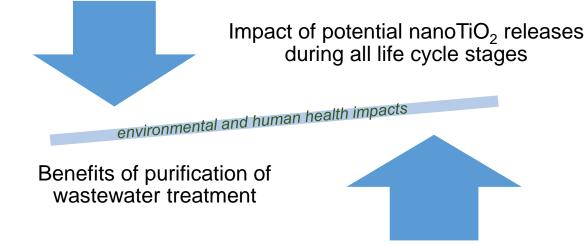
TiO₂ nanoparticles for wastewater treatment Prototype phase

- Cylindrical photoreactor having a substrate coated with nanoTiO₂ and activated with proper UV irradiation;
- Laboratory scale Reactor dimensions: external glass tube h=450 mm, Ø=56 mm internal quartz tube h=400 mm, Ø=35mm
- UV-A lamp (15 W) is collocated inside the internal tube;
- O₃ has been blown through the bottom opening to enhance the oxidation process of nanoTiO₂;
- Photocatalytic support: aluminum oxide (Al₂O₃) microspheres coated with nanoTiO₂;


Material Lab - Department of Industrial Engineering – University of Parma, Italy

TiO₂ nanoparticles for wastewater treatment Prototype phase

Material Lab - Department of Industrial Engineering - University of Parma, Italy


- The photoreactor has been tested with synthetic wastewater sample;
- Mode of operation: batch mode or semi-continuous mode to ensure the adequate contact time for the photocatalytic degradation.

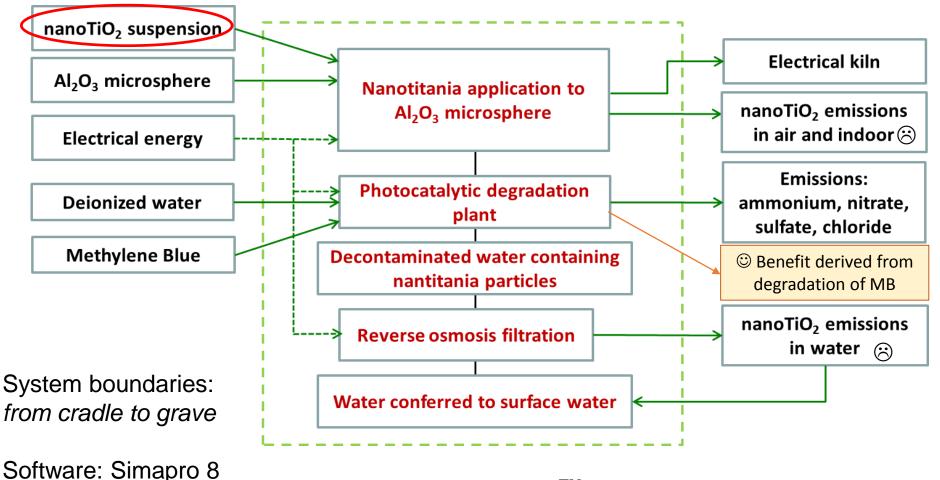
Life Cycle Assessment ISO 14040/44

 The aim of this study is to assess the *environmental* and *human health* impacts of the scale up of the developed photoreactor and the related wastewater purification treatment.

- Functional unit: volume of the synthetic wastewater sample= 6917 cm³
 Photoreactor internal volume: 7170 cm³; Total spheres volume: 253 cm³
- Data quality:

✓ primary data supplied by the Material lab, University of Parma - Italy has been used;

- secondary data obtained by Ecoinvent database v3 have been adopted to model the background processes (as electricity and heat productions and transports);
- \checkmark lab-scale data has been scaled up adopting a linear rate.



Life Cycle Assessment

Colorobbia S.p.A. *Patent: US 2008/0317959 A1, Baldi G. et al. 2008* **Pini et al., 2015. Green Chemistry 17 (1), 518 – 531**.

LCIA Method: USEtox[™] modified

Materials Science & Technology

USEtox[™] modified method

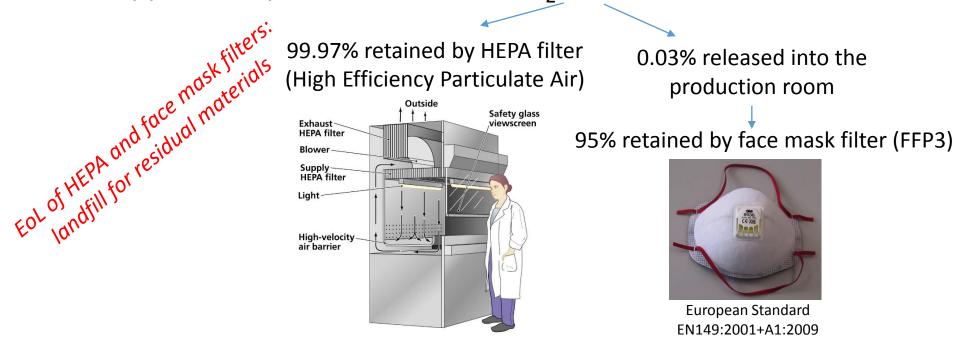
Human health CFs for TiO₂ nanoparticles

Pini M, Salieri B, Ferrari AM, Nowack B, Hischier R (2016), "Human health characterization factors of nano-TiO₂ for indoor and outdoor environments", Int J Life Cycle Assess, 21(10), 1452-1462. DOI: 10.1007/s11367-016-1115-8.

UNIVERSITÀ DEGLI STUDI di modena e reggio emilia

Human health effect	Indoor CFs [cases/kg _{emitted}]	Outdoor CFs [cases/kg _{emitted}]
Carcinogens	1,43E-2	1,34E-4
Non-carcinogens	5,87E-7	5,5E-9

• Freshwater ecotoxicity CF for TiO₂ nanoparticles

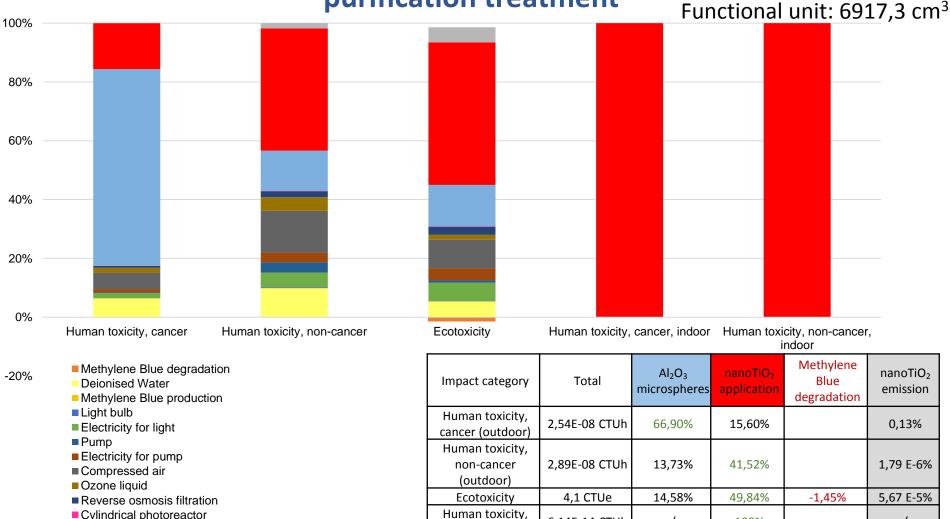

Salieri B, Righi S, Pasteris A, Olsen SI (2015), "Freshwater ecotoxicity characterisation factor for metal oxide nanoparticles: A case study on titanium dioxide nanoparticle", *Science of Total Environment*, 505, 494–502. DOI: 10.1016/j.scitotenv.2014.09.107.

Freshwater ecotoxicity CF= 0,28 PAF*day*m³*kg⁻¹

Ecodesign approach

• Application phase \rightarrow 1% nanoTiO₂ emissions release in **air**

• Reverse osmosis filtration \rightarrow 0.1% nanoTiO₂ emissions releases in water


99.97% retained by filter

0.03% released into water

DiSMI Department of Science and Methods for Engineering

Environmental results of the scale-up of photocatalytic wastewater purification treatment

REGGIOEMILIA

cancer, indoor

Human toxicity,

non-cancer, indoor

6,14E-14 CTUh

2,51E-18 CTUh

100%

100%

Cylindrical photoreactor

Al2O3 microspheres

nanoTiO2 application

Residual material landfill of microspheres and nanoTiO2 coating

Conclusions and next steps

- The life cycle assessement of the scale up of the cylindrical photoreactor to treat wastewater has been performed.
- The new freshwater and human health CFs developed following USEtox framework have been implementing in the USEtox method to carried out the LCIA results.
- Al₂O₃ microspheres production and nanoTiO₂ application are the life cycle stages with higher environmental loads.
- Standardization of nanoTiO₂ toxicological data and development of protocols for nanoparticle emissions measurement are urgently required.
- Due to the still uncertainty of toxicological effects of nanoTiO₂, during the scaling up phase a ecodesign approach has been use.
- Benefit derived from the Methylene blue degradation is higher than the damage of nanoTiO₂ emission in surface water (Ecotoxicity impact category).
- Next steps: adopting the Gavankar's upscaling process for engineered nanomaterials Gavankar et al., 2015. The Role of Scale and Technology Maturity in Life Cycle Assessment of Emerging Technologies - A Case Study on Carbon Nanotubes. J .Ind. Ecol. 19, 51-60.

parametric analysis to model different nanoTiO₂ emissions scenarios

In collaboration with Prof. Federica Bondioli and Dr. Maria Vittoria Grandi Department of Industrial Engineering – University of Parma, Italy

LCA Working Group

Department of Science and Methods for Engineering -University of Modena and Reggio Emilia *www.lcaworkinggroup.unimore.it*

Anna Maria Ferrari Paolo Neri Rosangela Spinelli Elisabetta Zerazion Camilla Tomasetta Marco Cervino

