Heteroaggregation, surface affinity and implications for nanomaterial fate

Mark R. Wiesner, Niall O'Brian, Nick Geitner

Director

Center for the Environmental Implications of NanoTechnology Duke University

Acknowledgements

Mathieu Therezien

Nick

Lauren

Niall

Greg Lowry Jason Unrine Mike Hochella **Rich Di Giulio** Cole Matson **Emily Bernhardt** Ben Colman Joel Meyer Peter Vikesland Gordon Brown Paul Westerhoff Olga Tsyusko

Melanie Auffan Jerome Rose Jean-Yves **Bottero** Clement Levard Jerry Schnoor

Serenade

International Consortium for the Environmenta Implications of Nano Technology

> Raju Badireddy Shihong Lin Yao Xiao **Fabienne Schwab** Lauren Barton Mathieu Terezien Jeff Farner **David Jassby** Benjamin Espinasse Charles De Lannoy **Alexis Carpenter** Amalia Turner

Heteroäggregation and importance in aquatic systems

- 1. Removal of viruses
- 2. Fate of abrasion and weathering products
- 1. Fate trace particulate contaminants
- 2. Micro/nano plastics
- 3. Colloids in wastewater discharge
- 4. Bacterial inactivation using bacteriophages
- 5. Fate of adsorbed contaminants

(Hetero)aggregation and deposition both depend on surface affinity

	Chemistry	Physics
Aggregation	α	β
Deposition	α	η

Aggregation rate proportional to $\alpha\beta$ Deposition rate proportional to $\alpha\eta$

Settling rate dependent on (hetero)aggregation rate

Surface affinity includes effects from:

- Nanoparticle composition, composition of surface, intervening fluid
- Adsorbed macromolecules
 - Proteins
 - Engineered surface treatments/ stabilizers
 - Humic materials, polysaccharides...
- Ionic composition
 - Ionic strength, charge screening
 - Specific adsorption of ions (e.g., Ca, PO4...)
 - pH
- Surface modifications due to redox transformations, dissolution...
- Electro-steric interactions (interface between macromolecules and ionic environment)
- Surface reactions/ electron sharing / protein binding

Challenges in calculating surface affinity from theory (and intrinsic nanoparticle properties)

- 1. DLVO- role of ionic strength, ionic composition...
- 2. Role of macromolecules, electro-steric stabilization, and hydrophobicity
- 3. Complex geometry of aggregates and surfaces

qualitatively useful but, not quantitatively predictive in real systems

Measuring surface affinity in complex systems

$$\frac{dn_k}{dt} = \frac{1}{2} \partial \sum_{i+j \to k} b(i, j) n_i n_j - \partial n_k \sum_i b(i, k) n_i - breakup$$

$$\frac{dn}{dt} = -\alpha\beta(n,B)nB + k_B(n_0 - n)$$

Barton et al., ENVIRONMENTAL ENGINEERING SCIENCE Volume 31, Number 7, 2014

Predicted trend for heteroäggregation

Time dependent distribution coefficient vs. aggregation time

Barton et al., ENVIRONMENTAL ENGINEERING SCIENCE Volume 31, Number 7, 2014

Comparison of column and suspension surface affinities

Matrix Conditions

pH3: $\boldsymbol{\alpha}$ assumed to be close to 1, homoaggregation minimized

 ${}^{\bigcirc}$ SiO₂ ZP \approx -20 mV; CeO₂ ZP \approx +28 mV

Column vs. mixing Effect of humic acid

Examples of nanoparticle reactivity

Effect	Underlying reaction
Toxicity to plants and fish by nano Ag	Nano silver dissolution
Viral inactivation by fullerol	Singlet oxygen generation
Bacterial inactivation by CeO2	Ce reduction
Toxicity of herbicide on NP	Herbicide desorption

heteroäggregation

reaction

Observations of trophic transfer

Trophic dilution

¹Joel Meyer **2** ²Paul Bertsch and Jason Unrine ³Emily Bernhardt, Curt Richardson & Claudia Gunsch ⁴Dana Hunt

Positively charged NPs have much greater potential for association with algae

Nick Geitner

Duke

Conclusions

- 1. Heteroäggregation/ deposition is a key fate process
- 1. Surface Affinity in complex media can be measured using programmed mixing procedure
- 2. Applications to predicting bioüptake and trophic transfer
- 3. Surface affinity also plays a role in determining nanoparticle effects

Thank you

