

INSERM U955 Team 4 Faculté de médecine de Créteil 8, rue du Général Sarrail 94000 Créteil Cedex

CARBON NANOTUBES BUT NOT SPHERICAL NANOPARTICLES BLOCK AUTOPHAGY PROCESS BY A SHAPE-RELATED TARGETING OF LYSOSOMES IN MURINE MACROPHAGES

<u>A. Ridoux</u>¹, V. Cohignac^{1*}, M. Landry^{1*}, A. Gerdi², N. Herlin², M. Haruta³, P. Codogno⁴, J. Boczkowski¹, J-C. Pairon¹, S. Lanone¹.

INSTITUT MONDOR DE RECHERCHE BIOMÉDICALE

Respiratory Exposure to manufactured Nanoparticles

- Pulmonary responses can be associated with NPs toxicity
 - Fibrosis

Bermudez et al. 2004 ; Card et al. 2008 ; Mercer et al. 2011 ; Wang et al. 2013

• Emphysema

Chen et al. 2006

Toxicological mechanisms

 Oxidative stress
 Inflammation
 Genotoxicity

Dependent on the physicochemical characteristics of the NPs
Boczkowski et al. 2012 ; Shi et al. 2013 ; Manke et al. 2013

Autophagy?

<u>Autophagy</u>

Physiological process for the degradation of cellular components
Regulation of cellular homeostasis

Link between autophagy and NPs toxicity?

Autophagy, oxidative stress and inflammation

 Autophagy can inhibit the production of reactive oxygen species (ROS)

Chen et al. 2009, Scherz-Shouval et al. 2007

Autophagy can suppress inflammation

Schroder et al. 2010, Shi et al. 2012

Autophagy and NPs toxicity

NPs found in lysosome

Inserm

nang

6

Hypothesis

A defective autophagy could be a new mechanism explaining NPs effects

Aim

- Do the NPs causes a dysfunction of autophagy?
- Do the physicochemical parameters of NPs modulate this process?

Experimental protocol

Inserm

UPEC

IMRB

nang

Ο

Nanoparticles characterization

NPs	Composition	Crystal phase	Shape	Dimension (nm)	Specific surface area (m²/g)	Zeta potential (mV)	Hydrodynamic diameter (nm)	Endotoxin level	Intrisic ROS production
S-CNT	Carbon	Amorphous	Nanotube	26×2000	Not determined	Not determined	Not determined	Not detected	+
SF-CNT	Carbon	Amorphous	Nanotube	25×2000	Not determined	Not determined	Not determined	Not detected	Not detected
L-CNT	Carbon	Amorphous	Nanotube	24×7000	Not determined	Not determined	Not determined	Not detected	+
LF-CNT	Carbon	Amorphous	Nanotube	25×9000	Not determined	Not determined	Not determined	Not detected	+
FW2	Carbon Black	Amorphous	Spherical	13	373 ±18	-11,9	1033 ±88	Not detected	Not detected
Micro	TiO ₂	Anatase	Spherical	200	8 ±0,04	0,4	874 ±149	Not detected	+
A10	TiO ₂	Anatase	Spherical	10	96 ±2,3	-2,1	1020 ±146	Not detected	Not detected
A/R	TiO ₂	65 % Anatase + 35 % Rutile	Spherical	25-75	27 ±1,5	0,2	715 ±104	Not detected	Not detected
Rut	TiO ₂	Rutile	Needle-like	5×20	160	-39,8	55 ±20	Not detected	+
P25	TiO ₂	80 % Anatase + 20 % Rutile	Spherical	30	50	-7,3	48 ±19	Not detected	+
P25-Au3	TiO ₂ + 1 % Au	80 % Anatase + 20 % Rutile	Spherical	30	57	-21,1	175 ±103	Not detected	+
R25-Au3	TiO ₂ + 1 % Au	80 % Anatase + 20 % Rutile	Spherical	30	57	-21,9	54 ±34	Not detected	+

\mu Inserm

Institut national de la santé et de la recherche médicale

Nanoparticles characterization

NPs observed by TEM Scale bar : 50 nm

🖐 Inserm

Nanoparticles internalization in macrophages

Pictures of macrophages exposed to NPs observed by TEM Scale bar : 500 nm

NPs could be internalize in macrophages, in autophagic-like structures

6

lnserm

Autophagosome formation

nano SAFE 16

Autophagic flux

Blockage of autophagic flux with the 4 CNT but not spherical NPs

nano

Autophagic flux

Blocking of autophagic flux with the 4 CNT but not spherical NPs

6

曲

Lysosomal alterations

Increase of lysosome number in response to CNT

曲

Acknowledgments

Inserm U955 IMRB, team 4 Sophie Lanone Jorge Boczkowski Vanessa Cohignac Stéphane Tchankouo Emmanuel Paul Shamila Vibhushan Marie-Laur Benjamin I Lucie Biza Philippe Caraana

Thank you for your attention

Hôpital Necker – Enfants malades

And the other members of the team 4

Platform of IMRB

Elisabeth Marcos Xavier Decrouy

CEA Saclay

Mathieu Pinault Martine Mayne-L'Hermite Nathalie Herlin-Boime Adèle Gerdil Baptiste Cottin

nano 16

Patrice Codogno

