Degradation Of Bis-*p*-Nitrophenyl Phosphate Using Zero-Valent Iron Nanoparticles

MAIBY VALLE ORTA, David Díaz, Inti Zumeta and Rubén Saldivar

Research Center in Applied Chemistry Mexico

CENTRO DE INVESTIGACIÓN EN QUÍMICA APLICADA

Nanosafe 2016 Grenoble, 10th November

Hydrolysis of phosphodiester bonds has been of much interest for both chemists and for biochemists

Why?

these are related to:

- Driving and storing information on genetic materials, for example: DNA and RNA
- Energy transfer
- Phosphorylation protein
- Many intermediaries metabolites
- Inhibiting the action of acetylcholinesterase (AChE) in nerve cells

Chemists

these are widely used like:

- Agrochemical
 - ✓ In the formulation of insecticides and herbicides which are washed by rains into the groundwater and some is absorbed in plants.

These are **Neurotoxic Compounds**

Phosphodiester bonds are extremely stable and are highly resistant toward hydrolytic processes

Bis-*p*-nitrophenyl Phosphate (BNPP) is a phophodiester compounds than can be used as a model molecule

The stability of this molecule is relatively high:

Its t_{1/2} is 2000 years in water at 20 °C and 53 years in water at 50 °C.

Chin, J.; Banaszczyk, M.; Jubian, V.; Zou, X. J. Am. Chem. Soc. 1989, 111, 186

Zero-valent Iron Nanoparticles have a high potencial for hydrolyze phosphodiester bonds

This due to,

When is reducing the particle size, is increasing the surface area which has a direct influence on the number of active surface sites. These sites are called Hot Spots, where the electronic handness is very pronounced and are able to polarize bonds like P-O.

ZVI NPs Z-Contrast TEM micrographs

Z-Contrast of ZVI nanocrystallites prepared from FeBr_2 (2 x 10⁻³ M), NaBH₄ (2 x 10⁻² M), and TEA (2 x 10⁻² M) in EG and the corresponding particle size distribution histogram.

Parameters estimated of zero-valent Fe NPs dispersions from data of size distribution			
Metal	Concentration of	Total surface	Relation
	nanoparticles	(m ²)	Surface/volume
	(particles/mL)		(m -1)
iron	$2.04 \text{ x } 10^{13}$	0.18	5.5 x 10 ⁸

Electronic absorption spectra recorded at room temperature of a BNPP aqueous dissolution (1x10⁻⁴ M).

Time-dependent changes in the electronic absorption spectra of an aqueous reaction mixture, BNPP (1x10⁻⁴ M) and ZVI NPs (1x10⁻⁷ M).

Proposed mechanism

+

+

Iron by-products are environmentally friendly compounds since they are widely distributed in the Earth's crust.

Concluding remarks:

>ZVI NPs with average diameter 10.2 nm (SD=3.3) were synthesized by a reliable method.

- The ZVI nanocrystallines are able to degrade BNPP, under normal reaction conditions. The overall degradation process takes place in approximately 10 minutes.
- > The by-products derivated from the ZVI nanoclusters are environmental friendly.
- > The by-products of BNPP are aromatic amines, which are more susceptible to biodegradation than the original nitro compounds.

Thank you for your attention!!!

General Reaction Scheme of Synthesis of ZVI NPs

$$FeBr_{2} + 2NaBH_{4} + 3HOCH_{2}CH_{2}OH \rightarrow Fe^{0} + \left(\begin{array}{c} O \\ O \end{array} \right) + 2NaBr + 7H_{2}(g)$$

$$Fe^{2+} + 2e^{-} \longrightarrow Fe^{0}$$

$$2H^{-} - 2e^{-} \longrightarrow H_{2}$$

Room Temperature

Argon bubbling