

Environmental benefits of coatings based on sintered nano-tungsten-carbide cobalt ceramics

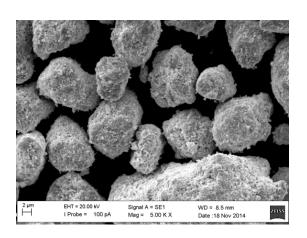
Henning Wigger^{1,2}, Michael Steinfeldt¹, Alvise Banchin³

nanoSafe Conference, Grenoble, November 9th 2016 Session "From nanoproducts to nanowaste"

¹ University of Bremen, Department for Technological Design and Development - Badgasteinerstr. 1, 28359 Bremen - Germany

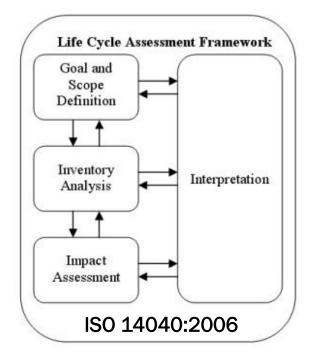
² Current address: Empa - Swiss Federal Laboratories for Materials Science and Technology – Lerchenfeldstr.5, CH-9014 St. Gallen - Switzerland

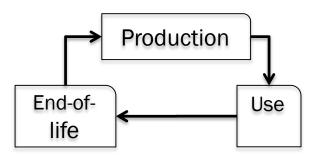
³ MBN Nanomaterialia Spa, Via Giacomo Bortolan, 42, Carbonera TV, Italy



Background

- Tungsten-carbide
 - High density (15.6 g/cm3)
 - Melting temperature: 2870 °C
 - High hardness (only diamond is harder)
- Cobalt improves material properties (Cermets)
- Nano-Tungsten-Carbide Cobalt (nano-WC-Co)
 - sintered ceramic
 - potential substitute for chromium
 - hexavalent chromium is known to be carcinogenic
 - higher wear resistance
 - ten-times longer service life





Approach and Objective

- Life cycle assessment (LCA)
 - only a few LCA studies on ENMs have been conducted
 - most studies focus on the production of ENMs

- Objective of the applied LCA
 - focus on the whole product life cycle
 - assessment of environmental performance
 - identification of the most relevant processes
 - comparison to conventional applications (chromium)

Functional unit, basic assumptions and modeling

Surface area

 $1 \, \text{m}^2$

Coating thickness
300 µm

<u>Service life</u> 10 times longer

System boundary

Europe

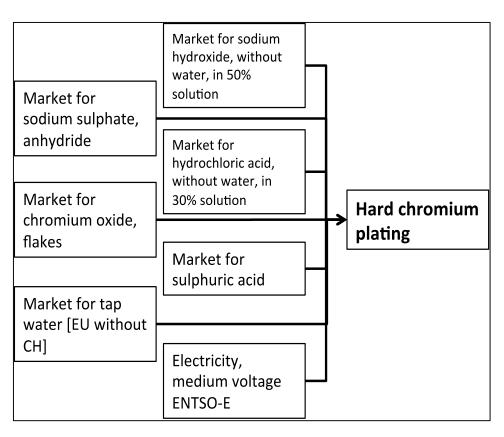
Electricity mix (ENTSO-E)

Europe

Impact assessment

ReCiPe midpoint indicator

(not nano-specific)


Software & Database

Umberto NXT LCA & ecoinvent 3.2

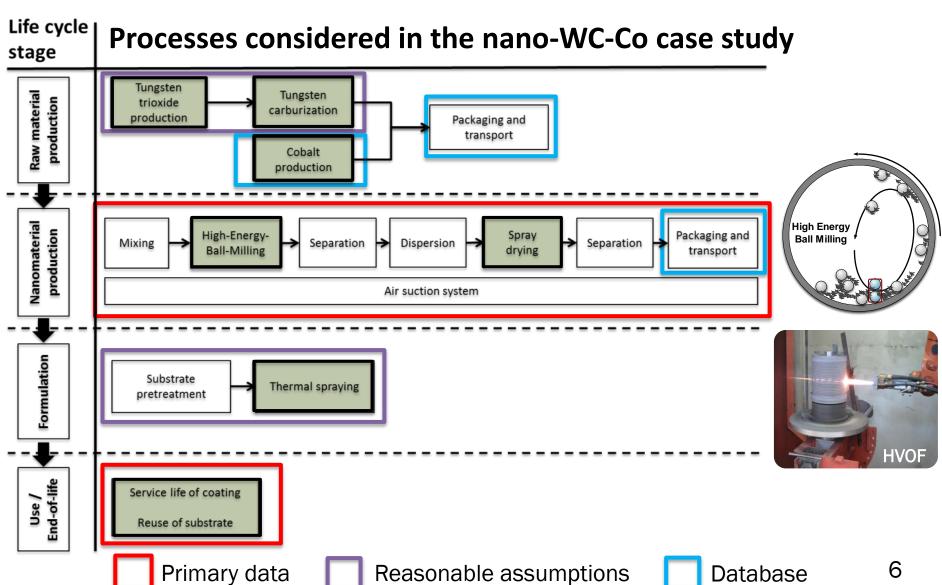
Model structure and inventory data

Convential hard chromium coatings

Coating of chromium onto a substrate

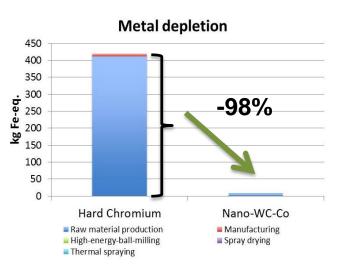
electroplating

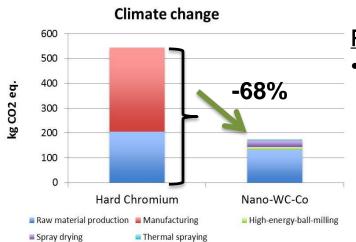
Assumption


 electroplating process is similar to ecoinvent database set "black chromium selective coating " for solar absorbers

Modification of the dataset

- according to coating thickness
- shorter service life compared to nano-WC-Co




Model structure and inventory data

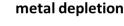
Results

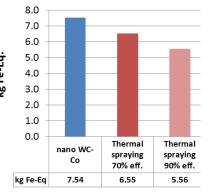
Results:

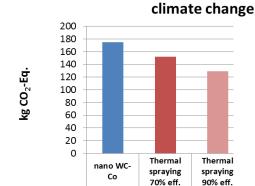
 reduced environmental impact in almost all categories (from 51% to 98%)

Relevant processes:

- raw material production
- Manufacturing
 - electricity



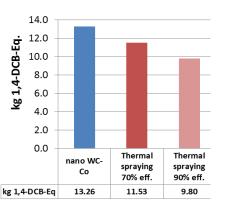

Sensitivity analysis


- Five scenarios considered:
 - increased efficiency in thermal spraying (50->70%)
 - increased efficiency in thermal spraying (50->90%)
 - thermal spraying (HVOF) conducted by the HVAF process (replacement of oxygen/kerosene by air/natural gas mix)
 - use of recycled tungsten carbide (20%)
 - service life reduction (50%)

Sensitivity analysis

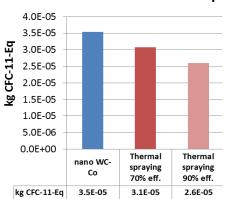
174.71

151.85


kg CO2-Eq

The thermal spraying process had the highest efficiency impact

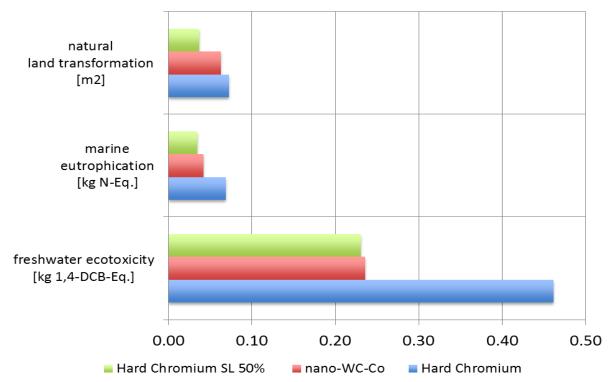
Replacement of the thermal spraying by HVAF did not affect the results


Use of secondary WC can balance the low efficiency of the coating process

human toxicity

ozone depletion

129.00



Sensitivity analysis

Reduced service life significantly influences the results

 Highest decreased environmental performance >50% compared to the original assessment

Conclusions

- Processes contributing the most to environmental impacts:
 - production of tungsten and tungsten carbide
 - efficiency of thermal spraying (η =50%)
- Use of recycled WC can decrease the influence of the raw material production stage on the results
- Environmental benefits only prevail if service life is prolonged
- LCIA does not consider nano-specific effects
- nano-WC-Co coatings can significantly improve the environmental performance compared to conventional coatings

Thank you for your attention!

This project has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 604305

University of Bremen, Germany Department 10 – Technological Design and Development

Dipl.-Ing. Michael Steinfeldt Dipl.-Wi.-Ing. Henning Wigger

contact details: Henning Wigger

E-mail: hwigger@uni-bremen.de

MBN Nanomaterialia S.p.A.

Via G. Bortolan, 42 31050 – Vascon di Carbonera (TV), Italy http://www.mbn.it

e-mail: research@mbn.it

Impact category ReCiPe Midpoint (H) w/o LT	Unit	nano-WC-Co	Hard chromium	Reduction [%]
agricultural land occupation w/o LT, ALOP w/o LT	m ² a	10.9	66.6	83.6
climate change w/o LT, GWP100 w/o LT	kg CO ₂ -Eq	174.7	543.9	67.8
fossil depletion w/o LT, FDP w/o LT	kg oil-Eq	68.3	140.2	51.3
freshwater ecotoxicity w/o LT, FETPinf w/o LT	kg 1,4-DCB-Eq	0.2	0.4	38.7
freshwater eutrophication w/o LT, FEP w/o LT	kg P-Eq	0.01	0.05	81.3
human toxicity w/o LT, HTPinf w/o LT	kg 1,4-DCB-Eq	13.3	58.0	77.1
ionising radiation w/o LT, IRP_HE w/o LT	kg U235-Eq	18.0	66.0	72.8
marine ecotoxicity w/o LT, METPinf w/o LT	kg 1,4-DCB-Eq	0.2	0.5	51.5
marine eutrophication w/o LT, MEP w/o LT	kg N-Eq	0.04	0.07	37.8
metal depletion w/o LT, MDP w/o LT	kg Fe-Eq	7.5	419.8	98.2
natural land transformation w/o LT, NLTP w/o LT	m^2	0.063	0.060	-5.2
ozone depletion w/o LT, ODPinf w/o LT	kg CFC-11-Eq	0.00004	0.00010	62.8
particulate matter formation w/o LT, PMFP w/o LT	kg PM10-Eq	0.3	1.2	62.3
photochemical oxidant formation w/o LT, POFP w/o LT	kg NMVOC	0.5	1.2	62.3
terrestrial acidification w/o LT, TAP100 w/o LT	kg SO ₂ -Eq	0.7	2.4	70.7
terrestrial ecotoxicity w/o LT, TETPinf w/o LT	kg 1,4-DCB-Eq	0.01	0.05	77.6
urban land occupation w/o LT, ULOP w/o LT	m²a	1.7	4.8	65.2
water depletion w/o LT, WDP w/o LT	m^3	0.7	8.4	91.5