Evaluation of titanium dioxide nanoparticle heteroaggregation with suspended particulate and natural organic matter

Danielle Slomberg¹, J. Labille¹, A. Pariat¹, A. Praetorius², P. Ollivier³, N. Sani-Kast⁴, O. Radakovitch¹, A. Bruchet⁵, M. Scheringer⁴, J.-Y. Bottero¹

¹Aix-Marseille Université, CNRS, CEREGE, Aix en Provence, France
²University of Vienna, Vienna, Austria
³BRGM, Orléans, France
⁴ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland
⁵SUEZ Environnement, Le Pecq, France

Nanosafe Grenoble November 9th, 2016

ERA-NET SIINN NANOHETER program 2013-2016

Fate of manufactured nanoparticles in the water column

Selecting inorganic colloid analogues

Rhone sampling campaign

colloidal

Slomberg et al. Environ. Chem., 2016a, in press, http://dx.doi.org/10.1071/EN15065.

Nanoparticle heteroaggregation with inorganic colloid analogues

Praetorius et al. *ES&T*, **2014**, *48*, 10690-10698. Labille et al., *ES&T*, **2015**, *49*, 6608-6616.

Determining heteroaggregate sticking efficiency

Nanoparticle heteroaggregation with inorganic colloid analogues

Praetorius et al. *ES&T*, **2014**, *48*, 10690-10698. Labille et al., *ES&T*, **2015**, *49*, 6608-6616.

Slomberg et al. Environ. Chem., 2016b, in press, http://dx.doi.org/10.1071/EN16038.

Heteroaggregation of titanium dioxide NPs with Rhone river SPM

Heteroaggregation of titanium dioxide NPs with Rhone river SPM

Predicting NP residence time in the water column: river fate model

- For $\alpha_{NP-C} = 1$, complete sedimentation of TiO₂ NPs within 100 km of emission
- Residence time of TiO₂ NPs ~ 1 day
- NP fate determined by water composition at or near source
- Early and substantial accumulation of TiO₂ NPs in sediment layer

Sun et al. *Environ. Pollut,* **2014**, *185*, 69-76. Sani-Kast et al. *Sci. Total. Environ.*, **2015**, *535*, 150-159.

Conclusions: Mechanistic approach

- Heteroaggregation drives NP fate, not homoaggregation
- Heteroaggregation of TiO₂ NPs with colloids easily assessed with laser diffraction
- Calcium-induced heteroaggregation between (-) NPs and (-) colloids
- Mineral and organic suspended matter composition influences heteroaggregation

Conclusions: Rhone case study

- Sticking efficiency can be determined as input parameter for fate models
- α_{NP-C}~1
- Emission at Lyon of 30 ng/L TiO₂ NPs:
 - Distance of transport: 100 km
 - Residence time: ~1 day
 - Max [TiO₂ NPs] in sediment: ~ 3 mg/kg

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Acknowledgements

ERA-NET SIINN NANOHETER program 2013-2016

Contact <u>slomberg@cerege.fr</u>