Vous êtes ici : Accueil > L'institut > Coupled magnetic and molecular dynamics: Methodology and application to the simulation of magneto-elastic effects in iron


Séminaire interne Spintec

Coupled magnetic and molecular dynamics: Methodology and application to the simulation of magneto-elastic effects in iron

Jeudi 16 mars 2023 à 14:00, Salle de séminaire 445, bâtiment 1005, CEA-Grenoble

Publié le 16 mars 2023
Julien Tranchida
Research Scientist at CEA Cadarache
Our presentation will first introduce a classical methodology aiming at simulating magnetization dynamics and magneto-elastic phenomena in materials. The approach is based on a coupling between classical spin dynamics and molecular dynamics. We will describe this approach and its implementation in the LAMMPS code [1]. After reviewing some recent applications of this methodology [2,3], we will point at some of its limitations.
We will then detail a computational scheme enabling the development of magneto-elastic interatomic potentials entirely based on first-principles results (DFT calculations). This scheme can be transposed to any material, and used to circumvent some of the limitations cited in the first section.
An application to iron, and in particular to the simulation of magneto-elastic effects (related to the magnon – phonon coupling) will be discussed. We will describe how this framework allowed the computation of the temperature dependence of some thermo-mechanical properties (elastic constants, magnetic anisotropy, magnetostrictive coefficients) with an accuracy close to the one expected from ab initio calculations [4,5]. Finally, we will discuss some perspectives, such as the deployment of those methods to the simulation of magnetic oxides (with applications in spintronics, simulation of nuclear fuels, or transport mechanisms in corrosion layers).

[1] Tranchida, J., Plimpton, S. J., Thibaudeau, P., & Thompson, A. P. (2018). Massively parallel symplectic algorithm for coupled magnetic spin dynamics and molecular dynamics. Journal of Computational Physics, 372, 406-425.
[2] Chauleau, J. Y., Chirac, T., Fusil, S., Garcia, V., Akhtar, W., Tranchida, J., … & Viret, M. (2020). Electric and antiferromagnetic chiral textures at multiferroic domain walls. Nature materials, 19(4), 386-390.
[3] Dos Santos, G., Meyer, R., Aparicio, R., Tranchida, J., Bringa, E. M., & Urbassek, H. M. (2021). Spin-lattice dynamics of surface vs core magnetization in Fe nanoparticles. Applied Physics Letters, 119(1), 012404.
[4] Nikolov, S., Wood, M. A., Cangi, A., Maillet, J. B., Marinica, M. C., Thompson, A. P., & Tranchida, J. (2021). Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics. npj Computational Materials, 7(1), 153.
[5] Nieves, P., Tranchida, J., Arapan, S., & Legut, D. (2021). Spin-lattice model for cubic crystals. Physical Review B, 103(9), 094437.

Plus d'information :https://www.spintec.fr/seminar-coupled-magnetic-and-molecular-dynamics-methodology-and-application-to-the-simulation-of-magneto-elastic-effects-in-iron//

Pour suivre le seminaire en visioconférence : https://webconf.cea.fr/ioan-lucian.prejbeanu/C89D5FFJ?sl=1

(*) Persons who do not have a CEA badge must request an entry authorization sufficiently in advance, before March 07 at admin.spintec@cea.fr