Toxic effects of nanoparticles on cells are modulated by their exposure scenarios

<u>Catherine Aude-Garcia¹</u>, Marie Carrière² and Thierry Rabilloud¹

1: DRF/BIG/LCBM CEA-Grenoble 2: DRF/INAC/SyMMES/LAN CEA-Grenoble

Exposure of murine primary macrophages to silver nanoparticles: fate of NPs inside the cells and functional consequences

Acute exposure (one dose, consequences 24h latter),

This protocol reproduces what would happen in the event of an *accidental* exposure to a high dose of NPs

But

- Are the observed effects reversible after few days?
- What are the consequences of repeated exposures to lower doses?

Exposure protocols

- Acute exposure : 1 dose for 24 h (5µg/ml)
 - analysis at 24 h
 - accidental exposure scenario
- ♦ Repeated exposure : same dose but delivered as ¼ dose every day for 4 days (1.25 µg/ml per day; 4 days) analysis at the end of day 4
 Chronic exposure scenario
 - Reversibility: 1 dose for 24 h (5 μg/ml) cells rinsed and cultured for 72h w/o NPs analysis at the end of day 4

Bone marrow-derived macrophages

- bone marrow (femurs and tibiae) from 6- to 8-week-old C57BL/6 mice
- differentiation for 10 days in a M-CSF containing medium
- ✤ 30-50 x 10⁶ macrophages per mouse at D10

- circulate in the blood
- peritoneal md
- alveolar m¢
- Kupffer cells (liver)
- → osteoclast (bone)
 - microglia (brain)
- histiocytes (connective tissue)

- phagocytosis and destruction of pathogens and abnormal cells
- antigen presentation
- inflammation signaling (cytokine signaling)

Sentinel cells, first line of defense upon uptake of NPs

Silver nanoparticles

- Commercial Silver Nanoparticles (Sigma):
 < 100 nm , spherical, PVP40-coated NPs
- TEM: 59 ± 18 nm (water)

Transmission Electron Microscopy

- DLS: 95.7 ± 4,06 nm (water/culture medium)
- no aggregation in medium for at least 4 days
- Zeta potential : -22.1 mV.

<u>Collaboration</u>: Nathalie Herlin CEA-Saclay (DRF/IRAMIS/NIMBE/LEDNA)

Intracellular Ag content

particle-induced X-ray emission (PIXE)

intracellular Ag accumulation in cells exposed to NPs

Ag content significantly lower when macrophages are allowed to recover for 72h in a NP-free medium

cells are able to eliminate Ag

Probing the fate of Ag-NPs in cellulo

Exposure to Ag-NPs	Ag-NPs fraction (%)	Ag-GSH fraction (%)
6 h acute (1 x 5μg/ml)	90,6 ± 8	9,4 ± 8
24 h acute (1 x 5 μg/ml)	61,1 ± 4	38,9 ± 4
96h repeated (4 x 1,25µg/ml) 27,3 ± 8	72,7 ± 8

Ag⁺ is progressively released from Ag-NPs and is recombined with GSH

X ray absorption spectrocopy (Ag K-edge XANES spectra) ESRF Grenoble

<u>Collaboration</u>: Giulia Veronesi ESRF / CEA-Grenoble (DRF/BIG/LCBM) G. Veronesi *et al.*, Nanoscale 2015

What are the biological consequences?

Intracellular glutathione level

Intracellular glutathione level

Intracellular glutathione level

Capacity to face up to a bacterial attack

TNFα

acute repeated recovery Ag

1- exposure to Ag-NPs (≠ scenario)

200

150

100

50

0

100

ctl

% of control cells

- 2- O/N activation by LPS (0,1 μ g/ml)
- 3- measure of the quantity of secreted NO and cytokines

lactate

Anti-inflammatory cytokines

Pro-inflammatory cytokines

300

200

100

50

0

% of control cells

##

96

lactate

Capacity to face up to a bacterial attack

- 1- exposure to Ag-NPs (≠ scenario)
- 2- O/N activation by LPS (0,1 μ g/ml)
- 3- measure of the quantity of secreted NO and cytokines

Anti-inflammatory cytokines

Pro-inflammatory cytokines

An acute exposure to Ag-NPs deeply affects macrophage functions

BUT

- when cells are allowed to recover in a NP-free medium, they do eliminate Ag rapidly and by doing this, they recover their functions
- If the same dose of NPs is delivered in a four-split dose, similar amounts of Ag are internalized, and a higher proportion of Ag is recombined with thiol-containing ligands. All the macrophage functions tested are only poorly affected
- Acute response: massive release and re-precipitation of Ag⁺ with thiol-containing ligands (GSH), compromising the cellular functions.
- Long term response to repeated low concentrations: the initial dose is low enough not to disturb the cellular functions too severely. The cells are still able to react by increasing the production of thiols scavengers (MTs, GSH)

Thanks to

- All the members of the ProMD team
- Giulia Veronesi (LCBM/BIG/CEA-Grenoble) for the X ray absorption spectroscopy studies
- Marie Carrière (LAN/INAC/CEA-Grenoble) for the PIXE studies
- * Nathalie Herlin-Boime (CEA Saclay) for the *characterization of the Ag-NPS by TEM*

- Labex Serenade
- ANSES
- CEA Toxicology Program