Domain Decomposition methods for the Karhunen-Loève decomposition and stochastic elliptic PDEs

Olivier Le Maître¹, Omar Knio^{2,3} Paul Mycek^{3,4} and Andres Contreras³

> ¹LIMSI CNRS, Orsay, France ^{2,3}KAUST Saudi-Arabia ³Duke University ³Cerfacs

Séminaire MaNu, LJLL UPMC

High-Performance Computing - Parallel Computing

Context:

- Development of massively parallel machines
- Solution of large scale PDEs' based problem
- New architectures evolution of strategies and algorithms
- Based on Divide to Conquer paradigms
- Specificities of UQ problems (forward problem).

Objectives:

- Acceleration and implementation of (UQ) solvers on massively parallel machines
- Domain decomposition method
- Incorporate resilience properties into algorithms (exascale machine)

Focus on two contributions

- Parallel DD method for stochastic fields decomposition
- Parallel DD method for Monte-Carlo sampling in elliptic problems.

Stochastic Elliptic Equation

Generic model

$$\nabla \cdot (K(\theta)\nabla U(\theta)) = -f \quad (+BCs)$$

- Coefficient K is uncertain
- Model problem appearing in multiple domains: porous media flow, elasticity, thermal sciences, electromagnetism, . . .
- Extensively analyzed and used for benchmark

The (now?) classics:

[Ghanem & Spanos, 1989]

• Parametrization of $K(\theta)$ using a **finite** number of RVs

- KL expansion
- Exploit the smoothness of U w.r.t. the RVs to build spectral expansions
- Possibly very high-dimensional problem (number of RVs)
- Sparse grid, PGD, low rank, adaptive constructions, . . .

The current questions:

- Parametrization
- New architectures evolution of strategies and algorithms

Stochastic field $K(\mathbf{x}, \theta)$

Consider a bounded spatial domain Ω and an probability space $(\Theta, \Sigma_{\Theta}, d\mu)$.

• Let $\mathcal{V}(\Omega)$ is an inner product space,

$$\forall u \in \mathcal{V}, \|u\|_{\Omega} = \langle u, u \rangle_{\Omega}^{1/2} < \infty$$

• and $L_2(\Theta)$ the space of 2nd order random variables

$$\forall u \in L_2(\Theta), \|u\|_{\Theta} = \langle u, u \rangle_{\Theta}^{1/2} = \mathbb{E} \left[u^2 \right]^{1/2} < \infty$$

Let $G \in L_2(\mathcal{V}, \Theta)$, *i.e.* 2nd order stochastic process G

Separated representation of $G(\mathbf{x}, \theta)$:

$$G(\pmb{x}, heta) pprox G^{ ext{N}}(\pmb{x}, heta) = \sum_{l=1}^{ ext{N}} \phi_l(\pmb{x}) \eta_l(heta),$$

minimizing the truncation error

$$\epsilon_N^2 = \min_{\{\phi_l, \eta_l\}} \mathbb{E}\left[\left\| G(\boldsymbol{x}, \boldsymbol{\theta}) - \sum_{l=1}^{N} \phi_l(\boldsymbol{x}) \eta_l(\boldsymbol{\theta}) \right\|_{\Omega}^2 \right]$$

Karhunen-Loeve expansion

The optimal representation is given by

$$G^{N}(\boldsymbol{x},\theta) = \mathbb{E}\left[G(\boldsymbol{x},\cdot)\right] + \sum_{l=1}^{N} \sqrt{\lambda_{l}} \Phi_{l}(\boldsymbol{x}) \xi_{l}(\theta).$$

where

• (λ_I, Φ_I) are the **eigenpairs** of the covariance function

$$C(\boldsymbol{x},\boldsymbol{x}') := \mathbb{E}\left[G(\boldsymbol{x},\cdot)G(\boldsymbol{x}',\cdot)\right] - \mathbb{E}\left[G(\boldsymbol{x},\cdot)\right]\mathbb{E}\left[G(\boldsymbol{x}',\cdot)\right],$$

satisfying

$$\langle C(\cdot, \mathbf{x}'), \Phi_I(\mathbf{x}') \rangle_{\Omega} = \lambda_I \Phi_I(\mathbf{x}), \quad \|\Phi_I\|_{\Omega} = 1.$$

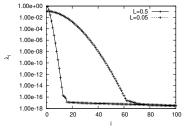
• C is symmetric and non-negative such that $\lambda_l \geq 0$ and the KL error is

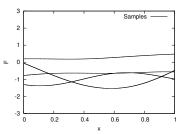
$$\epsilon_N^2 = \mathbb{E}\left[\left\|G(\boldsymbol{x},\theta) - \mathbb{E}\left[G(\boldsymbol{x},\theta)\right] - \sum_{l=1}^N \sqrt{\lambda_l} \Phi_l(\boldsymbol{x}) \eta_l(\theta)\right\|_{\Omega}^2\right] = \sum_{l=N+1}^\infty \lambda_l.$$

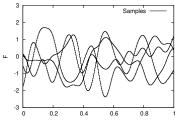
• Bi-orthonormal decomposition : $\langle \Phi_l, \Phi_{l'} \rangle_{\Omega} = \delta_{l,l'}$ and $\mathbb{E}\left[\xi_l, \xi_{l'}\right] = \delta_{l,l'}$ • Gaussian $\Rightarrow \xi_l$ iid N(0,1)

Illustration of the spectral decay

$$C(x, x') = \exp(-(x - x')^2/2L^2)$$
, Gaussian field







Stochastic Elliptic Equation

Log-normal field $K(\theta)$ approximated by truncated KL expansion of its log:

$$K^{\mathrm{N}}(\boldsymbol{x},\boldsymbol{\xi}(\theta)) := \exp\left[G^{N}(\boldsymbol{x},\boldsymbol{\xi})
ight], \quad \boldsymbol{\xi} = (\xi_{1}\cdots\xi_{\mathrm{N}}) \ \sim \textit{N}(0,\mathit{I}_{\mathrm{N}}).$$

The problem becomes (homogeneous essential BCs)

$$\begin{aligned} & - \boldsymbol{\nabla} \cdot \left(\boldsymbol{K}^{\mathrm{N}}(\boldsymbol{x}, \boldsymbol{\xi}) \boldsymbol{\nabla} \boldsymbol{U}(\boldsymbol{x}, \boldsymbol{\xi}) \right) = -\boldsymbol{f}, & \boldsymbol{x} \in \Omega \\ & \boldsymbol{U}(\boldsymbol{x}, \boldsymbol{\xi}) = 0, & \boldsymbol{x} \in \partial \Omega \end{aligned}$$

The solution is sought in $V \otimes L_2(\Xi) := L_2(V, \Xi)$.

Consider an Hilbertian basis $\{\Psi_{\alpha}, \alpha = 1, 2, ...\}$ of $L_2(\Xi)$ then

$$L_2(\mathcal{V},\Xi)\ni U(\boldsymbol{x},\boldsymbol{\xi})=\sum_{\alpha=1}^{\infty}u_i(\boldsymbol{x})\Psi_{\alpha}(\boldsymbol{\xi}),\quad u_i\in\mathcal{V},\Psi_{\alpha}\in L_2(\Xi).$$

PC expansion: Gaussian ξ corresponds to Hermite polynomials The truncated PC expansion of $U(\mathbf{x}, \boldsymbol{\xi})$:

$$U(\mathbf{x}, \boldsymbol{\xi}) \approx \sum_{\boldsymbol{\alpha} \in \mathcal{A}} u_i(\mathbf{x}) \Psi_{\boldsymbol{\alpha}}(\boldsymbol{\xi}), \quad \mathcal{A} = \{\boldsymbol{\alpha} \in \mathbb{N}^{N}, |\boldsymbol{\alpha}| = \sum_{i=1}^{N} \alpha_i \leq N_o\}, \quad |\mathcal{A}| = \frac{(N + N_o)!}{N!N_o!}.$$

Limitations of Spectral Methods

Solution Methods:

- Galerkin methods : large set of |A| coupled problems
- Non-intrusive (projection) methods : large set of deterministic simulations $(k \times |\mathcal{A}|)$
- Cost increases with N and No.
- Non-isotropic truncature strategies

Nobile, Tamellini,...

 Require smooth covariance with characteristic length scale comparable to the domain size

J. Charrier

For many practical problems, rough parameter fields

- N must be large (with not so slow decay)
- High-dimensional problem: low-rank and separated approximations [Nouy, cohen, Schwab,...]
- KL decomposition is costly to compute for large meshes
- Monte-Carlo is a viable alternative for this problems

Table of content

- Motivations
- 2 Domain decomposition methods
 - Reduced basis KL expansion
 - Stochastic Elliptic PDEs
- 3 Conclusions

Karhunen-Loeve (KL) Eexpansion

Let $G \in L_2(\Omega, \Theta)$ be a centered second order stochastic process in Ω with covariance function $C : \Omega \times \Omega \mapsto \mathbb{R}$:

$$C(\mathbf{x}, \mathbf{x}') = \mathbb{E}\left[G(\mathbf{x}, \cdot), G(\mathbf{x}', \cdot)\right].$$

The Karhunen-Loeve expansion of G writes as

$$G(\mathbf{x}, \theta) = \sum_{\alpha=1}^{\infty} \sqrt{\lambda_{\alpha}} \eta_{\alpha}(\theta) \Phi_{\alpha}(\mathbf{x}),$$

where $\lambda_1 \geq \lambda_2 \geq \cdots$ are the leading eigenvalues of

$$\int_{\Omega} C(\mathbf{x}, \mathbf{x}') \Phi_{\alpha}(\mathbf{x}') d\mathbf{x}' = \lambda_{\alpha} \Phi_{\alpha}(\mathbf{x}).$$

Upon truncation with normalized Φ_{α} ,

$$G(\mathbf{x}, \theta) pprox G_N(\mathbf{x}, \theta) \equiv \sum_{\alpha=1}^N \sqrt{\lambda_\alpha} \eta_\alpha(\theta) \Phi_\alpha(\mathbf{x}), \quad ext{where} \quad \eta_\alpha(\theta) = \int_\Omega G(\mathbf{x}, \theta) \Phi_\alpha(\mathbf{x}) d\mathbf{x}.$$

Optimal approximation :
$$\|G - G_N\|_{L_2(\Omega,\Theta)}^2 = \sum_{\alpha > N} \lambda_{\alpha}$$
.

Numerical KL Expansion

Galerkin approximation. Finite-element approximation of the KL modes Φ_{α}^{h} in a finite dimensional subspace \mathcal{V}_{h} , through

$$\Phi_{\alpha}(\mathbf{x}) \approx \Phi_{\alpha}^{h}(\mathbf{x}) \equiv \sum_{k=1}^{Q} c_{\alpha,k} v_{k}(\mathbf{x}).$$

The weak form of the eigenproblem is obtained by requiring

$$\langle \lambda \Phi^h(\mathbf{x}) - \int_{\Omega} C(\mathbf{x}, \mathbf{x}') \Phi^h(\mathbf{x}') d\mathbf{x}', V(\mathbf{x}) \rangle_{\Omega} = 0 \quad \forall V \in \mathcal{V}_h.$$

Finite dimensional **generalized eigenproblem** for the Q coordinates in V_h ,

$$[S]\boldsymbol{c}_{\alpha} = \lambda_{\alpha}[M]\boldsymbol{c}_{\alpha},$$

$$[S]_{k,k'} = \int_{\Omega} C(\boldsymbol{x}, \boldsymbol{x}') v_k(\boldsymbol{x}) v_{k'}(\boldsymbol{x}') d\boldsymbol{x} d\boldsymbol{x}', \quad [M]_{k,k'} = \int_{\Omega} v_k(\boldsymbol{x}) v_{k'}(\boldsymbol{x}') d\boldsymbol{x} d\boldsymbol{x}'$$

Numerical complexity when dim V_h is large (full matrix).

Domain Decomposition

Domain partitioning : partition the domain Ω into D non-overlapping subdomains

$$\bar{\Omega} = \overline{\bigcup_{d=1}^D \Omega_d}, \quad \Omega_i \cap \Omega_{j \neq i} = \emptyset.$$

Compute local eigenmodes of subdomain d solving the local eigenproblem

$$\int_{\Omega_d} C(\boldsymbol{x}, \boldsymbol{x}') \tilde{\phi}_{\beta}^{(d)}(\boldsymbol{x}') d\boldsymbol{x}' = \lambda_{\beta}^{(d)} \tilde{\phi}_{\beta}^{(d)}(\boldsymbol{x}), \quad \left\| \tilde{\phi}_{\beta}^{(d)} \right\|_{\Omega_d} = 1.$$

and extend outside of Ω_d through

$$\forall \boldsymbol{x} \in \bar{\Omega}, \ \phi_{\beta}^{(d)}(\boldsymbol{x}) = \begin{cases} \tilde{\phi}_{\beta}^{(d)}(\boldsymbol{x}), & \boldsymbol{x} \in \Omega_{d}, \\ 0, & \boldsymbol{x} \notin \Omega_{d}. \end{cases}$$

Domain Decomposition

For each subdomain retain the $m_d>0$ dominant eigenfunctions to form a reduced basis

$$\mathcal{B} = \bigcup_{d=1}^{D} \mathcal{B}_d, \quad \mathcal{B}_d = \left\{ \phi_{\beta}^{(d)}, \beta = 1, \dots, m_d \right\}.$$

Denote V_B the linear span of B, and approximate the global modes as

$$\mathcal{V}_{\mathcal{B}} \ni \hat{\Phi}(\boldsymbol{x}) = \sum_{d=1}^{D} \sum_{\beta=1}^{m_d} a_{\beta}^{(d)} \phi_{\beta}^{(d)}(\boldsymbol{x}) \approx \Phi(\boldsymbol{x}).$$

Apply Galerkin method to cast the reduced eigenproblem,

$$\begin{bmatrix} [\hat{K}_{11}] & \cdots & [\hat{K}_{1D}] \\ \vdots & \ddots & \vdots \\ [\hat{K}_{D1}] & \cdots & [\hat{K}_{DD}] \end{bmatrix} \begin{Bmatrix} \boldsymbol{a}^{(1)} \\ \vdots \\ \boldsymbol{a}^{(D)} \end{Bmatrix} = \Lambda \begin{Bmatrix} \boldsymbol{a}^{(1)} \\ \vdots \\ \boldsymbol{a}^{(D)} \end{Bmatrix},$$

where

$$[\hat{K}_{i,j}]_{\alpha,\beta} = \int_{\Omega_i} \int_{\Omega_i} C(\boldsymbol{x}, \boldsymbol{x}') \phi_{\alpha}^{(i)}(\boldsymbol{x}) \phi_{\beta}^{(j)}(\boldsymbol{x}') d\boldsymbol{x} d\boldsymbol{x}', \quad 1 \leq \alpha \leq m_i, \ 1 \leq \beta \leq m_j.$$

Reduced Problem

Dimension : denote $n_t = \sum_{d=1}^{D} m_d = \dim \mathcal{B}$.

Reduced operator : $[\hat{K}] \in \mathbb{R}^{n_t \times n_t}$ is symmetric and positive definite.

The n_t eigenvalues Λ_{α} can be ordered as

$$\Lambda_1 \geq \Lambda_2 \geq \cdots \geq \Lambda_{n_t} \geq 0.$$

Truncature : let $1 \le \hat{N} \le n_t$, the approximation of U is finally

$$G(\boldsymbol{x},\theta) \approx \hat{G}_{\hat{N}}(\boldsymbol{x},\theta) \equiv \sum_{\alpha=1}^{\hat{N}} \sqrt{\Lambda_{\alpha}} \; \hat{\eta}_{\alpha}(\theta) \hat{\Phi}_{\alpha}(\boldsymbol{x}), \quad \hat{\Phi}_{\alpha}(\boldsymbol{x}) = \sum_{d=1}^{D} \sum_{\beta=1}^{m_{d}} a_{\alpha,\beta}^{(d)} \phi_{\beta}^{(d)}(\boldsymbol{x}).$$

Remarks:

- The approach is suitable for parallel implementation
- The local problems can eventually enable direct solvers
- Could use different discretizations over distinct subdomains
- \circ $\mathcal{V}_{\mathcal{B}} \nsubseteq \mathcal{V}_{h}$
- n_t is fixed by the targeted error on G and is not dim V_h .

Example

Consider $\Omega = [0,1]^2$ and the squared exponential covariance

$$C(\mathbf{x}, \mathbf{x}') = \exp\left[-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2L^2}\right].$$

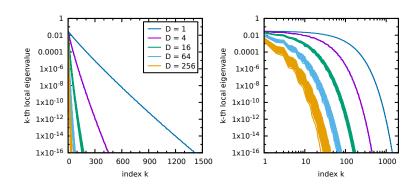


FIGURE – Spectra of local decompositions for L=0.1, and different D as indicated.

Example

Differences between \hat{G}_N and G_N for given N, using two metrics :

$$\epsilon_{spec} = rac{\sum_{k=1}^{N} |\lambda_k - \Lambda_k|}{\sum_{k=1}^{N} |\lambda_k|}.$$

and $\epsilon_{sub}^2(G_N)$ defined as

$$\epsilon_{sub}^{2}(V) = \frac{\mathbb{E}\left[\left\|V(\boldsymbol{x},\theta) - \sum_{\alpha=1}^{N} \left\langle V(\boldsymbol{x},\theta), \hat{\Phi}_{\alpha}(\boldsymbol{x}) \right\rangle_{\Omega} \hat{\Phi}_{\alpha}(\boldsymbol{x})\right\|_{\Omega}^{2}\right]}{\mathbb{E}\left[\left\|V(\boldsymbol{x},\theta)\right\|_{\Omega}^{2}\right]}.$$

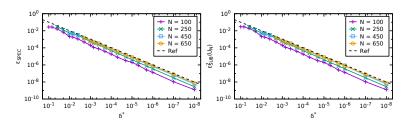


FIGURE – Computations use D = 80 and L = 0.1.

Size of reduced problem

Increasing the number of subdomains : effect on the reduced problem dimension.

D	n_t	$ar{m}\pm\sigma_{m_d}$
20	431	21.55 ± 1.43
40	542	13.55 ± 0.59
80	741	$\boldsymbol{9.26 \pm 0.56}$
160	983	$\textbf{6.14} \pm \textbf{0.35}$
320	1682	5.26 ± 0.44
640	2,306	3.60 ± 0.53
1280	3,840	3.00 ± 0.00

TABLE – Progression of n_t for different values of D with $\delta^2 = 2 \times 10^{-3}$ and L = 0.1.

Anisotropy and size distribution effects

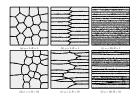


FIGURE – Controlling the aspect ratio (ρ) and area dispersion (R).

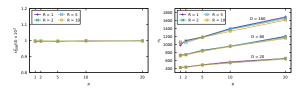


FIGURE – $\epsilon_{sub}^2(G)$ and reduced basis dimension versus ρ for a target accuracy $\delta^2 = 2 \times 10^{-3}$.

Computational Efficiency

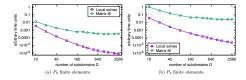


FIGURE – Sequential computation: timing local decompositions and reduced problem assembly (fixed target accuracy).

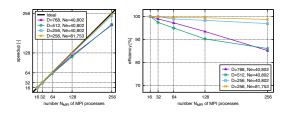


FIGURE – Parallel speedup (left) and efficiency (right) versus the number of MPI processes.

4 D > 4 A > 4 B > 4 B >

Stochastic Elliptic Problem

Consider

$$\nabla \cdot (K(\mathbf{x}, \theta) \nabla u(\mathbf{x}, \theta)) = -f(\mathbf{x}), \quad u(\mathbf{x} \in \Gamma) = 0,$$

in particular for log-normal random field:

$$\log(K - \kappa_{\min}) = G(\mathbf{x}, \theta) \sim N(\mu, C).$$

Upon deterministic FE discretization, it comes

$$A[\theta]u(\theta) = b(\theta),$$

where $\textbf{\textit{u}}$ is a random vector of \mathbb{R}^{N_c} (e.g. nodal values on a FE mesh). Solved by

- Monte Carlo : proceed by sampling K to compute samples of $\textbf{\textit{u}}(\theta)$ and estimate averages
- Stochastic Spectral Method (PC, PGD, low-rank) : parametrization of $K(x, \xi)$ to construct a functional representation of $u(\xi) \approx \sum_{\alpha} u_{\alpha} \Psi_{\alpha}(\xi)$.

Domain Decomposition method

Consider again a non overlapping partition of the FE mesh. The stochastic vector \boldsymbol{u} can be slip into $\boldsymbol{u}_{\text{in}}$ and $\boldsymbol{u}_{\text{bd}}$ containing the internal unknowns and inner boundary values. The discrete system can be recast as

$$\begin{bmatrix} \left[\mathbf{A}_{\text{bd},\text{bd}} \right] & \left[\mathbf{A}_{\text{bd},\text{in}} \right] \\ \left[\mathbf{A}_{\text{in},\text{bd}} \right] & \left[\mathbf{A}_{\text{in},\text{in}} \right] \end{bmatrix} \begin{pmatrix} \mathbf{u}_{\text{bd}} \\ \mathbf{u}_{\text{in}} \end{pmatrix} = \begin{pmatrix} \mathbf{b}_{\text{bd}} \\ \mathbf{b}_{\text{in}} \end{pmatrix},$$

Or $[\widehat{\textbf{\textit{A}}}] \textbf{\textit{u}}_{bd} = \widehat{\textbf{\textit{b}}}$, where

$$\widehat{[\boldsymbol{A}]} \doteq \big[\boldsymbol{A}_{bd,bd}\big] - \big[\boldsymbol{A}_{bd,in}\big] \big[\boldsymbol{A}_{in,in}\big]^{-1} \big[\boldsymbol{A}_{in,bd}\big], \quad \widehat{\boldsymbol{b}} \doteq \boldsymbol{b}_{bd} - \big[\boldsymbol{A}_{bd,in}\big] \big[\boldsymbol{A}_{in,in}\big]^{-1} \boldsymbol{b}_{in}.$$

[Ain,in] has diagonal block structure:

- Applying $[{\bf A}_{\rm in,in}]^{-1}$ amounts to solve D local problems for the inner nodes of the subdomains $\Omega^{(d)}$
- Can be carried out in parallel
- Suggest solving the condensed problem in a matrix free approach with parallel computation of Av.

Condensed Problem

The condensed problem

$$[\widehat{\mathbf{A}}](\theta)\mathbf{u}_{\mathsf{bd}}(\theta) = \widehat{\mathbf{b}}(\theta),$$

can be expressed as subdomains contributions :

$$\widehat{[\boldsymbol{A}]}(\boldsymbol{\theta}) = \sum_{d=1}^{D} \widehat{[\boldsymbol{A}]}^{(d)}(\boldsymbol{\theta}), \quad \widehat{\boldsymbol{b}}(\boldsymbol{\theta}) = \sum_{d=1}^{D} \widehat{\boldsymbol{b}}^{(d)}(\boldsymbol{\theta}).$$

Elementary contributions can be determined solving a sequence of local problems with deterministic boundary conditions.

Their solutions then depends on (log of) $\kappa(\mathbf{x}, \theta)$ for $\mathbf{x} \in \Omega^{(d)}$. In other words, $\widehat{[\mathbf{A}]}^{(d)}(\theta)$ and $\widehat{\mathbf{b}}^{(d)}(\theta)$ can be expanded in terms of local KL coefficients:

$$(\widehat{[\boldsymbol{A}]},\widehat{\boldsymbol{b}})^{(d)}(\boldsymbol{\theta}) = (\widehat{[\boldsymbol{A}]},\widehat{\boldsymbol{b}})^{(d)}(\boldsymbol{\xi}^{(d)}(\boldsymbol{\theta})) \approx \sum_{\alpha} (\widehat{[\boldsymbol{A}]},\widehat{\boldsymbol{b}})_{\alpha}^{(d)} \Psi_{\alpha}(\boldsymbol{\xi}^{(d)}(\boldsymbol{\theta})),$$

where $\boldsymbol{\xi}^{(d)} \sim N(0, I_{m_d})$.

Constructing approximations is manageable provided the subdomains are small enough so $m_{\!\scriptscriptstyle d}$ is small.

MC Sampling

To sample the condensed problem, we have to solve

$$[\widehat{\mathbf{A}}](\theta)\mathbf{u}_{\mathsf{bd}}(\theta) = \widehat{\mathbf{b}}(\theta)$$

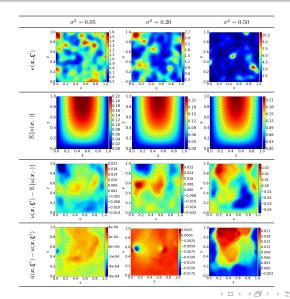
with

$$\widehat{[\mathbf{A}]}(\theta) = \sum_{d=1}^{D} \widehat{[\mathbf{A}]}^{(d)}(\theta) \approx \sum_{d=1}^{D} \sum_{\alpha} \widehat{[\mathbf{A}]}_{\alpha}^{(d)} \Psi_{\alpha}(\boldsymbol{\xi}^{(d)}(\theta)).$$

Amounts to sample jointly the local KL coefficients.

- Directly generate sample of the condensed problem, without solving any local problems
- Leads to significant computational saving
- Still need to solve (once) local problems to yield full solution sample.

MC Sampling: realizations



MC Sampling

Expectation of $u(\mathbf{x}, \theta)$

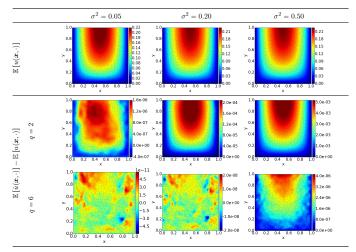


Figure 2: Top row shows $\mathbb{E}[u(x,\cdot)]$, estimated via Monte Carlo using 500,000 samples, for three different values of σ . Rows two and three shows $\mathbb{E}[u](x,\cdot) - \mathbb{E}[u(x,\cdot)]$ for two different values of the polynomial order q. For each i, $\bar{u}(x,\xi')$ was computed using D=480 and $\bar{U}=0.10^{-3}$ v. Ξ

MC Sampling

Standard deviation of $u(\mathbf{x}, \theta)$

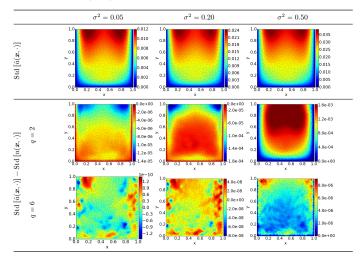


Figure 3: Top row shows $\operatorname{Std}[u(x,\cdot)]$, estimated via Monte Carlo using 500,000 samples, for three different values of σ . Rows two and three show $\operatorname{Std}[u(x,\cdot)] - \operatorname{Std}[u(x,\cdot)]$ for two different values of the polynomial order a. For each i, $i(x,\mathcal{E}')$ was computed using D=480 and L=0.1

L-2 norm of error in mean:

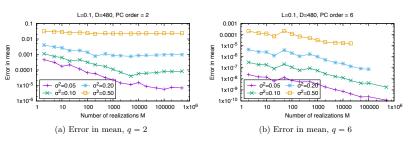


Figure 4: Norm of the error in the mean solution as a function of the number of realizations.

MC Sampling

Error on mean and standard deviation of solution

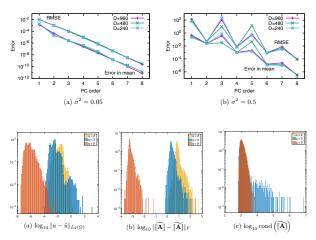


Figure 7: Log-Histograms of the error norm $\|u-\hat{u}\|_{L^2(\Omega)}$ (left), of the approximation error on condensed operator $\|\widehat{\mathbf{A}}\| - \widehat{\mathbf{A}}\|_F$ (center), and of the condition number of the approximate system cond $\left(\widehat{\mathbf{A}}\right)$ (right) for PC orders $\mathbf{N}_o = 2, 3, 9$. Case of G with $\sigma^2 = 0.5$ and L = 1.

4 D > 4 A > 4 B > 4 B >

MC Sampling

Non positive approximation of the condensed operator

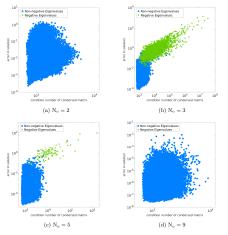


Figure 8: Samples of the error in the solution $\|u - \hat{u}\|_{L2(\Omega)}$ as a function of the condition number cond $\widehat{|A|}$. The samples are colored according to the sign of the smallest eigenvalue of $\widehat{|A|}$. Different PC orders as indicated.

4 D > 4 A > 4 B > 4 B >

PC approximation

Complexity analysis

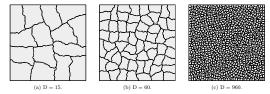


Figure 9: Partitions of the computational mesh into different numbers of subdomains D as indicated.

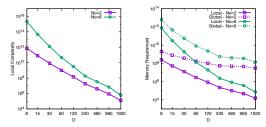


Figure 10: Local complexity (left plot) and local and global memory requirements (right plot), as a function of the number of subdomains D and for two PC degree $N_o = 2$ and $N_o = 6$. Note that both plots use a log-log scale.

Parallel efficiency

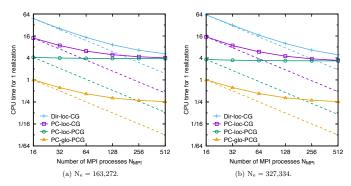


Figure 12: Scaled CPU times, to generate one sample, as a function of the number of MPI processes N_{MPI} . The dashed lines represent ideal parallel scaling.

Conclusions and Remarks

- Complexity Reduction by means of local solves and local parametrization
- PC expansions of local operators is effective and avoid costly online assembly
- Computational efficiency and scalability to be improved
- Resilient aspects must be added

Next / ongoing:

- Accelerated Schwartz method using local PC approximations as preconditionners (Thèse João Reis, CMAP)
- Exploit spectral information from previous solves to precondition new problem -recycling Krylov- (thèse Nicolas Venkovic, Cerfacs)
- Extension to a multi-level framework : MC convergence & preconditioning
- "Condense / compress" the local / global problems: H-matrix, Low rank approximation....
- A. Contreras, P. Mycek, O. Le Maître, F. Rizzi, B. Debusschere and O. Knio, Parallel Domain Decomposition Strategies for Stochastic Elliptic Equations. Part B: Accelerated Monte-Carlo Sampling with Local PC Expansions, SIAM J. Sci. Comp., 40:4, C547-C580.pp. (2018).
- A. Contreras, P. Mycek, O. Le Maître, F. Rizzi, B. Debusschere and O. Knio, Parallel Domain Decomposition Strategies for Stochastic Elliptic Equations. Part A: Local KL Representations, SIAM J. Sci. Comp., 40:4, pp. C520-546, (2018).

References

O.P. Le Maître and O.M. Knio, Spectral Methods for Uncertainty Quantification, with application to CFD, Scientific Computing Series, Springer, (2010). https://perso.limsi.fr/olm/

A Contreras, P. Mycek, O. Le Maître, F. Rizzi, B. Debusschere and O. Knio, Parallel Domain Decomposition Strategies for Stochastic Elliptic Equations. Part B: Accelerated Monte-Carlo Sampling with Local PC Expansions, SIAM J. Sci. Comp., 40:4, C547-C580, pp. (2018).

- A. Contreras, P. Mycek, O. Le Maître, F. Rizzi, B. Debusschere and O. Knio, Parallel Domain Decomposition Strategies for Stochastic Elliptic Equations. Part A: Local KL Representations, SIAM J. Sci. Comp., 40:4, pp. C520-546, (2018).
- P. Mycek et al. A resilient domain decomposition polynomial chaos solver for uncertain elliptic PDEs, Computer Phycis Communications, 216, pp. 18-34, (2017).
- P. Mycek et al. Discrete a priori bounds for the detection of corrupted PDE solutions in exascale computations, SIAM J. Sci. Comp., 39:1, pp. 1-28, (2017).
- F. Rizzi et al. Exploring the Interplay of Resilience and Energy Consumption for a Task-Based Partial Differential Equations Preconditioner, Parallel Computing, (in press).
- F. Rizzi et al. Partial differential equations preconditioner resilient to soft and hard faults, The International Journal of High Performance Computing Applications, (in press).

