

Human Toxicology

For a better evaluation of natural, technological and industrial risks

Exploring the mechanisms of the response of living to abiotic stresses to

- Characterise the mechanisms for interpreting the toxic effects of pollutants or stresses
- Identify molecular and/or cellular biomarkers to quantify these effects and establish regulatory standards
- Propose predictive systems for the toxicity of a chemical compound or a potentially harmful agent/factor
- Develop and/or qualify protocols or formulations to prevent and/or limit risk
- Study the biotransformation of mineral nanomaterials in tissues

By using tools for global or targeted analysis of the response

- Genomics, transcriptomics, proteomics, metabolomics
- Study of cell damage repair systems
- Innovative and relevant cell models and ethical to avoid humanised animal models
- Protein biochemistry, bioinorganic chemistry, bioinspiration
- Analytical chemistry: mass spectrometry, LC
- Large-scale facilities Synchrotron

Toxic agents and stress of interest

Nanomaterials

Metals

Organic Toxics

Plastics

Radionuclides

Oxidative stress

UV, solar radiation and ionising radiation

Applications

Dual research

Disaster management Threat response Exposure control Protective measures

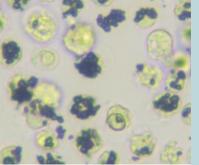
Industrial

Dermo-cosmetics,
Pharmacology - Diagnostics
Speciality chemicals
Optoelectronics

In figures

5 PhD students incl. CIFRE per year 21 researchers 25 publications per year 7 patents 7 EU projects 6 industrial partnerships

Networks & ecosystem



Mineral biocides

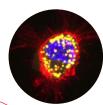
Cellulose nanocrystals functionalized with silver nanoparticles

> Propose biocides with controlled activity, biodegradable and non-toxic

Nanomaterials 2021, 11(7), 1862

Nanomaterials

Bioaccumulation - Biotransformation
Persistence of biological effects
Inflammatory reaction - Macrophages
Radiosensitisation
Epigenetic changes


Micro and Nano Plastics

Co-exposure to pollutants and additives

Effects of ageing

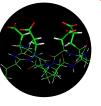
Inflammation - Epithelial and

immune barrier models

Heavy metals

Membrane transporters Cellular homeostasis Specific chelators

Abiotic stresses and pollutants



Organic toxins

PAHs - Pesticides DNA alkylating compounds Vesicants

Radionuclides, oxidative stress, radiobiology

Uranium - Ligands *in vivo*Bioinspired supramolecular complexes
Decorporation agents

UV, solar radiation

UVA and UVB phototoxicity Chemical photosensitization Photoprotection

Biomarkers of genotoxicity of UVA/UVB radiation

> To propose a reference method for risk assessment and qualification of photoprotective agents

Analytical and Bioanalytical Chemistry 2022, 415(3): 521-523

irig.cea.fr

Interdisciplinary Research Institute of Grenoble

CEA-Grenoble 17 avenue des Martyrs 38054 Grenoble cedex 9 Contact Partnership

Partnership development: irig-dpv-sante@cea.fr

