Aging effects on the toxicity of silver nanoparticles to soil bacteria in artificial media and soil pore water

Carolin Schultz¹, Joanna Gray², Marianne Matzke¹, Claus Svendsen¹, Liz Shaw², Elma Lahive¹

Introduction

CETT Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

Nanoparticles undergo transformations during release and after entering environment

Dissolution drives observed effects

In environmental media presence of ligands mediates toxicity

Hypotheses

Aging affects toxicity (increases dissolution but also binding to DOM) \rightarrow Aging Ag NPs in ISO 10712 standard test medium and extracted soil pore waters

Level of observed dissolution explains level of toxicity \rightarrow Comparing toxicity of unaged (total) and aged (total and dissolved fractions)

Materials and Methods

Bacteria species

Arthrobacter globiformis Pseudomonas putida

Media

Media: ISO 10712, pH 7 Soil: Dorset, UK Acidic heath land, natural pH_{H2O} 4.2

A. globiformis P. putida

Nanoparticles

ID	Size (NTA/TEM)	Coating	Zeta- potential
Ag-TA	60 nm/ 49 nm	Tannic Acid	-50.0 mV
Ag-PVP	88 nm/ 52 nm	PVP	-11.6 mV
Ag ₂ S	81 nm/ 36 nm	PVP	-25.7 mV

Exposure characterisation over test duration using NTA

Materials and Methods

Pore water extractions

CETT Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

Toxicity tests: Effects on growth

AgNO₃

A. globiformis more sensitive than P. putida

Aging reduces toxicity Dissolution fraction drives toxicity in aged exposures

Soil pore water exposures reduces toxicity Higher toxicity at low pH

🔶 Ag-TA

Results

Aging reduces toxicity at low pH Dissolution only contribute to toxicity in ISO for *A. globiformis*

Pore water pH effect species dependent

Aging reduces toxicity Dissolution does not contribute to toxicity in soil pore water

Higher toxicity at low pH for P. putida

Toxicity *A. globiformis* : Ag-TA > Ag-PVP *P. putida:* Ag-PVP > Ag-TA

No changes in growth compared to controls after 35 mg/l exposures to Ag_2S

Stability in ISO medium over 24h using NTA

Ag-PVP and Ag-TA slightly increase in size

Interference during characterisation in soil pore water extracts

Temperature effects 4°C

A. globiformis

Greater toxicity of aged particles

Conclusions

A. globiformis more sensitive than P. putida

Toxicity: $AgNO_3 > Ag-PVP = Ag-TA > Ag_2S$ in all media Coating effects bacteria dependent

AgNO₃ >

Hypotheses

→ Aging reduces toxicity in pore waters at 25°C

→ Dissolution main driver of toxicity in ISO medium but does not contribute to toxicity in pore waters
Waiting for concentration analysis to confirm

Waiting for concentration analysis to confirm

Complex interactions make read across/predictions difficult

A. globiformis P. putida

Acknowledgements

Joanna Gray, Marianne Matzke, Claus Svendsen, Liz Shaw, Elma Lahive

GUIDE

FP7/2007-2013 grant agreement No 6043387

Rudo Verweij

Anne Dudley


```
Jason Unrine
```


Beatriz Macarena Cobaleda Siles Ariadna Peral

Image title slide: https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRksk6mPX6wp1eh MibjuJncs3cVJhdbL6OA95CPmbuiK_7I6UvH

Soils	Origin		Sand %	Silt %	Clay %	OM %	100% WHC [n	5 nl] (mva	CEC al/100g)	
Dorset	Acidic heath	Sandy	91.7	4.7	3.5	8.00	49.2		5.4	
			% Coarse sand	% Fine san	d	% Clay	% Silt	% Total C	% Total N	
Texture, total carbon and nitrogen		51.5	40.2		3.5	4.7	4	0.1		
			рН _{н20}	pH _{CaCl2}	Cond	luctivity (µS)				
pH and condu	ctivity		4.2	3.1		422				
			Са	Mg		К	Na	CEC	% BS	
Exchangeable cations (cmol(+)/kg)		1.4	0.6		0.1	0.1	5.4	41		
			% Fe _{ox}	% Al _{ox}	G	% Fe _{CBD}	% Al _{cbd}			
Extractable Fe and Al		0.04	0.03		0.11	0.03				

Stability in soil pore water over 24h using UV vis

Ag-PVP

