

Refining Dosimetric Extrapolation Modeling of Inhaled Nanoparticles for Deriving a Human Equivalent Concentration

> Günter Oberdörster University of Rochester, NY and Uschi Graham University of Kentucky, KY

November 9, 2016

Dosimetric Extrapolation of Particle Exposures from Rats to Humans

Modified from: Oberdörster, 1998

Dosimetric Extrapolation of Particle Exposures from Rats to Humans

<u>Concept</u>: HEC is defined as the Exposure Concentration resulting in Humans in the same normalized lung burden as measured in rats after acute, subchronic or chronic inhalation

Modified from: Oberdörster, 1998

INFORMATION NEEDED TO ANALYZE EXPOSURE-DOSE-RESPONSE OF INHALED NANOMAERIALS FOR RISK EXTRAPOLATION MODELING

- Aerosol specifics (agglomerate/aggregate; MMAD; GSD)
- **Resp. tract geometry** (species specific branching pattern)
- **Resp. tract physiology** (species specific breathing parameters)
- NM properties (physico-chemical [intrinsic]; functional [extrinsic])
- Exposure duration

<u>Physico-Chemical and Functional NP Properties of</u> <u>Relevance for Toxicology</u>

Size (*aerodynamic*, *hydrodynamic*) Size distribution Shape **Agglomeration**/aggregation **Density** (material, bulk) Surface properties: - area (*porosity*) - charge - chemistry (*coatings*, *contaminants*) - defects Crystallinity **Biol. contaminants** (e.g. endotoxin) **Solubility/dissol-rate** (*physiol. fluid*, *in vivo*) **Surface reactivity** (*ROS inducing capacity*)

Key parameter: Dose!

Properties can change

-with: method of production preparation process storage

-when introduced into physiol. media, organism

Cell-free (a-cellular) Functional Assays

SURFACE SPECIFIC REACTIVITY OF NANOSIZED PARTICLES

• High specific surface area: m²/g

Surface Reactivity as Dose-Metric,

e.g., ROS inducing potential expessed per unit particle surface area

DTT (dithiothreitol) assay DCFH-DA (2'-7' dichlorofluorescin-diacetate) assay FRAS (ferric reducing ability of serum) assay Vit C assay ESR others...

as screening tool for hazard ranking of NPs based on their reactivity in cell free or cellular assays [Bello et al., 2009; Rushton et al., 2010] **Cell-free Assay, NP bound ROS, Summary** (Carbon Particles) Particle Mass Correlation

Cell-free Assay, NP bound ROS, Summary (Carbon Particles) Particle Surface Area Correlation

Dissolution as one Determinant of Pulmonary Biopersistence of Inhaled Particles

Biopersistence = f (Physiological Clearance; Biodurability)

Overall clearance rate = AM-mediated clearance rate + dissolution^{*} **rate** (*may be masked due to prolonged retention of bioprocessed particles/ions)

Acellular solubility/dissolution assays with simulated lung fluids

Estimation of Chronic NOAEL from Subchronic Rodent Study using MPPD Model

From: Oberdörster, 2002

MPPD v3.04

File Input Data Calculations Report Results Plot Results Help Get Started

$\Theta \cap \Theta$	Airway Morphometry	
Species	✓ Human)
Model	kat Mouse Rhesus Pig Rabbit	C
FRC	3300.0	ml
URT Volume	50.0	ml
Default	Help	ОК

$\Theta \bigcirc \Theta$	Exposure Scenario	
Acceleration of Gravity	981.0	cm/s²
Body Orientation	Upright \$	
Body Orientation: α	Leaning Forward	•
Body Orientation: β	On Back On Stomach	•
Body Orientation: Y	On Right Side On Left Side	•
Aerosol Concentration	Upside Down 1.0	mg/m ³
Breathing Frequency	12.0	per minut
Tidal Volume	625.0	ml
Inspiratory Fraction	0.5	
Pause Eraction	0.0	
rauserraction	0.0	
Breathing Scenario	✓ Nasal	
Default Help	Oral Oronasal-Mouth Breather Oronasal-Normal Augmenter Endotracheal	
-		

$\Theta \cap \Theta$	Particl	e Properties		
Density	1.0	g/cm³		
Aspect Ratio	1.0	=1 for spherical		
			Single	
Diameter	1.0	μm	Multiple	
			Multimodal	
● CMD ○ MMD ○ MMAD				
Inhalability Adjustment				
GSD (diam.)	1.0]		
GSD (length)	1.0]		
Correlation	0.0]		
	🗌 Equiv. Diam	. Model		
Diff. Diameter	1.0	μm		
Sed. Diameter	1.0	μm		
Imp. Diameter	1.0	μm		
Int. Diameter	1.0	μm		
Help			ОК	

MPPD Model

Input Choices

) \varTheta	Clearance	Settings		
Tracheal M	ucous Velocity		5.5	in
Fast Humai	n Clearance Rat	e	0.02	y s
Medium Hu	ıman Clearance	Rate	0.001	y s
Slow Huma	n Clearance Ra	te	0.0001	y s
Lymph Nod	le Human Clear	ance Rate	0.00002	y s
Rat Clearan	ce Parameter 'a	ď	0.03341	
Rat Clearan	ce Parameter 'b	o'	1.7759	
Rat Clearance Parameter 'c'			0.3123	
Rat Clearance Parameter 'd'			0.000716	42
Lymph Node Rat Clearance Rate			0.001056	52
Exposi	are Time Setting	gs:		
Number of	Hours Per Day		6	
Number of	Days Per Week		5	
Number of	Weeks		1	
Max. Post-Exposure Days			0	
Default	Help		ОК	

Allometric Scaling of Respiratory Parameters to Bodyweight of Rat, for Input into MPPD

<u>Case Study:</u> 28 Day Nano-Silica Rat Inhalation Study as basis for human extrapolation modeling

Objective/Questions:

Determine aerosol characteristics, effects and fate of amorphous SiO₂ NPs in a short (4 hr) and a repeat (4-wk) rat inhalation study: (suspended as slurry used for CMP in electronics industry)

- What are results telling us in terms of hazard extrapolation to humans?
- Is a 4-week exposure duration sufficient for risk characterization?
- What is a safe level for worker exposure?

Silica/SiO₂ Starting Materials

 Majority of the NPs are spherical or semi-spherical and ~ 20-40 nm in size.

• Nanoparticles tend to form dense agglomerated aggregates.

• Nanoparticles have smooth surfaces without etching or dissolution patterns.

 Particles are not zoned or show different densities (core to surface).

• Particles are amorphous

SiO₂ Starting Nanoparticles

This HR-TEM shows the amorphous nature of the supplied SiO₂ NPs.

Aggregation and Agglomeration is part of NPs Formation.

Outline, study plan of SiO₂ NP inhalation:

– 4 hour acute inhalation in rats:

- to determine effective density ρ_{eff} of SiO_2 aerosol "in vivo"

– 4 week inhalation in rats:

- three concentrations to determine NOAEC
- estimate overall lung clearance rate (b_{tot}) of SiO₂ NPs
- compare to normal clearance rate (b_{mech}) for insoluble particles
- derive in vivo dissolution rate (b_{diss}) of SiO₂ NPs: $b_{tot} = b_{mech} + b_{diss}$
- dosimetric extrapolation to human exposure

- verify in vivo dissolution by HRTEM analysis

- bioprocessing in phagolysosome of macrophages
- analyzing chemistry of subcellular interactions of NPs

4 Week Study: Exposure Characteristics and Retained Doses (μg) Using Silica Nanoparticle-Containing CMP Slurries Fisher-344 Male Rats

	High Dose	Mid Dose	Low Dose	
SiO ₂ Aerosol (mg/m ³)	4.66	0.98	0.22	
Lung Retained Dose (μg, as SiO ₂ , at 4 wks expos)	196 ± 7	47 ±9	13.6 ± 3.3	NOAEI
MMAD, μm (GSD)	0.5 (2.4)	0.4 (1.8)	0.4 (2.0)	

Effective Density of SiO₂ Aerosols

Result of MPPD derived ρ_{eff} for SiO₂ slurry aerosols using data of 4-hr. rat inhalation study:

$$\rho_{\rm eff} = 0.165 \, {\rm g/cm^3}$$

Compare to SiO_2 material density of 2.65 g/cm³!

Verifying in vivo dissolution of SiO₂ NPs by HR-TEM/STEM/EELS analysis

Silica/SiO₂ Starting Materials

 Majority of the NPs are spherical or semi-spherical and ~ 20-40 nm in size.

• Nanoparticles tend to form dense agglomerated aggregates.

• Nanoparticles have smooth surfaces without etching or dissolution patterns.

 Particles are not zoned or show different densities (core to surface).

• Particles are amorphous

Agglomerate 27 Days p.E.

SiO₂ NPs show
significant in vivo
processing.

Most SiO₂ NPs lost original spherical morphology. NPs show dissolution patterns, void/pore formation and outward growth (secondary growth)

Dosimetric Extrapolation of Particle Exposures from Rats to Humans

<u>Concept</u>: HEC is defined as the Exposure Concentration resulting in Humans in the same normalized lung burden as measured in rats after acute, subchronic or chronic inhalation

Modified from: Oberdörster, 1998

HEC Calculation from 4 week rat inhalation study with SiO₂ slurry aerosol for Occupational Exposure:

Deposition in **human lung** of inhaled SiO₂ aerosol of same particle size as in rat study, predicted by MPPD model with MMAD = 0.38 μ m, GSD = 2.0, ρ = 0.165: **5.5** % deposition in alveolar region, **3.75** % in tracheo-bronchial region occupational setting: TV 1025 ml; BF 20 min⁻¹ (light exercise)

Normalizing per Unit Alveolar Surface Area of Human and Rat

Surface Areas of Respiratory Tract Regions at FRC

	Rat		<u>Human</u>	
	<i>cm</i> ²	% of total	<i>cm</i> ²	% of total
Nasal	18.5	0.75	210	0.03
Trach-bronch	24	1.00	4149	0.65
Alveolar	2422	98.25	634620	<i>99.32</i>

Keyhani et al., 1997; Kimbell et al., 1997; Miller et al., 2011

CONCLUSIONS, re: REFINING DOSIMETRIC EXTRAPOLATION MODELING

 Appropriate allometric adjustment of respiratory parameters as input into MPPD is critical for

- determining effective aerosol density during exposure
- separating biosoluble from biopersistent NPs (non-inflammatory conditions)

- NP in vivo dissolution rate is important for NP characterization

- dynamic "in vitro" dissolution as surrogate?
- contrast with static solubility
- desirable: retention/clearance kinetic in post-exposure period
- need to study composition and fate of newly found secondary NPs

— When to use alv. surface area vs. lung weight for extrapolation of retained lung burden?

— A well-designed 4-week inhalation study may be sufficient for risk characterization

Gregoratto et al (2010) particle clearance model for the gas exchange region of the human respiratory tract

(based on Kuempel et al, 2001, model)

Combined alveolar clearance: rate = 0.0027/day

*T*¹/₂ = 250 days (~ 0.7 years, 100%)

Amorphous and Crystalline Silica Types

