

International Conference on Health & Safety issues related to Nanomaterials, Nanosafe 2016 November 7-10, 2016 – Grenoble, France

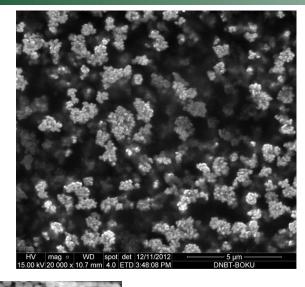
Potential transformation processes of quantum dots and their colloidal stability in complex aqueous matrices

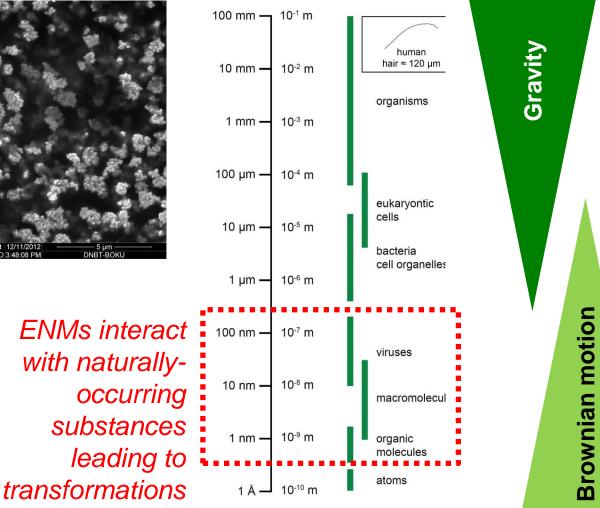
QDs in LEDs, © Plasma Chem GmbH

<u>Florian Part</u>^{1, 2}, Christoph Zaba², Oliver Bixner², Christian Zafiu², Stephan Hann³, Marion Huber-Humer¹ and Eva-Kathrin Sinner²

University of Natural Resources and Life Sciences, Vienna

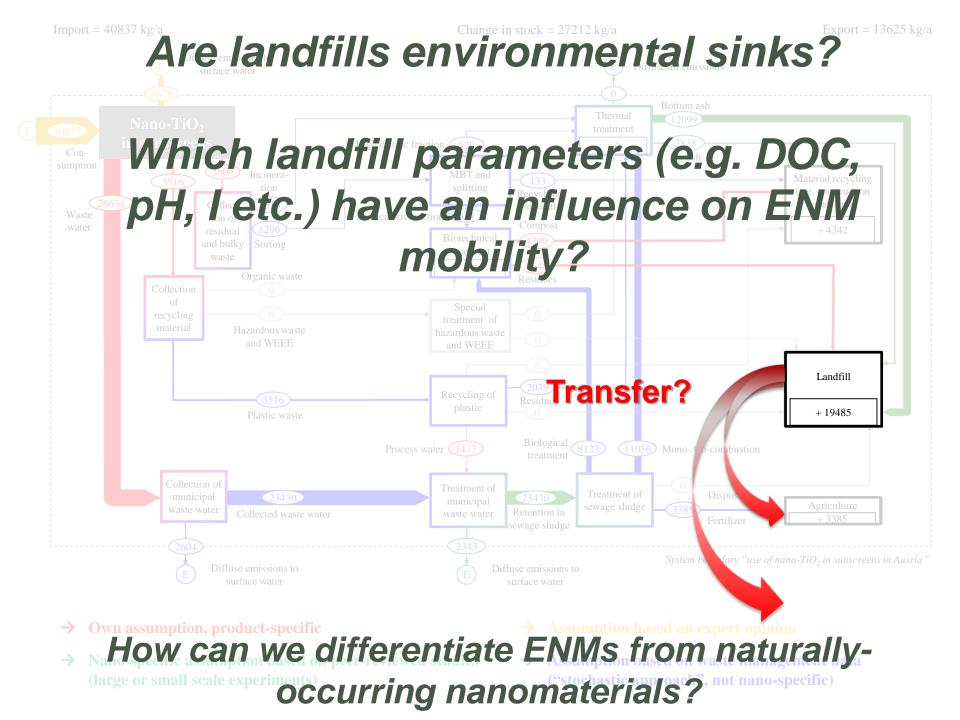
¹ Department of Water, Atmosphere and Environment, Institute of Waste Management (ABF-BOKU)


² Department of Nanobiotechnology (DNBT-BOKU), Institute for Synthetic bioarchitectures

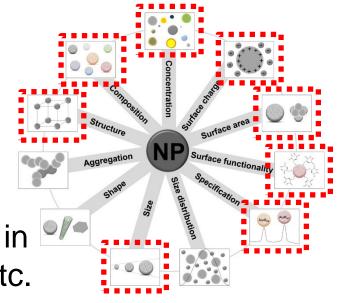

³ Department of Chemistry (DCH), Division of Analytical Chemistry (DCH/AC)


Engineered nanomaterials (ENMs) vs. their bulk counterparts Forces

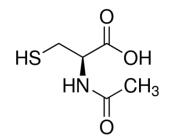
Fig. Nano-SiO₂ dipsersed in leachates (right) and in MeOH (below), © DNBT-BOKU

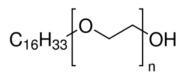


Sony Bravia™ XBR 4K TV Thin Film Solar Cell, © SONO TEK


- QDs are already available in display technologies (QLEDs) and other electronics due to their outstanding optical properties
- Little information at the point-of-manufacturing and, in particular, at the end of their useful life
- Many material flow models indicate that ENMs accumulate in waste streams and landfills
- Very little is known about ENM transport and fate during landfilling

Are quantum dots (QDs) applicable nanoscale tracer materials?


- Hypothesis: Nanotracers, where size, shape, and surface properties can be controlled. QDs are applicable model nanoparticles to distinctively trace their transport and fate in complex waste matrices
- Worst case assumptions:
 - Persistent ENMs and high mobility
 - No natural counterparts
 - Already present/dispersed in five different landfill leachates that vary in DOC-content, pH, ionic strengths etc.



Materials and methods: synthesis and surface modification

- Two different types of QDs:
 - N-Acetyl-L-cysteine (NAC) capped
 CdTe/CdS are hydrophilic ("NAC-QDs")
 - Trioctylphosphine/Trioctylphosphine oxide (TOP/TOPO) capped CdSe/ZnS are hydrophobic → steric stabilization via amphiphilic non-ionic surfactant ("*Brij*[®]58-QDs")

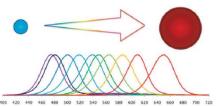


Fig.: Size-dependent colour of QDs and their eimission spectra in Zrazhevskiy P., 2009: DOI: 10.1039/b915139g

Materials and methods: characterization and QD-spiking

- Characterization methods:
 - TEM \rightarrow geometric diameter
 - DLS → hydrodynamic diameter
 - UV/VIS & fluorescence spectroscopy → spectroscopic fingerprints (first excitonic and emission peak)
 - HR-ICP-MS for trace metal concentration in leachates
- Spiking method:
 - QDs in powder form → preparation of stock solution (1 mg/mL) → dispersion of aliquots in 5 x 3 leachate samples with fixed concentrations

Potential transformation processes are directly related to QD's optical properties

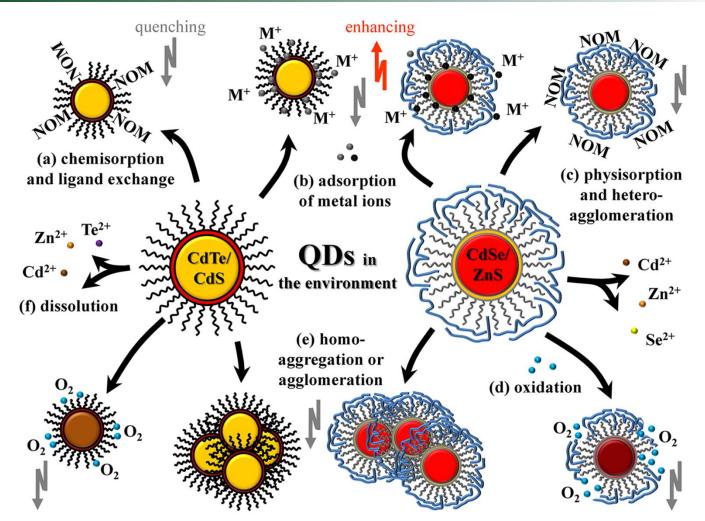
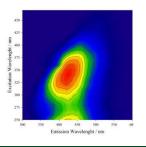
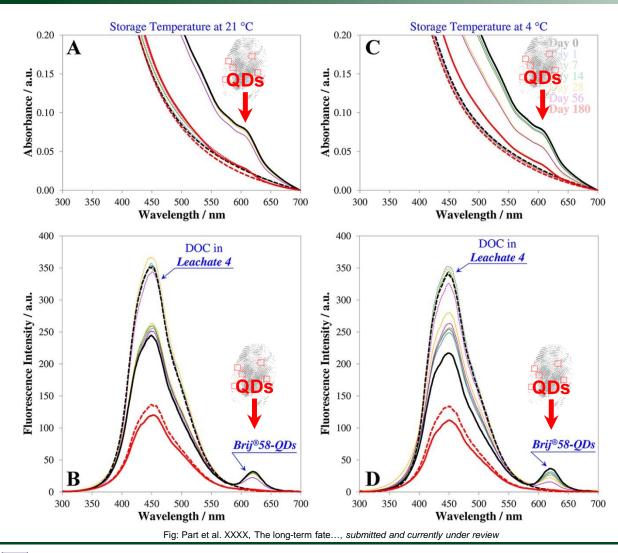


Fig.: Part et al. XXXX, The long-term fate of two differently, sterically stabilized quantum dots in landfill leachates and their potential transformation processes, submitted and currently under review

👯 🛛 Part F. et al., BOKU, Vienna


Nanosafe 2016, Grenoble, NOV 9, 2016


Results: background characterization

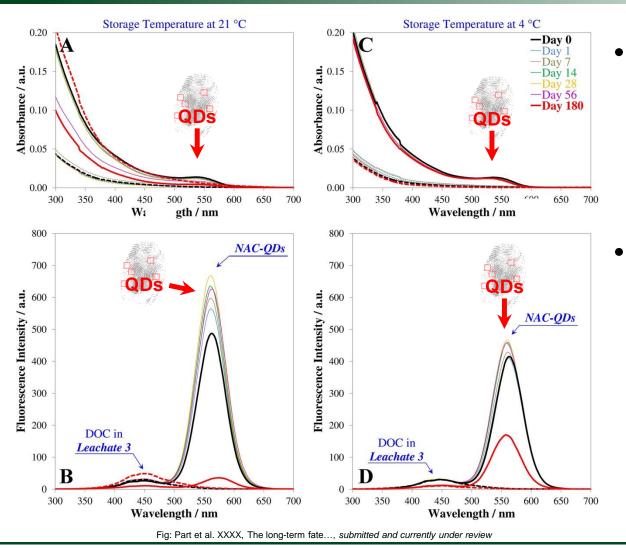
Sample		Leachate 1	Leachate 2	Leachate 3	Leachate 4	Table: Part et al. XXXX, The long- term fate of two differently, sterically stabilized quantum dots in
pH (initial)		8.3	8.0	7.8	8.3	
pH after dilution ^(a) pH after dilution & QD-spiking		8.6 8.6	8.5 8.5	8.7 8.7	8.6 8.6	
DOC (initial)	$[mg L^{-1}]$	$620\pm0.8\%$	$1085 \pm 0.5\%$	$66 \pm 5.0\%$	913 ± 4.4%	
DOC after dilution ^(a)	$[mg L^{-1}]$	$62\pm0.8\%$	$109\pm0.5\%$	$7 \pm 5.0\%$	$91 \pm 4.4\%$	
NH₄ ⁺ ר	$[mg L^{-1}]$	454	1180	82	827	
NO ₃ ⁻	$[mg L^{-1}]$	75	< LOD	< LOD	20	review
SO4 ²⁻	$[mg L^{-1}]$	74	24	13	56	
Fe ⁵⁶	$[\mu g L^{-1}]$	970 ± 5%	$4000 \pm 5\%$	< LOD	not measured	
Cu ⁶⁵ – inital	$[\mu g L^{-1}]$	42 ± 5%	< LOD	< LOD	not measured	
Zn ⁶⁶	$[\mu g L^{-1}]$	72 ± 5%	< LOD	$41 \pm 5\%$	not measured	
Se ⁸²	$[\mu g L^{-1}]$	87 ± 5%	74 ± 5%	21 ± 5%	not measured	
Cd ¹¹¹	$[\mu g L^{-1}]$	$4.0 \pm 5\%$	$3.0 \pm 5\%$	$3.0 \pm 5\%$	not measured	
Te ¹²⁵	$[\mu g L^{-1}]$	< LOD	$5.0 \pm 5\%$	< LOD	not measured	•

 Emission-excitation-matrix spectroscopy measurements showed that all leachates predominantly contained fulvic and humic acids

Results: assessment of long-term stability and behavior of *"Brij®58-QDs"*

Spectroscopic fingerprints were detectable for at least 180 days → indicate high colloidal stability and mobility

 PEG coating prevent
 physisorption of DOC for 56 days
 → partial sedimentation



Part F. et al., BOKU, Vienna

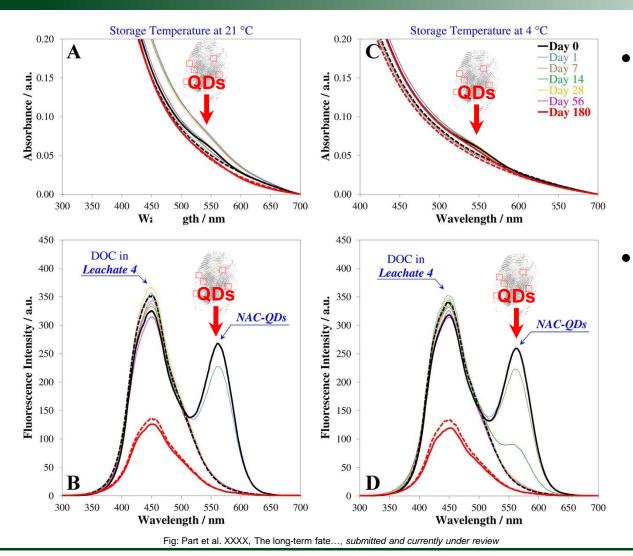
Nanosafe 2016, Grenoble, NOV 9, 2016

BCKU

Results: assessment of long-term stability and behavior of "NAC-QDs"

At **low DOC**: fingerprints were **traceable for 6 months** → high colloidal stability

adsorption of dissolved metal ions
(i.e. Cd²⁺, Zn²⁺) →
further surface
passivation
(kinetics mainly depend on
temperature)



Part F. et al., BOKU, Vienna

Nanosafe 2016, Grenoble, NOV 9, 2016

Results: assessment of long-term stability and behavior of "NAC-QDs"

At high DOC: fluorescence peak disappeared after 14 days, but first excitonic peak not

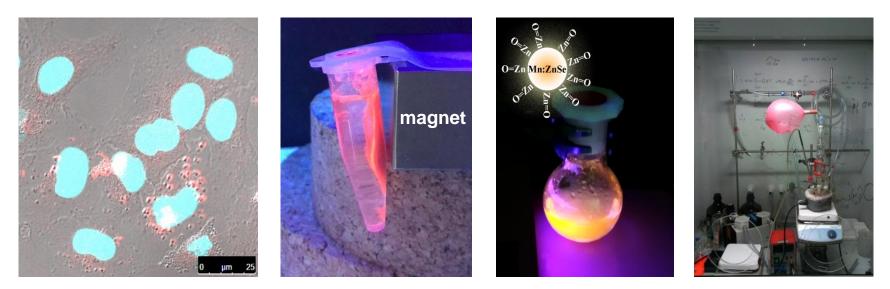
chemisorption
and ligand
exchange of NAC
for fulvic/humic
acids → further
steric stabilization

Part F. et al., BOKU, Vienna

Conclusions and recommendations

- Sterically stabilized ENMs can be colloidally stable and very mobile under prevailing environmental conditions depending on their surface properties/densities, temperature, residence time, DOC- and dissolved metal content (pH in leachates retained constant → no significant influence)
- QDs with low Mw capping agents (e.g. NAC) mainly underwent chemical transformation
- QDs with high Mw capping agents (e.g. *Brij[®]58*) mainly underwent physisorption processes
- Waste incineration is highly recommended to decrease their colloidal stability in liquid wastes

Conclusions and outlook


- Fluorescent ENMs or QDs are applicable nanotracers and are going to be used for further transport and toxicity studies
- Spectroscopic fingerprints allow distinctive tracing and differentiation from naturally-occurring nanoscale substances
- QDs can be differently surface modified (e.g. using ZnO, SiO₂ or TiO₂)
- QDs can mimic other nanoparticles to a certain extent regarding size, density, shape and surface properties

Thank you for your attention!

For further questions, you can also send me an email:

florian.part@boku.ac.at

Figures: further fate and toxicity studies on, for example, magnetic and ZnO-coated QDs are currently conducted at the BOKU; left: CLSM image of PEGylated QDs dispersed in cell line A549; middle left: Fe doped QDs; middle right: ZnO coated, Cd-free QDs; right: synthesis of organo-soluble QDs used as photostable, inorganic dye

Thanks to all coauthors!

RSC Advances

View Article Online

PAPER

Cite this: RSC Adv., 2016, 6, 27068

Preparation of water-soluble, PEGylated, mixeddispersant quantum dots, with a preserved photoluminescence quantum yield⁺

C. Zaba,‡^a O. Bixner,‡^{ab} F. Part,^a C. Zafiu,^c C.-W. Tan^a and E.-K. Sinner^{*a}

Waste Management 43 (2015) 407-420

Current limitations and challenges in nanowaste detection, characterisation and monitoring

CrossMark

Florian Part^a, Gudrun Zecha^a, Tim Causon^b, Eva-Kathrin Sinner^c, Marion Huber-Humer^{a,*}

Editorial

Engineered nanomaterials in waste streams

Traceability of fluorescent engineered nanomaterials and their fate in complex liquid waste matrices *

Additional information: QD-sizes

QD-species	NAC-QDs	TOP/TOPO-QDs	Brij®58-QDs	
QD-species	in water	in chloroform	in water	
		Geometric radii [nn	1] , ZŠ	550
R _{Core} ^a	~ 1.2	~ 2.0	~ 2.0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Eddar -
R _{Shell} ^b	~ 0.6	~ 0.6	~ 0.6	Kun
$\mathbf{R}_{\text{Ligand}}^{c}$	~ 0.9	~ 1.0	$\sim 1.0 \text{min} R$	\leftarrow
R _{Surfactant}	-	-	~ 7.0	thin
R _{Total}	~ 2.7	~ 3.6	~ 10.6	222
		Hydrodynamic diameter	s [nm] ^d	
Peak 1	15.7 ± 4.0	8.7 ± 1.3	141.8 ± 85.2 2 2 2 2	322
Intensity [%]	0.7	100	100	- Crr
Mass [%]	24.8	100	100	Jen .
Peak 2	91.3 ± 53.7	-	Jun -	thin
Intensity [%]	99.3	-		55552
Mass [%]	75.2	-	- 553	322
PdI^{e}	0.31	0.20	0.18	~~~

e: Part, F., a, C., Bixner, afiu, C., n, S., Sinner, Huberer, M., ie. eability of escent neered materials their fate in plex liquid te matrices. ronmental ition king, Essex : 7) 214, 795-

^a core radii of CdTe and CdSe QDs calculated according to Rogach et al. (2007) and Yu et al. (2003), respectively

^b shell thickness based on Pons et al. (2006)

^c based on estimations from the molar volume

^d HDD measured using DLS at 21°C

^c nanoparticles are monodisperse when polydispersity index $(PdI) \le 0.2$

Additional information: Summary of hypotheses and assumption

- QD-behaviour and aggregation kinetics in environmental samples predominantly depending on dissolved organic content (DOC)
- Nano-specific fluorescence properties change:
 - when DOC interact with QDs → sorption, particle aggregation or complexation lead to decrease in fluorescence intensity
 - when QDs decompose → leaching of heavy metal ions (dissolution of particle core) or oxidation lead to decrease in fluorescence intensity and absorbance
 - No change in fluorescence indicate colloidal stability