

Development of an *In Vitro* System to Assess the Inhalation Toxicity of Nanomaterials

Hana Barosova

hana.barosova@unifr.ch

5th International Conference NANOSAFE 2016 7th – 10th November 2016

Advancing 21st Century Toxicology

Multi-walled carbon nanotubes (MWCNTs)¹

CNTs production: 11-1000 tons/year²

Potential human exposure:

- occupational
- use of consumer products/disposal

http://www.exportersindia.com/ad-nano-technologies/functionalized-mwcnt-shimoga-india-776051.htm

Examples of commercial applications

www.bike-eu.com; www.nanotechmag.com; www.cdc.com; www.future-carbon.de

Samples collected in MWCNT facilities³

=> Mono- and co-culture **lung cell models** for the prediction of (**pro-**) **fibrotic** events upon exposure to CNTs.

Hypothetical scheme of the role of $TGF-\beta$ in idiopathic pulmonary fibrosis (IPF) pathogenesis and potential sources of the activated myofibroblast¹.

Carbon nanotubes exposures

Vitrocell[®] Cloud system: NM Generation and Exposure System

Type of CNTs	Length (µm)	Width (nm)	Impurities	Total deposition in ALI per exposure
Mitsui-7 ¹	13	40 – 50	< 1 %	1 μg/cm²
Nanocyl 7000 ²	1,5	9,5	<1%	0,5 μg/cm ²

Mitsui-7 MWCNTs

Mitsui-7 : 5, 10, 20 μ g/mL dispersed in complete medium

Macrophages – THP-1

10 μ g/ml Mitsui-7, 24h post-exposure

Cell nuclei

Mitsui-7

F-actin

	Cell model	Exposure method	Time-points for sample collection	Investigated endpoints
Monocultures	A549	suspension	24h, 96h	Cytotoxicity (LDH) Oxidative stress (GSH)
	MRC-5	suspension	24h, 96h	Pro-tibrotic response (TGF-β, OPN, PDGF-AA) Pro-inflammation
	THP-1	suspension	24h, 96h	Cell morphology (LSM) Cell proliferation (BrdU)

Results – Pro-fibrotic response in mono-cultures

n=3; $[I\gamma]=1\mu g/ml$; Error bars: SEM; * statistically significant increase

Chortarea et al., manuscript in preparation

	Cell model	Exposure method	Time-points for sample collection	Investigated endpoints
odels	Cell-lines co- culture	Air-liquid interface (VITROCELL [©] Cloud system)	24h, 96h	Cytotoxicity (LDH) Oxidative stress (GSH) Pro-fibrotic response (TGF-β, OPN, PDGF-AA) Pro-inflammation (IL-8, TNF-α, IL-1β) Cell morphology (LSM) Cell proliferation (BrdU)
Co-culture m	EpiAlveolar™ model (primary cells)	Air-liquid interface (VITROCELL [©] Cloud system)	1 week (96h), 2 weeks	

Results – Pro-fibrotic response in co-cultures

n=3; [Iγ]=1µg/ml; Error bars: SEM

Barosova et al., manuscript in preparation

• The cells were exposed to 5 – 20 μ g/ml (suspension), or 1 – 20 μ g/cm² (ALI). VITROCELL Cloud system exposures resulted in homogenous repeatable dosedependent MWCNT deposition.

	Cell model	Increase 24 h post-exposure	Increase 96 h post- exposure	2 weeks post-exposure
Monocultures	A549	-	OPN, PDGF-AA and TGF-β	N/A
	MRC-5	IL-1 β and OPN	TGF-β	N/A
	THP-1	IL-1β	-	N/A
Co-culture models	Cell-lines co-culture	IL-1β, TNF- <mark>α, TGF-β,</mark> PDGF-AA and OPN	IL-1 β and TNF- α	N/A
	EpiAlveolar [™] model	N/A	TNF-α <mark>,</mark> TGF-β, OPN	TNF-α

- Monocultures and suspension exposures (high concentrations) show significant increase in pro-fibrotic markers.
- No significant increase but only trends for both co-culture models for all cytokines was observed.

- The concentration of 10 μg/cm² of Mitsui (obtained after 5 days of exposures) <u>corresponds</u> to lowest concentration used *in vivo* (Snyder-Talkington et al., 2013, Toxicology and Applied Pharmacology, Kobayashi et al., 2010, Toxicology).
- From monoculture experiments it is obvious that pro-longed exposure time is needed to induce a pro-fibrotic response, however, the deposited CNT concentration is not known.
- The air-liquid approach is highly recommended for future experiments.
- To predict the pro-fibrotic potential of CNTs in the co-cultures, the <u>extension</u> of post-exposure time will be tested.

UNIVERSITÉ DE FRIBOURG UNIVERSITÄT FREIBURG

AMI Bionanomaterials group

Prof. Barbara Rothen-Rutishauser Prof. Alke Fink Savvina Chortarea Laetitia Häni Yuki Umehara Dr. Dedy Septiadi Fikad Zerimariam

PETA International Science Consortium

Dr. Monita Sharma Dr. Amy J. Clippinger

MatTek Corporation Dr. Anna Maione Dr. Patrick Hayden

Advancing 21st Century Toxicology

Thank you for your attention!

Hana Barosova

hana.barosova@unifr.ch

Advancing 21st Century Toxicology