Vous êtes ici : Accueil > S'informer / réviser > Le nanomonde

Dossier multimédia | Livret thématique | Matière & Univers | Nanosciences | Micro-nanotechnologies | Nanomatériaux | Nanomédecine

Le nanomonde

Nanomatériaux


Construire des nanomatériaux aux propriétés nouvelles pour l’énergie, les transports et d’autres applications de la vie quotidienne est un enjeu stratégique.

Publié le 1 juillet 2012

L’observation des matériaux au microscope fait apparaître leur composition, leur structure, granulaire ou fibreuse, et leurs défauts. Elle révèle, par exemple, que les alliages métalliques sont constitués d’agrégats de grains de taille micrométrique.


Influence de la structure

La structure détermine les propriétés optiques, mécaniques, électriques, magnétiques, thermiques… des matériaux. En faisant coïncider l’échelle d’homogénéité des matériaux avec l’échelle d’action de phénomènes physiques, on peut modifier certaines de leurs caractéristiques. Ainsi, un verre millistructuré est transparent mais pas superhydrophobe, tandis qu’un verre microstructuré est opaque mais toujours pas superhydrophobe. Seul un verre nanostructuré est transparent et superhydrophobe.

Les nanomatériaux sont donc volontairement façonnés à cette échelle : ils sont constitués d’éléments nanométriques qui vont leur conférer la propriété recherchée. Ils peuvent se présenter sous forme de nanopoudre ou comprennent des nanoparticules intégrées dans une matrice ordinaire (on parle alors de matériaux composites).
En diminuant la taille des grains, on obtient des matériaux plus légers et ayant de meilleures propriétés mécaniques, par exemple plus résistants. Les matériaux obtenus sont plus malléables car les grains glissent plus facilement les uns par rapport aux autres.

Réacteur de l’installation pilote de synthèse de nanopoudres par la méthode de pyrolyse laser en flux, en cours d’installation
Réacteur de l’installation pilote de synthèse de nanopoudres par la méthode de pyrolyse laser en flux, en cours d'installation. © A.Gonin/CEA

nanocristaux
Les polymères sont transparents : ce sont les nanocristaux dispersés dans le polymère qui sont fluorescents sous lampe UV. © Artechnique/CEA

Plus un objet est petit, plus sa surface externe est importante par rapport à son volume. Les objets nanométriques sont caractérisés par un nombre d’atomes en surface identique au nombre d’atomes en volume. Les phénomènes de surface jouent donc un rôle désormais prédominant. Le monde naturel l’illustre bien : ainsi, un insecte peut marcher sur l’eau mais, grossi 500 fois jusqu’à la taille d’un éléphant, il n’en serait plus capable.

De plus, ce qui se passe à l’interface entre chaque élément constitutif est aussi très important. Plus il y a d’éléments, plus la surface d’échange augmente. Celle des objets nanométriques est par conséquent immense. Il est ainsi possible de modifier les propriétés d’un matériau en le façonnant à cette échelle. Par exemple, le cuivre formé de nanocristaux est trois fois plus résistant mécaniquement qu’en microcristaux. Une poussière de nanotubes « en vrac » a une immense surface d’échange avec son environnement : plusieurs centaines de mètres carrés par gramme. Cela permet notamment d’augmenter l’efficacité des catalyseurs de l’industrie chimique ou des pots d’échappements pour le même volume de matière.

Certains matériaux réémettent de la lumière visible quand ils sont éclairés : c’est le phénomène de photoluminescence. Sous des rayons ultraviolets, la couleur émise par des nanocristaux de séléniure de cadmium change en fonction de leur dimension, passant du bleu pour des grains de 2 nm au vert pour 3 nm, puis au rouge pour 5 nm. Dotés de cette propriété, les nanocristaux de semi-conducteurs, souvent appelés quantum dots, peuvent être utilisés dans le marquage moléculaire ou encore comme marqueurs d’objets précieux et de produits commerciaux.

On peut ainsi utiliser la réactivité ou les propriétés de certaines nanoparticules pour obtenir des surfaces fonctionnalisées : vitres autonettoyantes, miroirs antibuée, revêtements antibactériens et/ou fongicides… Pour cela, il faut déposer une couche de ces nanoparticules à la surface d’un objet en matériau ordinaire avec des procédés comme le sol-gel ou le dépôt en phase vapeur.

La nature inspiratrice

Le gecko, petit animal qui ressemble à un lézard, a la propriété étonnante de courir au plafond ! En examinant de très près la surface de ses pattes, on a découvert qu’elle est constituée d’un tapis de fibres très serrées qui lui donne cette superadhérence. Des chercheurs sont en train d’en copier la structure pour reproduire cet effet de nano-velcro…
La feuille de lotus, quant à elle, présente une propriété étonnante : elle est superhydrophobe. L’étude nanométrique de sa surface met en évidence une nanostructure qui fait glisser les gouttes, et permet de comprendre comment et pourquoi, même plongée dans l’eau, elle paraît toujours sèche. L’intérêt de cette recherche est de pouvoir fabriquer des verres hydrophobes qui pourraient équiper les véhicules et la lunetterie.

Les objets nanométriques « naturels » sont depuis toujours présents dans notre environnement. Les grains d’argent des émulsions photographiques, la poudre à base d’encre de Chine, les colorants des verres (de certaines cathédrales par exemple) contiennent des nanoparticules. Mais les objets dérivant des nanotechnologies ne sont fabriqués que depuis quelques années. Aujourd’hui, plus de 350 produits grand public sont commercialisés pour lesquels le constructeur mentionne au moins un élément dérivé des nanotechnologies. Parmi eux, on compte des cosmétiques, des systèmes électroniques et des produits ménagers et sportifs.

Pour beaucoup d’applications, des nanoparticules aux propriétés déterminées sont incluses dans une matrice, créant ainsi un matériau composite fonctionnel. Tout, ou presque, est envisageable : béton ultraléger, résistant et auto-cicatrisant, film de polyéthylène antibactérien (en incluant des nanoparticules d’argent) et imperméable aux rayons UV (grâce à des nanoparticules de dioxyde de titane), crèmes solaires incorporant, elles aussi, des nanograins de dioxyde de titane pour l’absorption des UV dangereux pour la peau, céramiques nanorenforcées rendues bio­compatibles, matières plastiques à base de polymères rendues conductrices, ininflammables ou plus résistantes…


Des nanos au service de l'énergie

L’apport des nanomatériaux et des matériaux nanostructurés est stratégique dans le domaine de l’énergie nucléaire du futur, en particulier dans les projets liés aux réacteurs de « Génération IV ».

VidéoNanotechnologies pour l'énergie (reportage)

En effet, qu'il s'agisse des nouveaux alliages métalliques renforcés par une dispersion très fine d’oxyde (aciers ODS) ou de composites à matrices céramiques (CMC), les performances de ces matériaux reposent sur leur nanostructuration. Elles permettent par exemple aux premiers de renforcer leur résistance lors de leur utilisation en environnement sévère ; aux seconds de présenter une conductivité thermique élevée. Le développement pour le nucléaire de ces matériaux nanostructurés permettra la diffusion de connaissances, de savoir-faire technologique et d’innovation dans d’autres secteurs industriels.

Les nouvelles technologies de l’énergie intègrent aussi ces recherches.
Premier exemple : les cellules photovoltaïques. Les dispositifs actuels en silicium cristallin convertissent au maximum 16 à 18 % de la puissance du Soleil en énergie électrique, mais la fabrication des cellules est coûteuse, complexe, et exige de grandes précautions. Les nanotechnologistes élaborent des structures photosensibles flexibles, à partir de plastiques conducteurs, actuellement en phase de test.


Écran vidéo à base de nanotubes de carbone réalisé en 2005
Écran vidéo à base de nanotubes de carbone réalisé en 2005. L’image affichée est extraite du film La Ruée vers l’or de Chaplin. © CEA-Léti

Préparation des cellules solaires photovoltaïques souples à l’Institut national de l’énergie solaire.
Préparation des cellules solaires photovoltaïques souples à l’Institut national de l’énergie solaire. © C.Dupont/CEA
L’apport des nanomatériaux et des matériaux nanostructurés est stratégique dans le domaine de l’énergie nucléaire du futur.

Céramique de carbure de titane testée comme matériau pour les gaines des réacteurs de 4e génération

Céramique de carbure de titane testée comme matériau pour les gaines des réacteurs de 4e génération. © M.Dormeval/CEA


Pour les piles à combustible, le polymère des membranes a été rendu plus résistant mécaniquement, chimiquement et thermiquement. Les particules de platine, qui jouent le rôle de catalyseur, ont été remplacées par des nanoparticules, permettant ainsi d’économiser du métal précieux.
Le champ des possibles est immense. À l’évidence, des secteurs comme l’aéronautique et l’aérospatial, toujours à la recherche de matériaux légers et ultra-performants, seront de gros utilisateurs. Les moyens de transport terrestres, maritimes et aériens seront plus légers, emporteront plus de charge utile tout en consommant moins d’énergie et donc en polluant moins. L’industrie textile connaîtra aussi sans doute des bouleversements : de nombreux scientifiques travaillent déjà sur des tissus « intelligents ».