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Résumé : La méthode de MonteCarlo est un outil
omniprésent dans le transport de particules. En phy
sique des réacteurs nucléaires, l’approche Monte
Carlo constitue la méthode de référence pour la ré
solution de l’équation de transport de Boltzmann
linéaire pour les neutrons et les photons. Son uti
lisation est également très courante dans le trans
port de particules chargées pour la radioprotection
et pour la simulation de détecteurs de particules.
Dans de nombreuses applications à haute énergie,
les réactions nucléaires élémentaires qui ont lieu

pendant le transport sont ellesmêmes simulées à
l’aide de modèles de réactions nucléaires basés sur
laméthode deMonteCarlo. Ce document donne un
aperçu de la théorie de la méthode de MonteCarlo
dans le transport de particules neutres et chargées.
Une attention particulière est consacrée aux prin
cipes et aux applications des modèles de réaction
nucléaire de la classe des cascades intranucléaires.
Quelques sujets de recherche récents sont mis en
avant.
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Abstract: The Monte Carlo method is a pervasive
tool in particle transport. In nuclear reactor physics,
the Monte Carlo approach is the “golden standard”
for the solution of the linear Boltzmann transport
equation for neutrons and photons. Its use is also
very common in chargedparticle transport for radi
ation protection and for the simulation of particle
detectors. In many highenergy applications, the el
ementary nuclear reactions that take place during

transport are themselves simulated using nuclear re
action models based on the Monte Carlo method.
This document provides an overview of the theory
of the Monte Carlo method in neutral and charged
particle transport. Special focus is devoted to the
principles and applications of nuclearreaction mod
els of the intranuclearcascade class. A few recent
research subjects are highlighted.
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1Introduction

The object of the theory of radiation transport is the quantitative description of the prop-
agation of radiation in matter, of the influence of matter on the quality of radiation and
of the effect of radiation on the medium it traverses. Radiation can be ionizing or non-
ionizing, depending on the possible interactions between the radiation field and the atoms
of the medium. Most of the mathematical methods for the solution of radiation transport
problems are equally applicable to ionizing and non-ionizing radiation. In this manuscript,
however, we will concentrate on ionizing radiation transport.

Radiation transport problems naturally arise in several applications. Innuclear reactors,
for example, thermal power is generated using a self-sustained chain of neutron-induced fis-
sion reactions. The design and analysis of reactors hinges on the description of the interac-
tions between the neutrons in the reactor core and the core itself. Neutrons undergo a variety
of nuclear reactions with the nuclei of the core. This has two consequences. First, the nu-
clear reactions determine the characteristics of the neutron field in the reactor core; other
types of particles, such as photons, electrons, positrons, protons, etc., may also appear as
reaction products. Second, the reactions induced by the radiation field also affect the prop-
erties of the core materials. Indeed, nuclear reactions can transfer energy from the radiation
field to the material, or from the material to the field. The vast amount of energy released
by the fission of the actinides is essential to the existence of nuclear reactors. The energy
released by nuclear reactions propagates by several mechanisms (conduction, convection,
radiation), heats up the reactor, and is generally extracted1 to be converted to electrical en-
ergy in commercial reactors. Energy deposition also induces thermo-mechanical stresses in
the solid materials of the reactor, and affects the flow of any fluid (typically coolant) present
in the reactor. Finally, nuclear reactions may result in changes of the isotopic (and possibly
chemical) species of the atoms involved, as well as in the appearance of new atoms. Re-
actions also generally cause transformations in the microscopic structure of the materials.
Thus, the structure of the reactor materials is slowly modified by the radiation exposure, and
their isotopic composition evolves over time.

The presence of thermo-mechanical, thermohydraulic and isotopic evolution phenom-
ena highlights the fact that a nuclear reactor is a very complex object. Nuclear engineers
wish for reliable models for the behavior of nuclear reactors under ordinary, incidental and
accidental conditions, but the behavior of the system as a whole is the result of the interplay
of several phenomena which need to be well understood in isolation and simultaneously
taken into account.

1The mechanism of extraction of the energy depends on the type of nuclear reactor considered.
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Outside reactor physics, neutrons are less prominent in radiation transport problems. In
other applications, an important role is played by charged particles like electrons, positrons,
protons, and ions. Cosmic rays, for example, mostly consists of highly energetic hydro-
gen and helium ions, but all elements up to iron are sensibly represented. In space, cosmic
rays represent a major radiological hazard, together with solar flares and other sources of
radiation. Space vessels are immersed in the cosmic radiation, which may damage the equip-
ment or (in the case of crewed missions) expose humans to radiation. Determining the type
and amount of damage to equipment or the dose received by crews is a radiation-transport
problem. Similar shielding problems exist around particle accelerators. Finally, charged-
particle transport is important for special classes of nuclear reactors, such as fusion reactors
or accelerator-driven subcritical reactors.

A common mathematical model for radiation transport is provided by the linear Boltz-
mann transport equation, which describes the dynamics of the average number of particles
in phase space. An analytical solution of the Boltzmann equation is rarely possible, and nu-
merical methods need to be employed. There are essentially two classes of methods:

• Deterministic methods rely on the application of discretization techniques to the
Boltzmann equation, in order to transform it into a set of linear algebraic equations.
Standard numerical linear algebra techniques are then applied, and approximate solu-
tions are obtained. Numerical solvers based on deterministic methods tend to be fast,
but the validity of the approximations made in the model must be confirmed by com-
paring the results with either experimental data or with the results of finer numerical
methods.

• Stochastic methods rely on a probabilistic interpretation of the Boltzmann equation.
They are based on the use of random numbers in suitably constructedMonte Carlo
simulations for the problem to solve. In general, stochastic methods are much less
dependent on discretization schemes and approximations than deterministic methods.
Monte Carlo simulations for neutron transport problems may even be considered to
be essentially approximation-free2. Monte Carlo solvers however have two main
disadvantages: first, they produce stochastic results, in the sense that each Monte
Carlo simulation should be regarded as the result of statistical sampling. Meaning-
ful results can only be obtained by repeating the sampling several times and apply-
ing statistical inference methods. Second, for a reasonable sample size, Monte Carlo
solvers are generally slower than comparable deterministic solvers. For these reasons,
Monte Carlo methods are considered the golden standard against which determinis-
tic methods should benchmark the validity of their approximations and discretization
schemes.

Any numerical method requires a certain amount of information about the problem to
solve. The Boltzmann equation is formulated in terms of double-differential energy-angle
cross sections and average multiplicities. Since deterministic methods are based on the
discretization of the Boltzmann equation, they can only be applied if all of these quantities
are known. On the other hand, stochastic methods, somewhat unexpectedly, need a different
type of information. Indeed, Monte Carlo particle transport is based around the idea of
interpreting the double-differential cross sections and the multiplicities as distributions for
the average numbers of particles emitted in a certain reaction. The Monte Carlo method

2For charged particles, some approximations, discretization, and modelling are still necessary.
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requires an algorithm that samples the reaction products for each possible reaction. If only
the double-differential cross sections and the averagemultiplicities are given, as it is the case
when we are solving a Boltzmann equation, then the algorithmmust be consistent with these
pieces of information, in the sense that the average number of sampled reaction products
must be distributed in energy and angle according to the physical quantities. However, if
we have access to more information about the reaction, it is entirely possible to incorporate
this in the sampling algorithm. For example, if the reaction sampling algorithm correctly
models the fluctuations and correlations of the physical reactions, then the Monte Carlo
method will propagate this information to the simulation. This makes it possible to use
Monte Carlo to answer questions about the radiation-transport problem that lie beyond the
Boltzmann equation. For example, one might want to compute the probability that, given
a source particle, the amount of energy deposited in a detector volume exceeds a given
threshold. This observable cannot be derived from the solution of the Boltzmann equation,
but it is accessible by suitable Monte Carlo simulations.

It may seem that the use of a sampling algorithm instead of cross sections requires more
information about the physics of the elementary reactions. This is not correct. Extra infor-
mation may be accommodated if needed, but it is not required. Quite the contrary: there
are situations where the double-differential cross section and the average multiplicities are
not known, but Monte Carlo is nevertheless applicable. This happens for example when
the elementary reactions between the radiation field and the media are described by a nu-
clear reaction model that can be cast in the form of a sampling algorithm. For example,
models for reactions induced by highly energetic nucleons or nuclei are often themselves
solved using the Monte Carlo method3! Thus, Monte Carlo solves the transport problem,
and relies on Monte Carlo models for sampling the elementary reactions, in an astounding
mise en abyme. Additional Monte Carlo layers can even appear at the top or at the bottom
of the stack. “Above” the radiation transport problem, we mention the problem of trans-
port in stochastic geometries, where the geometry of the radiation transport problem itself
is random; this is a special form of total Monte Carlo, where uncertainty on the input to
the radiation transport problem is modelled using probability distributions and propagated
to the calculation results by sampling. On the other (lower) end of the stack, Monte Carlo
nuclear reaction models need to sample the outcome of collisions between the nuclear con-
stituents; for exotic or high-energy collisions, dedicated Monte Carlo models exist and are
sometimes employed by the nuclear reaction models. It is Monte Carlo all the way down.

The purpose of this manuscript is to be a guidebook for a leisurely tour of Monte
Carlo particle transport. The document is divided in two parts. In the first part, which
consists of Chapters 2 to 5, I provide some background matter about the subjects of particle
transport, Monte Carlo, and nuclear reaction models, with a special focus on the class of
intranuclear-cascade models. I feel obliged to justify the decision to preface the manuscript
with a sizeable introductory part of background knowledge. It is my belief that the most
remarkable achievements of my post-doctoral research career are fairly heterogeneous. As
the Reader will discover in the following chapters, I have elected to write about the extension
of nuclear-reaction models, about transport theory for neutral and charged particles, about
variance-reduction techniques in the Monte Carlo method, and about simulations for reactor
physics. As my career progressed and I expanded my interests to include new subjects, I
had to acquire the necessary background knowledge in statistical physics, nuclear physics,

3It is possible to push the analogy even further: many nuclear reaction models are actually akin to transport
problems at the microscopic scale of the atomic nucleus.
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reactor physics, numerics, and computing. I wrote the first part of this manuscript thinking
about all the gaps that I have filled in the fifteen years sincemy Ph.D. defense. I am confident
that the Reader will also find this material helpful.

In the second part of the manuscript, we will retrace the descent from the macroscopic to
the microscopic scale undertook in Part I. Following the milestones of my career in roughly
chronological order, Chapter 6 presents a few extensions and developments that I brought to
the physics of intranuclear-cascade models. Chapter 7 introduces a few challenging kinetic
and dynamic neutron transport calculations applied to reactor physics. Finally, Chapter 8
presents the development and the analysis of a few advanced variance-reduction techniques.
In these chapters, I describe what I consider to be the most noteworthy deeds of my research
career. I believe that Part II also serves to highlight the coherence of my experience. Monte
Carlo is, of course, the foremost recurring theme, as implied even by the title of this work.
Random numbers will accompany us along the journey from the microscopic scale of nu-
clear reactions to the macroscopic scale of nuclear reactors. Along this path, I am convinced
that the Reader will also distinctly perceive the dual nature of this document, which was writ-
ten in the zoo of practical applications, in the shade of an ivory tower. It is my feeling that I
have always searched for theory and generalization in the empirical multiplicity of my every-
day simulation work, as Chapter 8 in particular shows; but, at the same time, I have always
been preoccupied with keeping theory adherent to reality, as Chapters 6 and 7 demonstrate.
In this respect, the central role played by Monte Carlo is not a happenstance. The choice of
a method that is considered to be the golden standard for particle transport simulations, by
its approximation-free nature, is a concrete testimony to my perpetual ambition to describe
reality as faithfully as possible.

Finally, in Chapter 9, I submit my perspectives for the future developments of my re-
search.

I think that the content of this document provides a fair overview of my achievements.
Nevertheless, I also feel that I had to omit a few remarkable works from my exposition, for
the sake of brevity. This manuscript is already too long as it is. I hope that for what I lack
in concision, dear Reader, I make up for in breadth and rigor.
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2Elements of particle transport

Broadly speaking, the problem of particle transport can be stated as the determination of the
effect of matter on the propagation of particles and the effect of particles on the properties
of matter. The approach we select for modelling this problem depends very much on the
nature of the physical quantities that we seek to describe.

2.1 Neutral particles: definitions

Let us consider a specific example. In nuclear-reactor physics, fuel depletion (the evolution
of the atomic composition of fuel) is driven by the nuclear reactions induced by the neutrons
circulating in the reactor. In reality, the reaction events are stochastic: each neutron has
some finite probability per unit time to induce a nuclear reaction. However, the number
of neutrons circulating in a full-power reactor is so large that we can neglect the stochastic
nature of the nuclear reactions. Let n(r, Ω̂, E, t) represent the average number of neutrons
per unit volume, energy and solid angle, present at position r with energy E and direction
Ω̂ at time t. This quantity is called the neutron density; in SI units, it is measured in
m−3 J−1 sr−1, but in reactor physics it is usually rather given in cm−3 eV−1 sr−1. By modelling
neutrons as a continuous field, we gain the ability to apply the standard tools of functional
analysis to the study of the problem of neutron transport.

In order to describe the dynamics of the neutron density, we need to introduce the col-
lision density ψn(r, Ω̂, E, t), which is the average number of collisions per unit volume,
time, energy and solid angle induced in a given position and at a given time by neutrons
with a given energy and direction. Clearly, the collision density is locally proportional to
the neutron density. For practical reasons which will become clear in the following, the
factor of proportionality is written as the product of the neutron speed v (which is a function
of the energy, E) and a function called the total macroscopic cross section, denoted as
Σt(r, E, Ω̂, t), having the dimensions of the inverse of a length:

ψn(r, Ω̂, E, t) = v(E) · Σt(r, Ω̂, E, t) · n(r, Ω̂, E, t). (2.1)

The average number of neutrons that undergo collisions with the nuclei of the medium in
the reactor (per unit time and unit volume) is called the collision rate. The collision rate (at
position r and time t) is the integral of the collision density ψn over all energies and angles,
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and it is given by

τ(r, t) =

∫
ψn(r, Ω̂, E, t) d2Ω̂ dE

=

∫
v · Σt(r, Ω̂, E, t) · n(r, Ω̂, E, t) d2Ω̂ dE. (2.2)

The total macroscopic cross section Σt captures information about the interaction of the
neutron with the medium. In an amorphous, unpolarized medium (which we will always
assume), the cross section is independent of the direction Ω̂ of the incident neutron; in a
stationary medium, it is independent of time; in general, it depends on the composition and
the temperature of the medium.

Similarly, it is possible to consider other types of reaction rates, associated to specific
collision types or outcomes. For instance, it is possible to introduce the fission density ψf
as the number of fission events induced by neutrons per unit time, volume, energy and solid
angle. Again, clearly the fission density is locally proportional to the neutron density, which
leads us to introduce themacroscopic fission cross section Σf :

ψf (r, Ω̂, E, t) = v · Σf (r, Ω̂, E, t) · n(r, Ω̂, E, t).

Likewise, the fission rate τf is the integral of the fission density over all incident energies
and directions:

τf (r, t) =

∫
ψf (r, Ω̂, E, t) d2Ω̂ dE. (2.3)

Integrals of the form of Eqs. (2.2) and (2.3) play an important role in transport theory.
Therefore, it is customary to introduce the angular flux φ as the product of the neutron
density and the speed:

φ(r, Ω̂, E, t) = v · n(r, Ω̂, E, t). (2.4)

With this definition, the collision rate, Eq. (2.2), can be rewritten as

τ(r, t) =

∫
Σt(r, E, t)φ(r, Ω̂, E, t) d2Ω̂ dE.

The scalar flux Φ is defined as the integral of the angular flux over the angular variables:

Φ(r, E, t) =

∫
φ(r, Ω̂, E, t) d2Ω̂. (2.5)

If the total macroscopic cross section is independent of the neutron direction, the collision
rate can be expressed as a functional of the scalar flux:

τ(r, t) =

∫
Σt(r, E, t) Φ(r, E, t) dE.

The same considerations apply to the fission rate, Eq. (2.3), and to any other type of reaction
rate. All the definitions given in this section can be extended to photons in a straightforward
manner.
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2.1.1 Relation between macroscopic and microscopic cross sections
In detail, how are macroscopic cross sections related to the properties of the medium? The
collisions between neutrons and nuclei are described by the quantum-mechanical theory
of nuclear reactions (Newton 1966; Wu and Ohmura 1962) in terms of cross sections. In
the context of transport theory, cross sections are usually referred to as microscopic cross
sections, to better distinguish them from macroscopic cross sections. We recall that micro-
scopic cross sections are defined as reaction rates per unit incident flux and target nucleus.
The microscopic cross sections are determined by the laws of quantum mechanics and de-
scribe the dynamics of the collision of a neutron of energy E on a nucleus at rest. For
the concerns of particle transport, they are usually considered as given data (however, see
Section 2.8 below).

The simplest case to consider is that of an amorphous, unpolarized medium consisting
of I nuclides, at the temperature of 0K. Let ρi(r, t) (i ∈ {1, . . . , I}) be the concentration
of the i-th nuclide at position r and time t, i.e. the number of nuclei of nuclide i present
per unit volume. Under these assumptions, the relation between the total macroscopic and
microscopic cross sections reads

Σt(r, E, t) =
I∑
i=1

ρi(r, t)σt,i(r, E, t).

The sum runs over the isotopes present in the medium.

2.1.2 Doppler broadening
At finite temperatures, the nuclei in themedium cannot be considered at rest in the laboratory
system because they are endowed with thermal motion. The microscopic cross section for
the interaction of a neutron and a nucleus in motion is determined by the velocity of the neu-
tron relative to the nucleus; this is a form ofDoppler effect. Therefore, the effect of thermal
motion on the microscopic cross sections is expressed by an effective, Doppler-broadened
microscopic cross section, defined by the following equation (Bell and Glasstone 1970):

σt,i(r, E, t;T ) =
1

v

∫
vr · σt,i(r, Er, t) · PT (v′) d3v′. (2.6)

Here v′ is the velocity of the nucleus in the laboratory frame, vr and Er are respectively the
velocity and the kinetic energy of the neutron in the rest frame of the nucleus, and PT (v′)
is the thermal velocity distribution of the nuclei in the medium at temperature T , which
depends on the structure of the material and its chemical properties, in addition to its tem-
perature. We observe that the definition of the Doppler-broadened cross section involves an
average of the microscopic cross sections over energies close to the energy of the neutron
in the laboratory system.

It is possible to gain some insight into the phenomenology of Doppler broadening by
modelling the medium as an ideal gas of atoms of massM . We can write a non-relativistic
Maxwell-Boltzmann form for PT :

PT (v
′) =

(
M

2πkBT

)3/2

exp
(
−Mv′2

2kBT

)
,
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Figure 2.1: Excitation function for the 235U(n, f) cross section at three different tempera-
tures. Data taken from the ENDF/B-VIII.0 library (D. A. Brown et al. 2018).

where kB is Boltzmann’s constant. Assuming non-relativistic kinematics for the neutron,
too, and denoting the neutron mass as m, we can derive the expectation value of Er, the
kinetic energy of the neutron in the rest frame of the nucleus:

E(Er) =

∫
m

2
(v − v′)2PT (v

′)d3v′

=
mnv

2

2
+

3mkBT

2M
.

Therefore, the “effective” energy Er differs from the nominal neutron energy E by a quan-
tity of the order of kBT . We can now state under what conditions the effects of Doppler
broadening are negligible: if the microscopic cross section σi(r, E, t) exhibits little depen-
dence on the incident energyE for variations of the order of kBT , then the effect of Doppler
broadening will be negligible. Note that it is not sufficient that the speed of the neutron in
the lab frame be much larger than the thermal speed of the nucleus for Doppler broadening
to be negligible; as an illustration, Fig. 2.1 shows the excitation function for the fission cross
section of 235U at three different temperatures (0K, 300K, and 924K). The plot shows a
few resonances in the epithermal region and shows that the peak width increases as the tem-
perature increases; this clarifies why we use the term “broadening” to refer to the effect of
thermal motion.

Doppler broadening of neutron resonances is crucial for ensuring the stability of nuclear
reactors and much theoretical and experimental effort has been devoted to modelling it,
especially for materials relevant for nuclear energy.

For photon transport, the effect of Doppler broadening is negligible, for two reasons:
first, photons always travel at the speed of light, which is much larger than the thermal
speed of the atoms; second, photo-atomic cross sections do not exhibit sharp resonances as
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a function of the photon energy.

2.2 Derivation of the Boltzmann transport equation
The equation that governs the dynamics of the particle flux can be written as a local balance
equation for the losses and gains of particles in phase space. Let us consider an infinitesimal
test volume d3r around position r. The number of particles of energy E and direction Ω̂ in
the test volume at time t can vary with time for one of the following reasons:

C1: particles leave or enter the test volume through its boundary;

C2: particles disappear from the test volume because they undergo a collision;

C3: new particles are produced by collisions in the test volume;

C4: new particles are produced by an external source.

We will now derive a mathematical expression for each of these terms, and show that all
of them are proportional to the test volume d3r; this property is probably trivial for all
contributions except C1.

2.2.1 Leakage term
The first term to consider is the leakage term, representing contribution C1. It is somewhat
clearer to derive the form of the leakage term for a finite volume, and let the volume tend
to zero at the end. So let us introduce a finite test volume V and let us define dLV /dt
to be the net number of particles of direction Ω̂ and energy E that leave the test volume
per unit time. Since particles enter and leave through the boundary ∂V of the test volume,
dLV /dt is naturally expressed as a surface integral on the boundary. Simple geometrical
considerations, along with Eq. (2.4), lead to the expression

dLV
dt

=

∮
∂V

Ω̂ · n̂φ(r, Ω̂, E, t) d2r, (2.7)

where n̂ is the surface normal. We cannot resist the temptation to invoke Gauss’s theorem
and rewrite Eq. (2.7) as

dLV
dt

=

∫
V

∇ ·
(
φ(r, Ω̂, E, t) Ω̂

)
d3r

=

∫
V

Ω̂ · ∇φ(r, Ω̂, E, t) d3r. (2.8)

Now the leakage term has the form of a volume integral, and we can let the test volume tend
to zero. In this limit, the leakage density becomes

C1 = Ω̂ · ∇φ(r, Ω̂, E, t), (2.9)

which is the sought expression.
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2.2.2 Collision term
The collision term C2 tallies the number of particles per unit time, volume, energy and solid
angle that undergo collisions at r. This is exactly the definition of the collision density,
Eq. (2.1). Therefore,

C2 = Σt(r, E, t)φ(r, Ω̂, E, t). (2.10)

2.2.3 Production term
The third term, C3, is defined as the number of particles per unit time, volume, energy and
solid angle emerging from collisions at r. This term can in principle include contributions
from many different reactions channels. For the purpose of this illustration, we will limit
ourselves to scattering and fission.

Scattering

Scattering encompasses all the channels that result in one ormore outgoing particles1, except
fission. Note that the production terms tallies the particles that emerge from the collision
with energy E and direction Ω̂; thus, the particle that induced the reaction had a different
energy E ′ and a different direction Ω̂′, and all possible values of E ′ and Ω̂′ need to be
considered.

The information we need about scattering is encapsulated by two quantities. The first
one is themicroscopic scattering cross section for isotope i,

σs,i(E
′),

which represents the number of scattering events per unit incident particle flux and target
nucleus. Note that we have used E ′ as the energy variable. The second quantity is the
differential microscopic scattering cross section for isotope i,

d3σs,i
d2Ω̂ dE

(Ω̂′ → Ω̂, E ′ → E),

representing the number of particles emerging from scattering with direction Ω̂ and energy
E, per unit outgoing solid angle, unit outgoing energy, unit incident particle flux and target
nucleus. Note that the integral of the differential cross sections over the outgoing variables
E and Ω̂ does not necessarily equal the scattering cross section; the average scattering
multiplicity

νs,i(E
′) =

1

σs,i(E ′)

∫
d3σs,i
d2Ω̂ dE

(Ω̂′ → Ω̂, E ′ → E) d2Ω̂ dE

represents the average number of particles emerging from the scattering event. For example,
if all scattering events are elastic, then νs,i = 1; however, in the presence of scattering
channels with higher multiplicity (such as (n, 2n)), this need not be the case and νs,i may
be larger. We omit the dependence of νs,i on Ω̂′ because we assume that the nucleus is
unpolarized.

1The typical example is elastic scattering, which results in exactly one outgoing particle and no energy transfer
to the internal degrees of freedom of the recoiling nucleus.
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For the purpose of transport theory, it is practical to condense the information encoded
by the scattering cross sections into amacroscopic scattering cross section,

Σs(r, E
′, t) =

I∑
i=1

ρi(r, t)σs,i(E
′), (2.11)

amacroscopic scattering multiplicity,

νs(r, E
′, t) =

1

Σs(r, E ′, t)

I∑
i=1

ρi(r, t)σs,i(E
′) νs,i(E

′) (2.12)

and a scattering kernel,

fs(r, Ω̂
′ → Ω̂, E ′ → E, t)

=
1

νs(r, E ′, t)Σs(r, E ′, t)

I∑
i=1

ρi(r, t)
d3σs,i
d2Ω̂ dE

(Ω̂′ → Ω̂, E ′ → E), (2.13)

which is easily verified to be normalized:∫
fs(r, Ω̂

′ → Ω̂, E ′ → E, t) d2Ω̂ dE = 1.

Armed with these definitions, we can write the contribution of scattering to the produc-
tion density as

C3,s =

∫
νs(r, E

′, t) Σs(r, E
′, t) fs(r, Ω̂

′ → Ω̂, E ′ → E, t)φ(r, Ω̂′, E ′, t) d2Ω̂′ dE ′.

(2.14)

Fission

Fission can almost be described using the same formalism as scattering, as defined by
Eqs. (2.11) to (2.13). However, a few important differences in the phenomenology sug-
gest the use of a slightly different parametrization. Additionally, in many reactor-physics
problems, fission plays a peculiar role, and it is necessary to formally distinguish it from the
other scattering processes. The formalism described in this section only concerns neutron-
induced fission.

Like scattering, fission is usually characterized by amacroscopic fission cross section

Σf (r, E
′, t) =

I∑
i=1

ρi(r, t)σf,i(r, E
′, t),

representing the number of fission events per unit incident flux. Unlike scattering, fission
neutrons may not emerge instantly from the collision. Neutrons that are produced immedi-
ately after fission (within very short delays of the order of a picosecond at most) are termed
prompt fission neutrons. In a fraction of the events, neutrons are observed to emerge with
much longer delays, ranging from a few milliseconds to a few seconds; these are called
delayed fission neutrons.
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Let us focus on prompt neutrons first. In reality, the number of neutrons emitted in a
fission event may fluctuate from one event to another. The neutron energy distributions
depend on the fissioning isotope and the energy of the incoming neutron, but also on the
actual neutron multiplicity of the event; the energies of neutrons emitted during the same
fission event are also correlated by the dynamics of fission. Luckily, for the purpose of
establishing an equation for the neutron flux, it is not necessary to take this complexity into
account, and it is sufficient to consider the differential cross section for the production of
prompt neutrons, which we decompose as a product

d3σfp,i
d2Ω̂ dE

(Ω̂′ → Ω̂, E ′ → E) = νp,i(E
′)fp,i(Ω̂

′ → Ω̂, E ′ → E),

where:

• νp,i(E ′) is the average multiplicity of prompt neutrons;

• fp,i(Ω̂′ → Ω̂, E ′ → E) is the (normalized) prompt fission spectrum, which repre-
sents the energy-angle distribution of prompt neutrons emerging from fission.

Since fission is often isotropic, the angular distribution of the prompt neutrons is often writ-
ten in a simpler form, with a slight abuse of notation:

fp,i(Ω̂
′ → Ω̂, E ′ → E) =

1

4π
fp,i(E

′ → E).

Here fp,i(E ′ → E) is the energy distribution of the prompt fission neutrons.
Inspired by the definitions given for scattering in the previous section, we introduce a

macroscopic prompt-neutron multiplicity

νp(r, E
′, t) =

1

Σf (r, E ′, t)

I∑
i=1

ρi(r, t)σf,i(E
′) νp,i(E

′)

and a prompt-fission kernel

fp(r, Ω̂
′ → Ω̂, E ′ → E, t)

=
1

νp(r, E ′, t)Σf (r, E ′, t)

I∑
i=1

ρi(r, t)νp,i(E
′)fp,i(Ω̂

′ → Ω̂, E ′ → E),

which, like the scattering kernel, is normalized. We can nowwrite the contribution of prompt
fission neutrons to the production density as

C3,p =

∫
νp(r, E

′, t) Σf (r, E
′, t) fp(r, Ω̂

′ → Ω̂, E ′ → E, t)φ(r, Ω̂′, E ′, t) d2Ω̂′ dE ′,

(2.15)
which is formally identical to the expression of the scattering contribution. Eq. (2.14).

Let us turn now turn to delayed neutrons. The phenomenology of the emission of delayed
neutrons is quite complex and involves the occasional evaporation of neutrons from fission
fragments that de-excite along their decay path towards the stability valley. The nuclear data
used in reactor physics take a pragmatic stance and model the emission of delayed neutrons
as the (exponential) decay of fictitious nuclei, called delayed-neutron precursors, that are
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assumed to be produced by fission. Precursors are grouped into families, each family being
characterized by its own decay constant.

Let J be the number of precursor families2. We define a few important quantities:

• cj(r, t) (j = 1, . . . , J) is the density of precursors of the j-th family;

• νd,ji(E ′) is the average multiplicity of precursors of the j-th family produced by fis-
sion of the i-th isotope induced by a neutron of energy E ′;

• νd,j(r, E ′, t) is the macroscopic precursor multiplicity for the j-th family:

νd,j(r, E
′, t) =

1

Σf (r, E ′, t)

I∑
i=1

ρi(r, t)σf,i(E
′) νd,ji(E

′)

• λj is the exponential decay constant for the j-th family3.

• fd,j(E) is the delayed-neutron spectrum, i.e. the energy distribution of delayed neu-
trons emitted from the decay of precursors of the j-th family. The angular distribution
is assumed to be isotropic.

We are already in a position to write the contribution of delayed neutrons to the production
term:

C3,d =
J∑
j=1

λjcj(r, t)
fd,j(E)

4π
. (2.16)

We need to complement this equation with an equation for the precursor density cj . If we
assume that precursors do not migrate4, the differential equation that governs the evolution
of cj is rather straightforward:

∂cj
∂t

(r, t) = −λj cj(r, t)+
∫
νd,j(r, E

′, t) Σf (r, E
′, t)φ(r, Ω̂′, E ′, t) d2Ω̂′ dE ′+Qc,j(r, t).

(2.17)
In this equation, the first term on the right-hand side represents the exponential decay of the
precursor population; the second term represents the production of precursors from fission;
finally, the third term represents an external source of precursors.

2.2.4 External source term
The final term of the balance equation is an external source term, which can simply be
written as

C4 = Qn(r, Ω̂, E, t). (2.18)
2At the time of writing, nuclear-data libraries typically use six or eight families.
3We assume that the precursor decay constant are independent of the fissioning nuclide. This follows the choice
made by the JEFF-3.3 library for the major actinides (Plompen et al. 2020). Other nuclear-data libraries, such
as ENDF/B-VIII.0 (D. A. Brown et al. 2018), use decay constants that depend on the fissioning nuclide. This
simplification is not a major restriction for the formalism developed in this chapter. Additionally, the decay
constant can in principle depend on the energy of the neutron that induces fission, although this possibility is
rarely exploited in nuclear-data libraries.

4Note for example that it is necessary to account for migration of precursors in systems with liquid fuel.
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2.2.5 The Boltzmann transport equation
We can express the conservation law of the number of particles by equating the net sum of
all the contributions to zero. The balance equation for the particle density n reads

∂n

∂t
(r, Ω̂, E, t) + C1 + C2 = C3,s + C3,p + C3,d + C4,

with the terms Ci given by Eqs. (2.9), (2.10), (2.14) to (2.16) and (2.18). Note that C1

and C2 conventionally appear on the left-hand side of the equation because they represent
particle losses. By substituting the expressions of Ci, we finally obtain the time-dependent
Boltzmann transport equation with precursors:

1

v

∂φ

∂t
(r, Ω̂, E, t) + Ω̂ · ∇φ(r, Ω̂, E, t) + Σt(r, E, t)φ(r, Ω̂, E, t)

=

∫
νs(r, E

′, t) Σs(r, E
′, t) fs(r, Ω̂

′ → Ω̂, E ′ → E, t)φ(r, Ω̂′, E ′, t) d2Ω̂′ dE ′

+

∫
νp(r, E

′, t) Σf (r, E
′, t) fp(r, Ω̂

′ → Ω̂, E ′ → E, t)φ(r, Ω̂′, E ′, t) d2Ω̂′ dE ′

+
J∑
j=1

λjcj(r, t)
fd,j(E)

4π
+Qn(r, Ω̂, E, t). (2.19)

This equation must be complemented by initial conditions on the particle flux and the pre-
cursor densities, of the form

φ(r, Ω̂, E, t = 0) = φ0(r, Ω̂, E) (2.20a)
cj(r, t = 0) = c0j(r). (2.20b)

Equations (2.17) and (2.19), taken together, form a system of linear, non-homogeneous
integro-differential equations for the angular flux, which is a function of seven variables,
and the precursor densities, which are functions of four variables.

Aword needs to be spent about the choice of the normalization for Eqs. (2.17) and (2.19).
Let us assume an infinite system (r ∈ R3). The most natural conditions to impose are of
the L1 class, that is: we require that the precursor populations are finite∫

|cj(r, t)| d3r <∞,

and that the total flux in the system is finite:∫
|φ(r, Ω̂, E, t)| d3r d2Ω̂ dE <∞. (2.21)

However, it would seem equally natural to require that the total neutron population be finite
instead: ∫

1

v
|φ(r, Ω̂, E, t)| d3r d2Ω̂ dE <∞, (2.22)

or that the total collision rate be finite:∫
Σt(r, E, t)|φ(r, Ω̂, E, t)| d3r d2Ω̂ dE <∞. (2.23)
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These different choices are equivalent to the definition of different vector spaces for our
unknown functions. In practical matters, the choice between Eq. (2.21), (2.22) and (2.23)
is of little consequence, because nuclear data are anyway only available between a finite
minimum and a finite maximum energy and the total cross section is usually bounded. Under
these conditions, all the normalization conditions above are equivalent.

We conclude this section by stressing the fact that Eq. (2.19) is easily applicable to pho-
ton transport, with a few caveats. First, fission does not play such an important role in
photon transport as it does in neutron transport; of course photons can multiply in collisions,
but they do not gain energy in the process. Thus, these phenomena are usually treated as
scattering. Second, delayed emission of photons exists (fluorescence is a form of delayed
photon emission; fission products also emit delayed photons), but in reactor physics appli-
cations delayed photons play a less important role than delayed neutrons, which are crucial
for determining the dynamical response of nuclear reactors at equilibrium.

2.3 Variations over the theme of the Boltzmann equation

In this section, we will explore some common (and some less common) variations over the
main theme established by Eq. (2.19).

2.3.1 α-eigenvalue equation

Let us start by considering a system without any external source (Qn = Qc,j = 0) and
assuming that all the cross sections and multiplicities are independent of time. Can such a
system admit stationary (i.e. time-independent) solutions in general5? Intuitively, the answer
should be no. For example, let us imagine a system where neutrons can only scatter or be
captured, but never multiply (i.e. no fissile material is present). In such a system, it is clear
that the size of the neutron population is doomed to decrease over time. If we suppress the
external source term, the neutron population cannot possibly remain stable.

There are several ways to transform the time-dependent Boltzmann equation without an
external source in such a way that the dependence on the time variable is removed. The first
attempt (and probably the most natural one to a physicist) would be to apply the method of
separation of variables. Following Betzler et al. (2012), we seek solutions of the form

φ(r, Ω̂, E, t) = T (t)φ(r, Ω̂, E) (2.24a)
cj(r, t) = T (t) cj(r). (2.24b)

Substituting these ansätze into Eqs. (2.17) and (2.19) and separating the variables yields the
following equations for T (t) and cj(r):

dT
dt

(t) = αT (t) (2.25)

cj(r) =
1

α + λj

∫
νd,j(r, E

′) Σf (r, E
′)φ(r, Ω̂′, E ′) d2Ω̂′ dE ′.

5By “in general” we mean “for arbitrary choices of the cross sections and multiplicities”.
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We substitute the expression for cj(r) in the equation for φ(r, Ω̂, E) and we obtain

α

v
φ(r, Ω̂, E) + Ω̂ · ∇φ(r, Ω̂, E) + Σt(r, E)φ(r, Ω̂, E)

=

∫
νs(r, E

′) Σs(r, E
′) fs(r, Ω̂

′ → Ω̂, E ′ → E)φ(r, Ω̂′, E ′) d2Ω̂′ dE ′

+

∫
νp(r, E

′) Σf (r, E
′) fp(r, Ω̂

′ → Ω̂, E ′ → E)φ(r, Ω̂′, E ′) d2Ω̂′ dE ′

+
J∑
j=1

λj
α + λj

fd,j(E)

4π

∫
νd,j(r, E

′) Σf (r, E
′)φ(r, Ω̂′, E ′) d2Ω̂′ dE ′ (2.26)

This long equation is known as the α-eigenvalue equation. It is a linear integro-differ-
ential eigenvalue equation for the angular flux, φ; it is however non-linear in the eigenvalue
α.

The physical meaning of α is very straightforward: as Eq. (2.25) indicates, solutions to
the α-eigenvalue problem have a time dependence of the form

T (t) ∝ exp(αt).

Therefore, α is the inverse of the exponential time constant. Unfortunately, it is not a gen-
eralized eigenvalue equation because it is not possible to cast it into the conventional form

Aφ = λBφ,

whereA andB are linear operators acting on φ and λ would be some function of α. More-
over, the study of the spectral properties of Eq. (2.26) is somewhat complicated by the fact
that the delayed-fission term is clearly discontinuous at α = −λj . For these reasons, the
analysis of the theoretical aspects of Eq. (2.26) is limited to simple systems or to systems
without delayed neutrons (λj = 0) (Duderstadt and Martin 1979; Larsen 1979; Larsen and
Zweifel 1974). Finally, translating Eq. (2.26) into an algorithm that can be efficiently solved
with numerical methods is possible, but difficult.

For all these reasons, the use of Eq. (2.26) is somewhat uncommon in nuclear engineer-
ing.

2.3.2 k-eigenvalue equation

Again, we assume no external source (Qn = Qc,j = 0) and time-independent cross sections
and multiplicities. Starting from Eq. (2.17), we remark that it is possible to write a formal
solution to this equation by using the method of the integrating factor, i.e. as a convolution
of the source term with the Green’s function:

cj(r, t) =

∫ t

−∞
exp (λj(t′ − t))

∫
νd,j(r, E

′) Σf (r, E
′)φ(r, Ω̂′, E ′, t′) d2Ω̂′ dE ′ dt′.

(2.27)
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Substituting Eq. (2.27) into Eq. (2.19) yields

1

v

∂φ

∂t
(r, Ω̂, E, t) + Ω̂ · ∇φ(r, Ω̂, E, t) + Σt(r, E)φ(r, Ω̂, E, t)

=

∫
νs(r, E

′) Σs(r, E
′) fs(r, Ω̂

′ → Ω̂, E ′ → E)φ(r, Ω̂′, E ′, t) d2Ω̂′ dE ′

+

∫
νp(r, E

′) Σf (r, E
′) fp(r, Ω̂

′ → Ω̂, E ′ → E)φ(r, Ω̂′, E ′, t) d2Ω̂′ dE ′

+
J∑
j=1

λj
fd,j(E)

4π

∫ t

−∞
exp (λj(t′ − t))∫

νd,j(r, E
′) Σf (r, E

′)φ(r, Ω̂′, E ′, t′) d2Ω̂′ dE ′ dt′. (2.28)

Clearly, just like Eqs. (2.17) and (2.19), this equation cannot generally admit a time-inde-
pendent solution. However, a stationary solution may exist for some very specific sets of
cross sections and multiplicities. Intuitively, a stationary solution will exist if the number
of neutrons produced by fission and scattering exactly compensate the losses due to leakage
and absorption.

This remark suggests that it should be possible to transform Eq. (2.28) into a stationary
equation by rescaling one of the production terms, all the production terms, or the absorption
term. The most common choice, by far, is to rescale the fission terms. We introduce the
multiplication factor k and we replace all occurrences of Σf with Σf/k in Eq. (2.28). This
yields an equation of the form

Ω̂ · ∇φ(r, Ω̂, E) + Σt(r, E)φ(r, Ω̂, E)

=

∫
νs(r, E

′) Σs(r, E
′) fs(r, Ω̂

′ → Ω̂, E ′ → E)φ(r, Ω̂′, E ′) d2Ω̂′ dE ′

+
1

k

∫
ν(r, E ′) Σf (r, E

′) ff (r, Ω̂
′ → Ω̂, E ′ → E)φ(r, Ω̂′, E ′) d2Ω̂′ dE ′, (2.29)

where we have introduced the total fission multiplicity

ν(r, E ′) = νp(r, E
′) + νd(r, E

′)

and the fission kernel

ff (r, Ω̂
′ → Ω̂, E ′ → E)

=
1

ν(r, E ′)

[
νp(r, E

′)fp(r, Ω̂
′ → Ω̂, E ′ → E) + νd(r, E

′)
J∑
j=1

fd,j(E)

4π

]
.

Equation (2.29) is known as the k-eigenvalue equation. To the extent of my knowledge,
the analysis of the spectral properties of this equation has not been carried out in complete
generality. In some special cases, such as one-speed transport with isotropic scattering in a
slab or a sphere, it has been shown that the spectrum has an infinite number of discrete real
eigenvalues, and it is bounded from above (Bell and Glasstone 1970). On physical grounds,
however, it is commonly assumed that the set of eigenvalues is bounded from above in real
part by a real eigenvalue. The largest eigenvalue is usually denoted as keff and it is called
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the effective multiplication factor or the fundamental eigenvalue of the system. It is also
assumed that the associated eigenfunction, which is determined up to a global factor because
of the linearity of Eq. (2.29), can be normalized to be real and non-negative everywhere in
phase space.

2.4 Integral formulation

It is time to introduce a more convenient notation for the equations defined in the previous
sections. We will now embark on a quest to rewrite all the integro-differential equations
above in integral form.

2.4.1 Flight operator
Let us start by considering this extremely simplified version of the Boltzmann transport
equation, Eq. (2.19):

1

v

∂φ

∂t
(r, Ω̂, E, t)+Ω̂·∇φ(r, Ω̂, E, t)+Σt(r, E, t)φ(r, Ω̂, E, t) = Qn(r, Ω̂, E, t). (2.30)

This equation described the propagation of neutrons produced by an external source Qn,
travelling in straight lines with speed v until they are absorbed by the medium, which has a
macroscopic total cross sectionΣt. Note that Eq. (2.30) is parametric in Ω̂ andE, so we can
temporarily suppress these variables from our notation (but we will reinstate them later).

If Eq. (2.30) holds everywhere, then in particular it holds along the line of flight of a
particle (also called the characteristic), which is described by the parametric equations

r′ = r + Ω̂s

t′ = t+
s

v
.

We evaluate Eq. (2.30) along the characteristic to obtain

1

v

∂φ

∂t

(
r + Ω̂s, t+

s

v

)
+ Ω̂ · ∇φ

(
r + Ω̂s, t+

s

v

)
+ Σt

(
r + Ω̂s, t+

s

v

)
φ
(
r + Ω̂s, t+

s

v

)
= Qn

(
r + Ω̂s, t+

s

v

)
. (2.31)

Now we observe that the first two terms are simply the total derivative of the angular flux
along the characteristic:

1

v

∂φ

∂t

(
r + Ω̂s, t+

s

v

)
+ Ω̂ · ∇φ

(
r + Ω̂s, t+

s

v

)
=

d
ds

[
φ
(
r + Ω̂s, t+

s

v

)]
.

This simplifies Eq. (2.31) to read

d
ds

[
φ
(
r + Ω̂s, t+

s

v

)]
+ Σt

(
r + Ω̂s, t+

s

v

)
φ
(
r + Ω̂s, t+

s

v

)
= Qn

(
r + Ω̂s, t+

s

v

)
.
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This equation is of the form

dg
ds

(s) + a(s)g(s) = b(s)

and it can be solved by applying the method of the integrating factor to yield

g(s) =

∫ s

s0

e−
∫ s
s′ a(s

′′)ds′′b(s′) ds′ + g(s0),

for any s0. If we assume that no flux is present in the system at times sufficiently far in the
past, we can let s0 go to −∞ and drop the term g(s0). The solution to Eq. (2.31) can then
be written as

φ
(
r + Ω̂ s, t+

s

v

)
=

∫ s

−∞
e
−

∫ s
s′ Σt

(
r+Ω̂ s′′,t+ s′′

v

)
ds′′
Qn

(
r + Ω̂ s′, t+

s′

v

)
ds′.

Evaluating at s = 0, reinstating the missing variables and rearranging, we find

φ(r, Ω̂, E, t) =

∫ ∞

0

e
−

∫ s′
0 Σt

(
r−Ω̂ s′′,E,t− s′′

v

)
ds′′
Qn

(
r − Ω̂ s′, Ω̂, E, t− s′

v

)
ds′, (2.32)

which is the formal solution to Eq. (2.30). This equation expresses the angular flux at po-
sition r and time t as the superposition of contributions from the source term at previous
times and other positions along the characteristic, weighted by the exponential attenuation
factor. The quantity that appears in the exponent,

ρ(r, Ω̂, E, t, s′) =

∫ s′

0

Σt

(
r − Ω̂ s′′, E, t− s′′

v

)
ds′′,

is known as the optical length seen by a particle travelling a distance s′ from r.
Although Eq. (2.32) is perfectly acceptable, it is more common in certain literature (for

example Lux and Koblinger 2018) to rewrite it for the collision density ψn:

ψn(r, Ω̂, E, t)

= Σt(r, E, t)

∫ ∞

0

e
−

∫ s′
0 Σt

(
r−Ω̂ s′′,,E,t− s′′

v

)
ds′′
Qn

(
r − Ω̂ s′, Ω̂, E, t− s′

v

)
ds′ (2.33)

This equation shows that it is possible to regard the collision density as the result of the
action of a linear operator Tn on the source termQn. The operator acts on a vector space of
functions of seven real variables, (r, Ω̂, E, t). It is called the neutron flight operator and
it is defined as

(Tn g)(r, Ω̂, E, t)

= Σt(r, E, t)

∫ ∞

0

e
−

∫ s′
0 Σt

(
r−Ω̂ s′′,E,t− s′′

v

)
ds′′
g

(
r − Ω̂ s′, Ω̂, E, t− s′

v

)
ds′. (2.34)

With this definition, Eq. (2.33) can be rewritten in shorthand form as

ψn = TnQn. (2.35)
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The same treatment can be applied to the precursor evolution equation, Eq. (2.17). To
start, we neglect the delayed fission term, and we simplify the equation to read

∂cj
∂t

(r, t) + λj cj(r, t) = Qc,j(r, t). (2.36)

By applying the method of the integrating factor and assuming no precursor in the system
at times sufficiently far in the past, we can write the solution to Eq. (2.36) in integral form
as

cj(r, t) =

∫ ∞

0

e−λjt
′′
Qc,j(r, t− t′′) dt′′. (2.37)

This leads us to introduce the precursor decay density

ψc,j(r, t) = λj cj(r, t)

and the precursor flight operator Tc,j

(Tc,j g)(r, t) = λj

∫ ∞

0

e−λjt
′′
g(r, t′)dt′′, (2.38)

which acts on the vector space of functions of four real variables, (r, t). With this notation,
Eq. (2.37) reads

ψc,j = Tc,j Qc,j . (2.39)

It is of course a bit silly to talk about precursor flights, because precursors do not actually
move at all in our model. However, in a more general setting, precursors may actually move
or diffuse; the precursor flight operator would then account for any displacement of the
precursor between its creation site and its decay site.

2.4.2 Emission density
Equations (2.30) and (2.36) are simplified versions of respectively the full Boltzmann equa-
tion, Eq. (2.19), and the precursor evolution equation, Eq. (2.17). In spite of this, the flight
operators defined by Eqs. (2.34) and (2.38) are very useful for representing the solutions to
the full equations. Indeed, Eq. (2.30) has the form of the full Boltzmann equation, provided
that one formally replaces Qn with the neutron emission density:

χn(r, Ω̂
′, E ′, t)

=

∫
νs(r, E

′, t) Σs(r, E
′, t)

Σt(r, E ′, t)
fs(r, Ω̂

′ → Ω̂, E ′ → E, t)ψn(r, Ω̂
′, E ′, t) d2Ω̂′ dE ′

+

∫
νp(r, E

′, t) Σf (r, E
′, t)

Σt(r, E ′, t)
fp(r, Ω̂

′ → Ω̂, E ′ → E, t)ψn(r, Ω̂
′, E ′, t) d2Ω̂′ dE ′

+
J∑
j=1

fd,j(E)

4π
ψc,j(r, t) +Qn(r, Ω̂, E, t).

The formal developments leading to Eq. (2.35) remain unchanged and one finds

ψn = Tn χn. (2.40)
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Contrary to Eq. (2.35), however, this equation does not represent the solution to the Boltz-
mann equation in closed form, because the emission density χn depends on the precursor
decay densities ψc,j and on the collision density ψn itself. Therefore, Eq. (2.40) is actually
an integral equation for the collision density and the precursor decay densities.

By applying similar tricks to the precursor evolution equation, Eq. (2.17), we obtain

ψc,j = Tc,j χc,j , (2.41)

which is formally identical to Eq. (2.39), except that the source termQc,j has been replaced
by the precursor emission density

χc,j(r, t) =

∫
νd,j(r, E

′, t) Σf (r, E
′, t)

Σt(r, E ′, t)
ψn(r, Ω̂

′, E ′, t) d2Ω̂′ dE ′ +Qc,j(r, t),

which is a function of the collision density ψn. Thus, Eq. (2.41) represents a set of J inte-
gral equations for the precursor decay densities ψc,j . Equations (2.40) and (2.41), taken to-
gether, are equivalent to the set of J+1 integro-differential equations defined by Eqs. (2.17)
and (2.19).

2.4.3 Collision operator
The integral equations (2.40) and (2.41) look deceptively simple, because we have suc-
ceeded at hiding part of the pain involved in the definition of the flight operators. However,
the definitions of the emission densities χn and χc,j are still cumbersome. We will now
rewrite these definitions too in a deceptively simple form.

The idea is simply to regard the emission densities as the result of the action of linear
operators on the collision and decay densities. We introduce the scattering operator

(S g)(r, Ω̂, E, t)

=

∫
νs(r, E

′, t) Σs(r, E
′, t)

Σt(r, E ′, t)
fs(r, Ω̂

′ → Ω̂, E ′ → E, t) g(r, Ω̂′, E ′, t) d2Ω̂′ dE ′,

the prompt fission operator

(Fp g)(r, Ω̂, E, t)

=

∫
νp(r, E

′, t) Σf (r, E
′, t)

Σt(r, E ′, t)
fp(r, Ω̂

′ → Ω̂, E ′ → E, t) g(r, Ω̂′, E ′, t) d2Ω̂′ dE ′,

the prompt collision operator
Cp = S + Fp,

the precursor production operator

(Pd,j g)(r, t)

=

∫
νd,j(r, E

′, t) Σf (r, E
′, t)

Σt(r, E ′, t)
g(r, Ω̂′, E ′, t) d2Ω̂′ dE ′,

and the precursor decay operators

(Dj g)(r, Ω̂, E, t) =
fd,j(E)

4π
g(r, t).
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With this notation, we can write the Boltzmann equation and the decay equations for the
precursors (Eqs. (2.17) and (2.19)) in the remarkably compact form

ψn = Tn χn (2.42a)
ψc,j = Tc,j χc,j (2.42b)

χn = Cp ψn +
J∑
j=1

Dj ψc,j +Qn (2.42c)

χc,j = Pd,j ψn +Qc,j . (2.42d)

Interestingly, the notation used in Eq. (2.42) is sufficiently powerful to allow us to con-
cisely express other forms of the transport equation. For instance, the integral equivalent
of the condensed transport equation, Eq. (2.28), can be recovered by substituting ψc,j from
Eq. (2.42b) and χc,j from Eq. (2.42d) into Eq. (2.42c), yielding

ψn = Tn χn (2.43a)
χn = C ψn +Qχn , (2.43b)

where we have introduced the collision operator

C = Cp +
J∑
j=1

Dj Tc,j Pd,j

= S + F ,

the fission operator

F = Fp +
J∑
j=1

Fd,j ,

the delayed fission operators
Fd,j = Dj Tc,j Pd,j ,

and the neutron emission source

Qχn = Qn +
J∑
j=1

Dj Tc,j Qc,j .

If we assume Q = 0, we can repeat the argument made in the derivation of Eq. (2.28). It is
clear here that, in general, Eq. (2.43) only admit the trivial solution ψn = χn = 0, which is
the same conclusion we reached in Section 2.3.2 above.

As another example, it is also rather common to write Eq. (2.42) in the following form,
which only involves the emission densities:

χn = Cp Tn χn +
J∑
j=1

Dj Tc,j χc,j +Qn (2.44a)

χc,j = Pd,j Tn χn +Qc,j . (2.44b)
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These equations are obtained by substituting Eqs. (2.42a) and (2.42b) in (2.42c) and (2.42d).
Similarly, the standalone form for the collision densities reads

ψn = TnCp ψn +
J∑
j=1

TnDj ψc,j + TnQn (2.45a)

ψc,j = Tc,j Pd,j ψn + Tc,j Qc,j . (2.45b)

It is again possible to condense these systems of equations down to a single equation for a
single unknown function. From Eq. (2.44), the equation for the neutron emission density
reads

χn = C Tn χn +Qχn . (2.46)

From Eq. (2.45), the equation for the neutron collision density reads

ψn = TnC ψn +Qψn , (2.47)

with
Qψn = TnQχn .

Finally, we can use our new compact notation to rewrite the k-eigenvalue equation,
Eq. (2.29). If we restrict our functional space to time-independent functions, most of our
operator definitions are unaffected, because they act locally in time. The only operator that
is non-local in time is the precursor flight operator Tc,j , defined by Eq. (2.38), which simpli-
fies to the identity when restricted to time-independent functions. Thus, the fission operator
simplifies to

F = Fp +
J∑
j=1

Dj Pd,j ,

and the k-eigenvalue equation can be written in integral form as

ψn = T χn (2.48a)

χn =

(
S +

F

k

)
ψn, (2.48b)

where the n subscripts on operators have been omitted for the sake of conciseness. This sys-
tem of integral equations for χn and ψn can be further condensed into one integral equation
for either function by applying simple algebraic manipulations. For instance, by replacing
χn in Eq. (2.48a) with its definition in Eq. (2.48b), we obtain the following equation for ψn:

ψn = T

(
S +

F

k

)
ψn. (2.49)

In spite of all the effort that has gone into molding the integro-differential form of (2.17)
and (2.19) into the integral shape of Eq. (2.42), we have not made one inch of progress
towards the solution of these equations. However, the integral formulation provides the
natural theoretical tools to analyze the properties of the Monte Carlo method, which will be
outlined in Chapter 3.
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2.4.4 Form of the integral kernels

Among the operators that we have introduced, some of them (like Tn orS) map functions of
seven variables (r, Ω̂, E, t) to functions of the seven variables; some (Pd,j) map functions
of seven variables to functions of four variables (r, t); some (Dj) map functions of four
variables to functions of seven variables; and, finally, some (Tc,j) map functions of four
variables to functions of four variables. This means that we are working with at least two
different functional spaces: one for neutron densities and one for precursor densities.

It may be convenient to embed the space of precursor densities in the space of neutron
densities. Simply put, we can regard precursor densities as neutron densities with extra
(dummy) direction and energy variables. The integral operators become endomorphisms of
the unified functional space and all of them can be expressed in a common form, i.e.

(O g)(P ′) =

∫
O(P, P ′)g(P ) dP .

Here we have introduced the shorthand notation P = (r, Ω̂, E, t), P ′ = (r′, Ω̂′, E ′, t′), and
integrals are understood to extend over the whole phase space:∫

dP =

∫
d3r d2Ω̂ dE dt.

The functionO(P, P ′) is known as the integral kernel associated to operatorO. In the best
(or worst?) tradition of nuclear engineering, we play fast and loose with functional analysis
without ironing out the formal details.

As an example of this notation, we provide the expression of the neutron flight kernel:

Tn(P, P
′) = Σt(r

′, E ′, t′) exp

[
−
∫ |r−r′|

0

Σt

(
r′ − Ω̂ s, E ′, t′ − s

v

)
ds

]

·
δ(Ω̂− r−r′

|r−r′|)

|r − r′|2
· δ(Ω̂− Ω̂′) · δ(E − E ′) · δ

(
t− t′ − |r − r′|

v

)
. (2.50)

This approach may seem unnecessarily clumsy at the moment, but it will prove its worth in
due time (see Chapter 8).

2.5 Adjoint transport equation

For the sake of concreteness, let us now restrict our attention to the space of time-indepen-
dent functions and let us consider the integral form of the k-eigenvalue equation, Eq. (2.48),
which we rewrite here for the convenience of the Reader:

ψ = T χ

χ =

(
S +

F

k

)
ψ.
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2.5.1 Mathematical definition of the adjoint operators
Let us denote by B the functional space where ψ and χ live. If we impose a normalization
condition of the L1 type, like we discussed in Section 2.2.5, then B is a Banach space, but
not a Hilbert space; that is, there is no natural definition of a scalar product (also known
as an inner product) between functions. This point is sometimes overlooked in textbooks
about transport theory (Bell and Glasstone 1970; Duderstadt and Martin 1979; Prinja and
Larsen 2010), which define adjoint operators by introducing the inner product between two
functions.

Amore principled way to introduce adjoint operators is to consider the dual vector space
B∗ of our Banach space B. The dual space is defined as the space of continuous linear
functionals over B, i.e. continuous linear maps from B to the reals; the term covector is
also used. For concreteness, letA : B → B denote a linear operator on our functional space,
f ∈ B a generic function in its domain and g† ∈ B∗ a generic linear functional. We use
the notation

〈
g†, f

〉
to denote the action of the linear functional g† on f ; by the definition

given above,
〈
g†, f

〉
is a real number. The adjoint operatorA† is the6 linear operator on B∗

defined by the identity 〈
A† g†, f

〉
=
〈
g†,A f

〉
∀f ∈ B.

In order to relate this definition to the usual introduction of adjoint operators of nu-
clear engineering textbooks, we need to invoke the Riesz-Markov-Kakutani representation
theorem (Theorem 6.19 in Rudin 2013), which essentially states that any linear functional
g† ∈ B∗ can be represented as a unique regular Borel measure dµg, in the sense that〈

g†, f
〉
=

∫
Rn

f(P ) dµg ∀f ∈ B.

By a traditional abuse of notation, the integration against the Borelmeasure is usuallywritten
as 〈

g†, f
〉
=

∫
Rn

f(P ) g(P ) dP ∀f ∈ B. (2.51)

for some generalized function g, which may of course be a Dirac delta or any other sort of
mathematical curiosity; it can be shown that g(P ) is a regular function if and only if g† is
bounded (or, equivalently, continuous) (Theorem 6.16 in Rudin 2013). By the same token,
the action of g† on f , represented by Eq. (2.51), is usually referred to as “the scalar product
of g(P ) and f(P )” in transport theory textbooks.

When g† is represented by a regular function g(P ), the integral in Eq. (2.51) is simply a
Lebesgue integral over Rn. It is clear, however, that the functional space that g(P ) lives in
is not the same as B. For instance, if we choose B = Lp(R

n), then the convergence of the
integral in Eq. (2.51) requires that g must be in Lq(Rn), with q = p/(p − 1); in particular,
in the common case of B = L1(R

n), g must be in L∞(Rn).
Thus, we have stated the fundamental result: given a linear operator O on Lp(Rn), its

adjoint O† is defined as the linear operator on Lq(Rn) (q = p/(p − 1)) that satisfies the
identity ∫

Rn

(Of)(P ) g(P ) dP =

∫
Rn

f(P ) (O†g)(P ) dP . (2.52)

6Themathematical definition requires muchmore attention to technical details. The interested Reader is invited
to consult Kreyszig (1989).
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In the notation of Section 2.4.4, it is remarkably simple to express the action of the
adjoint operators. LetO be characterized by a kernel O(P, P ′), i.e.

(O f)(P ′) =

∫
O(P, P ′) f(P ) dP .

It is easy to show, by inverting the order of the integrals in Eq. (2.52), that the adjoint operator
O† admits the integral representation

(O†g)(P ) =

∫
O(P, P ′) g(P ′) dP ′;

in other words, the kernel O†(P, P ′) of the adjoint operatorO† is simply

O†(P, P ′) = O(P ′, P ).

In particular, all the linear operators that we defined above, such as the flight operators,
collision operators, etc., define corresponding adjoint operators. Given for example the
form of the integral kernel for the neutron flight operator Tn, Eq. (2.50), we can also regard
it as the functional form of the kernel of the adjoint neutron flight operator T †

n , provided
that we exchange the roles of P and P ′.

The adjoint flight and collision operators define a set of adjoint transport equations.
For example, the fixed-source adjoint problem is

χ† = T † ψ† (2.53a)

ψ† = C† χ† +Q†
ψ† . (2.53b)

and the adjoint k-eigenvalue problem is

χ† = T † ψ† (2.54a)

ψ† =

(
S† +

F †

k†

)
χ†. (2.54b)

These equations should be compared to Eqs. (2.43) and (2.48). Note that we have used k†
for the eigenvalue in Eq. (2.54), to distinguish it from the eigenvalue k of Eq. (2.48). Like
for Eq. (2.48), it is assumed that Eq. (2.54) admit a real dominant eigenvalue, and that the
associated dominant eigenvector can be normalized to be real and non-negative everywhere
in phase space.

Suppose now that ψ and χ are solutions of Eq. (2.48) with eigenvalue k. Likewise,
let ψ† and χ† be solutions of Eq. (2.54) with eigenvalue k†. By taking the scalar product
of Eq. (2.48a) with ψ†, taking the scalar product of Eq. (2.48b) with χ† and summing, we
obtain 〈

ψ†, ψ
〉
+
〈
χ†, χ

〉
=
〈
ψ†,T χ

〉
+

〈
χ†,

(
S +

F

k

)
ψ

〉
.

Similarly, if we take the scalar product of Eq. (2.54a) with χ and the scalar product of
Eq. (2.54b) with ψ, we find

〈
χ†, χ

〉
+
〈
ψ†, ψ

〉
=
〈
T †ψ†, χ

〉
+

〈(
S† +

F †

k†

)
χ†, ψ

〉
.
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Subtracting and using Eq. (2.52), we can conclude that(
1

k
− 1

k†

)〈
χ†,F ψ

〉
= 0.

Therefore, either k = k† or
〈
χ†,F ψ

〉
= 0. In other words, either direct and adjoint eigen-

vectors share the same eigenvalue, or they are “orthogonal”, in the sense of
〈
χ†,F ψ

〉
= 0.

In the particular case of the dominant eigenvectors of Eqs. (2.48) and (2.54), the scalar prod-
uct cannot vanish because ψ and χ† are non-negative everywhere in phase space. Therefore,
Eqs. (2.48) and (2.54) have the same dominant eigenvalue, keff.

2.6 Transport equations for charged particles
So far, we have only concerned ourselves with the formalism for the transport of electrically
neutral particles. Most of the mathematical aspects of the formalism still apply to charged
particles, but the phenomenology is sensibly different. Charged particles (defined as elec-
trons or atomic nuclei for the purpose of this document) are tightly coupled with the atomic
electrons of the medium that they traverse. The electromagnetic interaction can lead to elas-
tic scattering of the charged particle off the atomic nuclei or the electrons of the medium.
Inelastic collisions are also possible, and typically involve the excitation of the atomic elec-
trons or the ionization of the atom; in some cases (high energy, light particles) inelastic
collisions may also involve the emission of bremsstrahlung photons.

The distinguishing feature of charged-particle transport is that electromagnetic interac-
tions with the electrons of the medium are characterized by very large cross sections, typi-
cally several orders of magnitude larger than the largest cross sections involved in neutron
transport. For the sake of illustration, let us compare the largest cross sections involved in
neutron transport with the smallest cross sections involved in electron transport. The total
cross section for the n + 235U reaction at 25meV is of the order of 700 b (D. A. Brown
et al. 2018; Plompen et al. 2020), which results in a mean free path of about 300 µm in
uranium with 100% 235U enrichment. For contrast, the interaction of a 1MeV electron in
water is characterized by a total cross section of about 1.2Mb (1.2× 106 b!) with the water
molecule (Perkins et al. 1991), for a mean free path of the order of 250 nm. Thus, the cross
sections for electron transport are at least three orders of magnitude larger than the largest
cross sections involved in neutron transport. The ratio is even larger for lower energies and
heavier materials.

In practice, let Σs(r, E, T, µ) be the differential scattering cross section for a particle
of energy E losing an amount of energy T and being deflected by an angle arccosµ in a
collision (azimuthal symmetry is assumed). The integral of the scattering cross section over
all possible energy losses and angular deflections is the total scattering cross section:

Σs(r, E) = 2π

∫ E

0

dT
∫ 1

−1

dµΣs(r, E, T, µ).

For incident electrons up to a few tens of MeV, the scattering cross section is essentially
equal to the total cross section, i.e. absorption is negligible compared to scattering. The same
remark holds for protons and ions; it is however worth stressing that reaction events, albeit
rare, are catastrophic in nature because they may lead to the disappearance of the primary
particle and to the conversion into other particle species. For the sake of illustration, the
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reaction cross section for protons on 7Li at 5MeV is of the order of 500mb (with (p, n) being
the only open inelastic channel at this energy). This is completely negligible with respect to
the atomic excitation and ionization cross sections for a 5MeV proton in lithium, which are
of the same order of magnitude as the electron cross sections above (tens to hundreds of kb)
(Paul and Sacher 1989). However, the 7Li(p, n) cross section is the only open channel that
leads to the production of neutrons at 5MeV. Even if this process has a negligible impact on
the energy and momentum loss of the primary proton, it is clearly of paramount importance
for neutron production.

It is common to decompose the scattering cross section Σs as the sum of two compo-
nents:

Σs(r, E, T, µ) = Σs,nucl(r, E, T, µ) + Σs,atom(r, E, T, µ).

The first term, Σs,nucl, represents the electromagnetic interaction of the particle with the
atomic nucleus. For incident electrons and light ions, the amount of energy lost to scatter-
ing with a large atomic nucleus is very small because of the large mass difference. The
second term, Σs,atom, describes the interactions of the particle with the atomic electrons. In
many practical cases, the atomic cross section is sharply forward-peaked, even for incident
electrons. This phenomenon is so pronounced that the reference data library for atomic
electron cross sections, the Evaluated Electron Data Library (EEDL) (Perkins et al. 1991),
provides separate evaluations for the total elastic cross section, integrated over µ ∈ [−1, 1],
and the “large-angle” scattering cross section, integrated over µ ∈ [−1, 0.999999]. In the
common straight-ahead approximation, the atomic scattering cross section is written as

Σs,atom(r, E, T, µ) = Σs,atom(r, E, T ) δ(µ− 1). (2.55)

Moreover, the typical energy loss in an atomic collision is of the order of the atomic binding
energy (a few tens of eV), which is usually much smaller than the particle energy E.

2.6.1 The continuous slowing-down approximation

This examplemakes it clear that the number of collisions involved in the transport of charged
particles is very large. However, most of the collisions actually result in very little energy
and momentum transfer between the particle and the medium. This makes it possible to
formulate effective transport theories where most (or all) of the “soft” particle-matter in-
teractions are replaced with approximate continuous processes. As an example, we derive
the continuous slowing-down approximation (CSDA), which amounts to replacing the en-
ergy loss due to elastic and inelastic particle-atom collisions with a continuous energy-loss
process.

We start by writing out the integro-differential form of the stationary Boltzmann equa-
tion for electrons:

Ω̂ · ∇φ(r, Ω̂, E) + [Σs,atom(r, E) + Σs,nucl(r, E)]φ(r, Ω̂, E)

= Catom(r, E, Ω̂) + Cnucl(r, E, Ω̂) +Q(r, Ω̂, E). (2.56)

Here Catom(r, E, Ω̂) and Cnucl(r, E, Ω̂) are respectively the atomic and nuclear collision
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terms:

Catom(r, E, Ω̂) =

∫
dE ′

∫
d2Ω̂′Σs,atom(r, E

′, E ′ − E, Ω̂′ · Ω̂)φ(r, Ω̂′, E ′) (2.57)

Cnucl(r, E, Ω̂) =

∫
dE ′

∫
d2Ω̂′Σs,nucl(r, E

′, E ′ − E, Ω̂′ · Ω̂)φ(r, Ω̂′, E ′). (2.58)

Inspired by Zheng-Ming and Brahme (1993), we make use of the following identity involv-
ing Fourier transforms:

f(E) =
1

2π

∫
dω eiωE

∫
dX e−iωXf(X).

Applying this to Eq. (2.57), we obtain

Catom(r, E, Ω̂) =
1

2π

∫
dω eiωE

∫
dX e−iωX∫

dE ′
∫

d2Ω̂′Σs,atom(r, E
′, E ′ −X, Ω̂′ · Ω̂)φ(r, Ω̂′, E ′).

We exchange the order of the integrals, and we change the integration variable from X to
T = E ′ −X:

Catom(r, E, Ω̂) =
1

2π

∫
dω eiωE

∫
dE ′ e−iωE

′∫
d2Ω̂′ φ(r, Ω̂′, E ′)

∫
dT eiωT Σs,atom(r, E

′, T, Ω̂′ · Ω̂).

We now invoke the smallness of the energy transfer T by developing the eiωT term to first
order in T :

eiωT ≃ 1 + iωT . (2.59)

Thus, the collision term is approximated as

Catom(r, E, Ω̂) ≃ 1

2π

∫
dω eiωE

∫
dE ′ e−iωE

′∫
d2Ω̂′ φ(r, Ω̂′, E ′)

∫
dT (1 + iωT ) Σs,atom(r, E

′, T, Ω̂′ · Ω̂),

which simplifies to

Catom(r, E, Ω̂) =

∫
dT
∫

d2Ω̂′
[
Σs,atom(r, E, T, Ω̂

′ · Ω̂)φ(r, Ω̂′, E)

+T
∂
(
Σs,atom(r, E, T, Ω̂

′ · Ω̂)φ(r, Ω̂′, E)
)

∂E

 .
If we now invoke Eq. (2.55), we can simplify this expression further to

Catom(r, E, Ω̂) = Σs,atom(r, E)φ(r, Ω̂, E) +
∂

∂E

(
Satom(r, E)φ(r, Ω̂, E)

)
, (2.60)
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where we have introduced the atomic stopping power

Satom(r, E) = 2π

∫ E

0

dT
∫ 1

−1

dµT Σs,atom(r, E, T, µ), (2.61)

which represents the average energy loss of the primary particle per unit distance travelled.
Note that the first term of Eq. (2.60) is exactly the atomic collision density that appears

on the left-hand side of Eq. (2.56). Thus, Eq. (2.56) may be rewritten as

Ω̂ · ∇φ(r, Ω̂, E)− ∂(Satomφ)

∂E
(r, Ω̂, E) + Σs,nucl(r, E)φ(r, Ω̂, E)

= Cnucl(r, E, Ω̂) +Q(r, Ω̂, E). (2.62)

This approximated form of the Boltzmann equation is much simpler to treat than Eq. (2.56):
the problematic atomic collision term, which is characterized by extremely large cross sec-
tions, has been replaced by a much simpler differential term, which captures the average
energy loss of the electron in atomic collisions and which represents a continuous change
of the electron energy along its line of flight. The cross sections associated to the remaining
nuclear collision term are not as large as atomic cross sections.

2.6.2 Going beyond the continuous slowing-down approximation
Equation (2.62) should really be regarded as only the starting point of an efficient and accu-
rate theory of electron transport. There are a number of improvements that can be brought.
First of all, the straight-ahead approximation introduced by Eq. (2.57) is rather crude. In
reality, atomic collisions do introduce small angular deviations, especially for light particles.
Collisions typically result in very small angular deviations, but they are extremely numer-
ous. The cumulative effect of many small angular deviations is called angular straggling
and it is described by a number of approximate models (Goudsmit and Saunderson 1940;
Ivanchenko et al. 2010; H. W. Lewis 1950; Molière 1948; Urbàn 2002; E. J. Williams and
Chadwick 1939).

Furthermore, the CSDA formalism revolves around the concept of stopping power, de-
fined in Eq. (2.61), which is the average energy loss per unit distance travelled by the particle.
The definition of stopping power can be seen as the first instance of a hierarchy of statistical
moments that characterize the energy loss. In practice, the energy loss experienced by a par-
ticle over a certain flight path is subject to fluctuations around the average value described
by the stopping power. This phenomenon is called energy straggling, and plays a major
role in the determination of the distribution of the penetration depth for particles. Like for
angular straggling, the effect of energy straggling is usually modelled, and different models
address different regimes of particle transport (Blunck and Leisegang 1950; Landau 1944;
Vavilov 1957).

Finally, atomic collisions may occasionally result in catastrophic events characterized
by large scattering angles and/or energy losses. These events should be handled carefully
because, despite their rare occurrence, they lead to very large changes in the energy and
direction of the incident particle. This remark has motivated the formulation of “mixed”
theories (Schneider and Cormack 1959), where catastrophic collisions are individualized,
while soft collisions are treated collectively. The formulation of mixed theories is tightly
connected with the emergence of Monte Carlo calculations for charged particles (Andreo
and Brahme 1984; Berger et al. 1963).



2.7. Non-linear variations over the theme of the Boltzmann equation 35

For further details about the formulation of more sophisticated transport theories for
charged particles, the interested Reader is invited to consult Andreo and Brahme (1984),
Berger et al. (1963), Salvat (2015), and Zheng-Ming and Brahme (1993), as well as the
references therein.

2.7 Non-linear variations over the theme of the Boltzmann
equation

All the transport equations that we have analyzed so far, be it in integro-differential or inte-
gral form, are linear. In this section, we wish to briefly explore a few non-linear variations
of the transport equation that are of some relevance for the rest of this manuscript.

2.7.1 Particle-particle collisions
First and foremost, the first transport equation, as formulated by Ludwig Boltzmann in his
kinetic theory of gases (Boltzmann 1872), is non-linear. Boltzmann was concerned with
the problem of writing an equation for the single-particle density of a gas of identical hard
spheres of massm and radius a moving in a box with perfectly reflecting walls. Following
Uffink and Valente (2015), if we use n(r,p, t) d3r d3p to denote the number of particles
having position between r and r+ d3r and momentum between p and p+ d3p, then Boltz-
mann’s transport equation reads

∂n

∂t
(r,p, t) +

p

m
· ∇n(r,p, t) =

Na2

m

∫
d3p′

∫
(p−p′)·ω̂≥0

d2ω̂ ((p− p′) · ω̂) [n(r,pc, t)n(r,p
′
c, t)− n(r,p, t)n(r,p′, t)] . (2.63)

Here p and p′ represent the momenta of the spheres that are about to collide, ω̂ is the unit
vector pointing from the center of the sphere having momentum p to the center of the sphere
having momentum p′, and pc and p′

c are shortcut notations for the momenta after the colli-
sion, which are determined by the incoming momenta and the direction of closest approach
as

pc = p− ((p− p′) · ω̂) ω̂

p′
c = p+ ((p− p′) · ω̂) ω̂.

The collision term of Eq. (2.63) is non-linear, because it involves the product of the single-
particle density evaluated at different momenta, which represents the number of pairs of
spheres that are just about to collide or have just emerged from a collision. More specifically,
the quadratic form is a consequence of the assumption of molecular chaos (Boltzmann’s
famous Stoßzahlansatz) and the shape of the integral is related to the assumed kinematics
of collisions between hard spheres.

In general, non-linear collision terms can be interpreted as approximated contributions
from particle-particle collisions. Even though neutrons can scatter off other neutrons, no
such term was included in the neutron transport equations outlined in this chapter; the jus-
tification for this is that neutron-neutron scattering is completely negligible compared to
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neutron-nucleus scattering in ordinary matter. We can convince ourselves of this fact by a
simple order-of-magnitude calculation. If we assume a neutron-neutron scattering length at
low energy ann = −18.6 fm (Machleidt and Slaus 2001), we obtain a scattering cross sec-
tion σnn = 4πa2nn =≃ 43 b for thermal neutrons. Given a thermal flux Φ ≃ 1014 cm−2 s−1

and a thermal velocity vth ≃ 103 cm s−1, we can estimate the density of the neutron gas to
be ρ = Φ/vth ≃ 1011 cm−3. We find a “macroscopic cross section” for thermal neutrons
moving in a thermal neutron gas of

Σnn =
σnnΦ

vth
≃ 4× 10−12 cm−1,

which is about eight order of magnitudes smaller than the total macroscopic cross section
for thermal neutrons in air (about 5× 10−4 cm−1).

For neutron-neutron collisions to be important, the neutron density needs to be much
higher. One situation where this happens is in the atomic nucleus. In a 208Pb nucleus, for
example, 82 protons and 126 neutrons are packed in a sphere of roughly 6.5 fm radius. This
corresponds to a nucleon density of the order of ρ208Pb = 1.8× 1038 cm−3. For collisions
of a thermal neutron with neutrons bound in nuclei, as a very rough approximation we can
assume the cross section to be given by the neutron-proton total cross section at the Fermi
energy (about 40MeV), which is of the order of 0.2 b (D. A. Brown et al. 2018), yielding a
mean free path in nuclear matter of the order of

λ =
1

ρ208Pb
≃ 0.25 fm,

which is sensibly smaller than the nuclear radius. This goes to show that multiple interac-
tions between nucleons in nuclear matter cannot be neglected. This point is at the basis of
the nuclear reaction models that will be discussed in more detail in Chapter 5.

2.7.2 Physical feedbacks
There are other phenomena that can introduce non-linearities in the Boltzmann neutron trans-
port equation. We have assumed so far that the macroscopic cross sections are given for the
transport problem. In a nuclear reactor, however, the number of circulating neutrons is so
large that their presence has macroscopic effects on matter. First, nuclear reactions are so
numerous that they can sensibly modify the isotopic composition of the medium. Second,
the power released by neutron-nucleus reactions (especially fission) is so large that it can
affect the temperature of the medium. Both processes modify the macroscopic cross sec-
tions and make them dependent on the past history of the neutron population. An accurate
model of depletion and thermal feedbacks is very important for practical applications of
transport theory to nuclear reactors; the production of heat through fission, in particular, is
really the raison d’être of many nuclear reactors. A detailed discussion of the algorithms
and techniques involved in the solution of the non-linear problems arising from the different
feedback mechanisms is outside the scope of this document; here we will limit ourselves to
illustrating the emergence of non-linearity in the transport equation.

For the sake of concreteness, let us start by considering the evolution of the isotopic
composition of the medium. As stipulated above, let ρi(r, t) be the concentration of the i-th
nuclide at position r and time t. We need to allow for the possible presence of radioactive nu-
clides, so let us denote as λi→j the decay constant for a nucleus of species i to yield a nucleus
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of another species j. Finally, let us write as τi→j the rate of occurrence of neutron-induced
reactions on nuclei of species i yielding nuclei of species j; we can write this quantity as
the product of the scalar flux and a cross section:

τi→j(r, t) =

∫
Φ(r, E, t)Σi→j(r, E, t)dE

=

(∫
Φ(r, E, t)σi→j(r, E, t)dE

)
· ρi(r, t),

where the scalar flux has been defined in Eq. (2.5). The microscopic cross section σi→j

may involve the sum of several reaction channels (for example (n, d) reactions and (n, pn)
reactions lead to the production of the same residual nucleus).

A few remarks are in order. Note that our model assumes that the nucleus j is produced
at the same position as the initial nucleus i, and that it does not migrate. This assumption
may be violated if the reaction products can move through the medium, either because they
are gaseous and can diffuse away, or because the medium is a liquid or a gas. If this is the
case, we need to supplement our neutron transport equation with transport equations for the
isotopes. Additionally, we are also neglecting the fact that the reaction products gain some
recoil from the nuclear reaction; this is usually unimportant for fission products, which have
micrometric ranges in ordinary matter, but it may be relevant for light reaction products such
as protons or alpha particles.

We can write the rate of change of the concentration of the i-th nuclide as follows:

∂ρi
∂t

=
∑
j ̸=i

[(
λj→i +

∫
Φσj→i dE

)
ρj −

(
λi→j +

∫
Φσi→j dE

)
ρi

]
,

where we have omitted the arguments of the functions for the sake of conciseness. These
equations, in their simplest form, are due to Ernest Rutherford (Rutherford 1905) and are
known as the Bateman equations (Bateman 1908). They involve the scalar flux Φ, which
results from the solution of one of the Boltzmann transport equations (typically the k-eigen-
value equation, Eq. (2.29)). The Boltzmann equation, in turn, involve the macroscopic
cross sections, which depend on the isotopic concentrations ρi. Therefore, the Boltzmann-
Bateman equations must be regarded as a system of coupled non-linear equations for the
neutron flux and the isotopic concentrations.

We conclude with a few words about the non-linearities that arise from temperature
feedback. Most of the power deposited by neutrons in a nuclear reactor is located in the
fuel, but heat is quickly transported outside the fuel and into the moderator/coolant. Even
if heat diffusion is assumed to be linear in the source power (assuming constant material
properties), and even if thermal-hydraulics is linearized, the cross sections are highly non-
linear functions of the medium temperature, as we pointed out in Section 2.1.2. Therefore,
the thermal feedback loop is much more intricate than the simple quadratic non-linearity of
the Boltzmann-Bateman equations.

2.8 Non-Boltzmann observables and high-energy particle
transport

The Boltzmann equation and the theory that we have sketched in this chapter have some
limitations. First, the Boltzmann equation is an equation for the particle flux or the average
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phase-space density of particles, i.e. the average number of particles contained in a given
phase-space volume. The information contained in the particle flux or density, however, is
not sufficient to describe any possible physical observable. For example, the probability that
a particle deposits more than some given energy ∆E in a detector is not accessible via the
Boltzmann equation; another example is the average of the square of the number of particles
contained in a given phase-space volume. By convention, we call Boltzmann observables
the physical quantities which can be deduced from the solution of the Boltzmann equation.
The mathematical description of non-Boltzmann observables requires a more general theory.

Another limitation of the theory is that we have consistently assumed that the micro-
scopic cross sections are given data for the problem at hand. In practice, this assumption is
reasonable for neutrons and protons of energy lower than a few tens of MeV and for pho-
tons of energy lower than about 150MeV (D. Brown et al. 2010; D. A. Brown et al. 2018;
Plompen et al. 2020); luckily, this ranges cover all the energies of interest for nuclear reactor
physics (see Section 4.1 for a more detailed discussion on this point). Above these energies,
the number of open reaction channels becomes so large that measuring all the necessary
experimental data and producing accurate evaluations for the differential cross sections be-
comes unfeasible. Thus, even though the theory is still correct at high energy, it is of no
practical use because of the lack of elementary nuclear data.

Based on these remarks, one would probably expect that the solution of low-energy prob-
lems, on one side, and high-energy or non-Boltzmann problems, on the other side, should
require quite different techniques. This is true only to a certain point; perhaps surprisingly,
Monte Carlo is a very commonly used tool on either side of the divide. In the following
chapter, we will present the basic ideas of Monte Carlo and how they relate to the solution
of the Boltzmann equation at low energy. However, we will return to high-energy particle
transport in Chapter 4 and discuss howMonte Carlo is actually much more than a solver for
the Boltzmann transport equation.
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If all other methods fail, a Monte
Carlo calculation may be attempted.

Bell and Glasstone (1970)

In the previous chapter, we have shown that the Boltzmann equation for neutron trans-
port can be cast in the form of a system of coupled integral equations. Depending on
the specific problem considered, the equations are either inhomogeneous equations, as in
Eq. (2.47),

ψn = TnC ψn +Qψn , (3.1)

or eigenvalue equations, as in Eq. (2.49):

ψn = T

(
S +

F

k

)
ψn. (3.2)

Inhomogeneous equations like Eq. (3.1) are classified by mathematicians as Fredholm
equations of the second kind. They have the general form

f = αKf + g, (3.3)

where f and g are (possibly vector) function over some measure space1, α is a (given) scalar,
andK is an integral operator.

The Monte Carlo method provides a very natural way to solve Fredholm equations of
the second kind. Besides allowing us to determine the unknown function f , theMonte Carlo
method actually provides direct access to any linear functional over f , i.e. any quantity O
of the form

O =
〈
w†
O, f

〉
(3.4)

for a given covector w†
O. As special cases, this class includes the value of f at some point

P

O = f(P ),

1Mathematicians tread carefully and only use the name “Fredholm equation” if the functions involved are
defined over the real numbers. In this manuscript we will use the term more loosely, to refer to any integral
equation of the form of Eq. (3.3).



40 Chapter 3. The Monte Carlo method

the integral of f over some region V

O =

∫
V

f(P ) dP ,

and the convolution of f with some response function η

O =

∫
f(P ) η(P ) dP . (3.5)

Any quantity that can be calculated by Monte Carlo is called an observable; in the spirit of
the remarks made at the end of the previous chapter, observables of the form of Eq. (3.4)
are called Boltzmann observables.

In this chapter we will present the main ideas of theMonte Carlo method for the solution
of Fredholm equations of the second kind, and therefore of all linear integral transport equa-
tions derived in Chapter 2. Before diving into the methodological details, we need to make
a quick digression into the mathematical theory of Monte Carlo, which is the subject of Sec-
tion 3.1. Section 3.2 introduces the Liouville-Neumann series, which is both an important
conceptual tool for the study of Fredholm equations and a commonly used numerical de-
vice to construct a solution. Its importance for Monte Carlo is demonstrated in Section 3.3.
In the following sections we describe a few techniques for the construction of Monte Carlo
games; in particular, Section 3.4 discusses the probabilistic interpretation of the source term
of a Fredholm equation; Section 3.5 introduces the key concept of statistical weight; Sec-
tion 3.6 shows how different forms of transition probabilities can be handled in this context.
A concrete example of a Monte Carlo solution of a Fredholm equation of the second kind in
presented in Section 3.8. We generalize the Monte Carlo approach to eigenvalue equations
in Section 3.7. Finally, partial conclusions about Monte Carlo are drawn in Section 3.9.

We will assume that the Reader is familiar with the following items, which are the bread
and butter of any Monte Carlo technique:

• pseudo-random number generators;

• sampling from simple one-dimensional distributions;

• computing integrals using Monte Carlo.

For a refresher on these topics and a deeper dive into the subject of this chapter, eager
Readers are encouraged to consult Carter and Cashwell (1975), Lux and Koblinger (2018),
and Spanier and Gelbard (2008), in this order.

3.1 Markov processes in less than two pages
The mathematical formulation of Monte Carlo involves the following main ingredients:

• a set of states;

• a Markov process;

• an estimator for each observable that we wish to calculate.

Let us go into each of these elements in detail.
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3.1.1 Set of states

The set of states Π is the stage where Monte Carlo is performed. We do not wish to delve
into the details of the mathematical structure that is required of the set of states; we limit
ourselves to observe that the set of states can be discrete or continuous, finite or infinite. For
particle transport, the set of states often (but not always!) coincides with the phase space of
the system, which is parametrized by the particle position, direction of motion, energy and
time, so that Π = R7 and states P are parameterized by (r, Ω̂, E, t).

3.1.2 Definition of a Markov process

A Markov process is a specific type of stochastic process. Broadly speaking, a stochastic
process is a set of rules that define transitions between system states. Transitions can be
continuous or discrete, giving rise to continuous-time and discrete-time stochastic processes,
respectively. More importantly, transitions are allowed to be stochastic, i.e. it is generally
possible to reach more than one state (with various probabilities) in a single step. In this
sense, stochastic processes can be seen as a generalization of (continuous or discrete) dy-
namical systems, for which the “next” state is uniquely determined by the current one. In a
stochastic process, the “next” state is a random variable.

Inspired by the analogy with dynamical systems, we define a history to be any set of
states sampled according to the rules of the process. This concept is basically an extension
of the idea of trajectory of a dynamical system. However, while the initial conditions of a
dynamical system uniquely determine its trajectory, many histories are possible for a given
initial condition in a stochastic process, because of the stochastic nature of transitions.

Let us assume that we are sampling a history of our stochastic process, and let us call P
the most recently visited state. In general, the probability to access another state P ′ from P
is a function not only of P , but also of all the other previously visited states. In most (if not
all) of the cases of interest for particle transport, however, transition probabilities depend
only on the most recent state, P . This property is called the Markov property, after the
name of the Russian mathematician Andrey Andreyevich Markov.

As an example, let us concentrate on discrete-time Markov processes. Such a process is
uniquely specified by a conditional transition probabilities P (P ′|P ) and by a probability
distribution P (P0) for the initial state P0. Given these ingredients, we can generate a
history. We start by sampling2 the initial state P0 from P (P0). The next state, P1, is
sampled from P (P1|P0); in general, the (n + 1)-th state Pn+1 of the process is obtained
by sampling the distribution P (Pn+1|Pn). Any number of histories can be generated by
repeating this process.

According to the description that we have given above, a history of a Markov process
never really terminates; as soon as we reach a state Pn, we are urged to move forward to a
new state Pn+1. It is however possible to model finite histories by formally extending the
state space with an extra state Pfinal, with the proviso that the new state is “absorbing”:

P (Pfinal|Pfinal) = 1

P (P |Pfinal) = 0 ∀P ̸= Pfinal.

2We assume working knowledge of the techniques involved in random sampling of discrete and continuous
variables. Keen Readers may refer to Spanier and Gelbard (2008) for a refresher.
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In the extended model, P (Pfinal|P ) represents the probability that the history ends at P . In
practice, this formal extension is always implicitly understood and histories are allowed to
have a finite length.

3.1.3 Estimators
Consider a history

γ = {P0, P1, . . . , Pk−1} ;

since γ visits k states before terminating, it is an element of Πk. If all histories eventually
terminate (which we will assume), then the space of all possible histories is the union

Γ =
∞⋃
k=1

Πk.

The generic history γ can be regarded as a random variable on Γ. Its probability distribution
P (γ) depends on the Markov process, i.e. on the probability distribution P (P0) for the
initial state and on the transition probabilities, P (Pn+1|Pn). We formally write the proba-
bility distribution of γ over Γ as P (γ), but the implicit dependence on the Markov process
should be borne in mind.

Now let h : Γ → R be a function that maps histories to real numbers. Such a function
is called an estimator. If γ denotes a random history, then ĥ = h(γ) is a random variable
on R, characterized by its probability distribution P

(
ĥ
)
, and possibly its expected value

E(ĥ) and its variance V(ĥ).

3.2 The Liouville-Neumann series
Equipped with these basic notions about Markov processes, we now turn to the problem of
using them to solve a Fredholm equation of the second kind. First, we need to write the
sought solution in a form that can be easily interpreted in probabilistic terms. The most
straightforward approach to solve Eq. (3.3) is to write the solution as a sum of successive
contributions. Let us introduce a sequence of functions fn satisfying the recurrence relation

fn+1 = αKfn,

with f0 = g. Now consider the following series

f =
∞∑
n=0

fn = g + αKg + α2K2g + . . . , (3.6)

with Kng representing the composition of n applications of operator K. Suppose that the
series in Eq. (3.6) converges. It is easy then to verify that f is a solution of Eq. (3.3):

αKf = αK

∞∑
n=0

fn =
∞∑
n=0

αKfn =
∞∑
n=0

fn+1 =
∞∑
n=1

fn = f − g,

provided that we can exchange the integral (the application ofK) and the summation.
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1 history← [] ;
2 P ← sample(g(·)); // sample first state
3 loop
4 append P to history;
5 ξ ← sample(U [0, 1]);
6 if ξ < α then
7 P ← sample(K(·, P )) ; // survival, sample next state
8 else
9 break; // history dies
10 end
11 endLoop

Algorithm 3.1: Sampling a history using the “natural” Markov process.

Equation (3.6) is known as the Liouville-Neumann series. If we assume that the inte-
grals cover some finite range [a, b], then a sufficient condition for its convergence is (Arfken
et al. 2012)

|α| · |b− a| ·max
x,y
|K(x, y)| < 1, (3.7)

where K(x, y) is the kernel of K. In what follows, we will always assume that the series
converges, unless noted otherwise.

3.3 From the Liouville-Neumann series to a Markov pro-
cess

The Liouville-Neumann series lends itself well to a probabilistic interpretation. Indeed, if
we regard g(P ′) as the probability to find a particle in P ′ and K(P, P ′) as the probability
distribution for the transition from P ′ to P , then

(Kg)(P ) =

∫
K(P, P ′) g(P ′) dP ′

would just be the average number of particles in P after exactly one transition. Additionally,
if 0 < α < 1, we can interpretα as a survival probability, i.e. the probability for the particle
to survive the current transition3. Thus, fn(P ) is the average number of particles that are
found at P and have undergone exactly n transitions, and f(P ) is the average number of
particles found at P . Algorithm 3.1 summarizes how to generate a history.

Note that the probabilistic interpretation naturally led us to the construction of a Markov
process: the set of states of the process is the measure space on which the functions f
and g are defined; the transition probabilities are represented by the kernel K(P ′, P ), and
the initial probability distribution is given by g. This construction relies on a number of
assumptions. For example, regarding g(P ) as a probability distribution requires that g(P ) ≥
0 and that

∫
g(P )dP = 1. Some of these assumptions will be lifted below.

To complete our discussion, we need to clarify in what sense the Markov process solves
Eq. (3.3).

3In the notation of Section 3.1.2, P (Pfinal|P ) = 1− α.
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3.3.1 Observables and estimators
Let {P0, P1, . . . , Pk−1} denote the k states visited by a history γ (k being a random variable),
and let us consider an estimator of the form

h(γ) =
k−1∑
i=0

η(Pi), (3.8)

which is entirely defined by the one-point function η(P ). As explained in Section 3.1, h(γ)
is a real random variable, and it can be sampled by evaluating h on histories of the Markov
process. It is possible to show (Lux and Koblinger 2018) that the expectation value of h(γ)
is

E(h) =

∫
f(P ) η(P ) dP , (3.9)

where f is the solution to Eq. (3.3). Therefore, any linear functional of the form (Eq. (3.5)):

O =

∫
f(P ) η(P ) dP

can be estimated with Monte Carlo as follows:

1. generate N histories of the Markov process;

2. convert the histories into a sample of N real numbers by applying the function

h(γ) =
k−1∑
i=0

η(Pi);

3. apply the standard methods of statistical inference to the sample to produce an esti-
mate of the expectation value of h(γ) and an associated confidence interval.

To summarize, given any response function η, Eq. (3.8) yields an unbiased Monte Carlo
estimator for

∫
f(P )η(P )dP . However, note that this the estimator defined by Eq. (3.8)

is not unique; there are actually infinitely many possible estimators for the same response
function. A detailed discussion of this point, in the context of particle transport, can be
found in Spanier and Gelbard (2008).

3.3.2 Remarks
A few remarks are in order:

• TheMonte Carlo “solution” is approximation-free, in the sense that it does not require
any discretization of the Fredholm equation. The trade-off is that the “solutions” are
random variables. The statistical uncertainty on the estimates of the sought expecta-
tion value, however one chooses to evaluate it, is inversely proportional to the square
root of the number of histories. This means that convergence is typically slow: halv-
ing the statistical uncertainty requires sampling four times as many histories.
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• There are infinitely many Markov processes that “solve” a given Fredholm equation.
All the ingredients can be modified: the initial condition, the transition probabilities,
the estimators, and even the set of states. All the different possibleMonte Carlo games
solve the same problem, but, in general, they are not equivalent in terms of efficiency.
The problem of formulating the optimal Monte Carlo game is a very interesting one,
and it will be discussed further in Chapter 8.

• The family of linear functionals defined by Eq. (3.5) does not actually include point
values of f , such as f(P ). It is possible to approximate point values by linear func-
tionals that integrate f over some small volume δP around P :

hP,δP (γ) ≃
1

δP

k−1∑
i=0

1δP (Pi);

here 1δP (P ) represents the indicator function for the integration volume δP . Clearly,
this estimator is not unbiased. One may be tempted to make the bias as small as
possible by taking the integration volume as small as possible. However, when doing
so, the associated Monte Carlo estimators becomes very inefficient, in the sense that
the statistical uncertainty associated with any given set of histories increases. This is
due to the fact that, as the integration volume is reduced, the number of histories that
contribute a non-zero value to the estimate is also reduced.

Unbiased estimators for point values of f exist, and they do not suffer from the prob-
lems discussed here (although they suffer from other problems). Their definition is
outside the scope of this manuscript, but the interested Reader is encouraged to con-
sult Lux and Koblinger (2018, paragraph 4.V.D.3).

Finally, the Reader probably suspects that there are many things that can go wrong with
the “natural” construction of a Markov process outlined in above. For example, it may not
be possible to interpret g as a probability distribution at all; the function g(P ) may take
negative values for some P , or it may not be normalized to 1. Similar problems may arise
if one insists on interpreting K(P ′, P ) as a transition probability. Remarkably, however, it
is often possible to refine the construction of the Markov process to work around most of
the limitations of the “natural” construction. In the rest of this chapter, we will somewhat
heuristically propose strategies to handle the most common ones.

3.4 Source term
Suppose that the source term is not normalized to 1:∫

g(P ) dP = Ng

g(P ) ≥ 0

for some Ng > 0, Ng ̸= 1. We can interpret g as the average number of source particles
emitted at P . Let f be the unknown solution of Eq. (3.3). Let g′ = g/Ng. Linearity implies
that f ′ = f/Ng is a solution of the Fredholm equation

f ′ = αKf ′ + g′.
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By construction, however, the source term for this equation is normalized to 1; we can apply
the natural construction of the Markov process to it, solve for f ′ and recover f = f ′ · Ng.
Therefore, we can assume that g is normalized to 1 without loss of generality.

This trick cannot be applied if Ng = 0:∫
g(P ) dP = 0

We have to consider two cases here: If g(P ) = 0 everywhere, then in general4 Eq. (3.3)
only admits the trivial solution f = 0. If g(P ) does not vanish everywhere, then we define
two auxiliary source functions, representing the positive and the negative parts of g:

g+(P ) = max (g(P ), 0)
g−(P ) = max (−g(P ), 0) .

By construction, g = g+ − g−. Both functions g± are non-negative; therefore, we can use
the natural construction to solve the Fredholm equations

f± = αKf± + g±.

Then, by linearity, the solution to the original equation is given by f = f+ − f−. This
strategy actually works for any situation in which g(P ) changes sign, even if its integral
does not vanish.

3.5 Statistical weights

Before discussing transition probabilities, we need to introduce the concept of statistical
weight. The idea is to associate a real numberwi to each state visited by a history. Weighted
histories have the form

γ = {(P0, w0), (P1, w1), . . . , (Pk−1, wk−1)}.

Intuitively, the weightwi can be used to represent the fact that a given state Pi was visited by
a fraction of a process. This generalization has consequences on the structure of estimators:
for example, one-point estimators of the form of Eq. (3.8) need to be generalized to

h(γ) =
k−1∑
i=0

wi · h1(Pi). (3.10)

Statistical weights are a crucial tool for Monte Carlo. Essentially any attempt to improve the
efficiency of Monte Carlo relies on the introduction of suitable statistical weights; in prac-
tice, efficient Monte Carlo schemes try to spend as much time as possible on the simulation
of “interesting” events, and they use statistical weights to compensate and keep the game
fair. Methods that aim to improve the efficiency of Monte Carlo are collectively known as
variance-reduction techniques and constitute a lively field of ongoing research.

4The form of Eq. (3.3) without a source term is actually better interpreted as an eigenvalue equation, but we
will not pursue this matter.
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1 history← [] ;
2 weight← 1 ; // initialize weight
3 P ← sample(g(·));
4 loop
5 append (P,weight) to history;
6 weight← weight× α ; // multiply by survival probability
7 P ← sample(K(·, P ));
8 endLoop
Algorithm 3.2: Sampling a history using survival biasing. This algorithm never
terminates.

As an example of the use of statistical weights, consider how survival of the history is
sampled in the natural Markov process of Algorithm 3.1. Clearly, at any step, the average
fraction of histories that survive is α. We can represent survival by modifying the weight:
in Line 6 of the algorithm, we can let the history unconditionally continue, and keep track
of the survival probability by multiplying the current weight of the history by α. This leads
to Algorithm 3.2, which is known as survival biasing. Note that the history starts from the
source with a weight of 1 and accumulates a factor of α at each step, so that the weight after
i transitions is given by

wi = αi.
In this form, survival biasing is problematic because it produces infinitely long histories.
Note that the statistical weight decreases exponentially with the number of steps; therefore,
states visited after many steps are expected to yield small contributions to estimators of
the form of Eq. (3.8). One may be tempted to truncate the histories once the weight falls
below a fixed threshold value; however, this will lead to biased estimates. A commonly
used and unbiased alternative is Russian roulette: in the simplest implementation of this
method, when the weight w of the history drops below a fixed threshold wRR, the history
is randomly killed with probability 1−w; if the history survives, its current weight is reset
to 1. This ensures that histories will eventually terminate, and at the same time guarantees
that weight is conserved on average and that any estimator will remain unbiased (Lux and
Koblinger 2018). The inclusion of Russian roulette leads to Algorithm 3.3.

3.6 Transition probabilities

Let us now consider the case where the kernelK(P ′, P ) is always positive, but it cannot be
interpreted as a conditional probability distribution for P ′ because∫

K(P ′, P )dP ′ = NK(P )

for some NK(P ) > 0, NK(P ) ̸= 1. Define

K ′(P ′, P ) =
K(P ′, P )

NK(P )
(3.11)

and observe that
∫
K ′(P ′, P )dP ′ = 1, by construction. Thus,K ′(P ′, P ) can be interpreted

as a probability distribution. By substituting this definition into Eq. (3.3), we obtain

f = (αNK)K
′f + g. (3.12)
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1 history← [] ;
2 weight← 1 ;
3 P ← sample(g(·));
4 loop
5 append (P,weight) to history;
6 weight← weight× α;
7 if weight < weightRR then // below threshold, must play roulette
8 ξ ← sample(Uniform[0,1]);
9 if ξ < weight then
10 weight← 1 ; // survived roulette
11 else
12 break; // history dies
13 end
14 end
15 P ← sample(K(·, P ));
16 endLoop
Algorithm 3.3: Sampling a history using survival biasing and Russian roulette.

The brackets highlight the fact that this equation is similar in form to Eq. (3.3), except for
the fact that the scalar αNK(P ) now depends on P . If 0 ≤ αNK(P ) ≤ 1, then this value
can be regarded as a state-dependent survival probability. In this case, the natural Markov
process construction for Eq. (3.12) can proceed as normal.

As we have seen before, the survival probability can also be handled by introducing sta-
tistical weights and using survival biasing and Russian roulette. This solution also works for
the state-dependent survival probability of Eq. (3.12): instead of randomly deciding whether
the history should survive, with probability αNK(P ), we multiply the current weight by
αNK(P ) and apply Russian roulette, leading to Algorithm 3.4.

The Reader should try to convince themselves that Algorithm 3.4 is actually applicable
for any value of αNK(P ). Indeed, if αNK(P ) > 1, then the weight will occasionally in-
crease for the given transition, but this is not necessarily a problem; as long as the weight
keeps decreasing most of the time, histories will eventually terminate. It is worth stress-
ing in passing the similarity between the sufficient condition for the convergence of the
Liouville-Neumann series, Eq. (3.7), and the fact that the weight needs to decrease “most of
the time” for the Monte Carlo histories to terminate. This is more than just a coincidence:
the convergence of the Liouville-Neumann series expresses the fact that the average density
of particles is finite. However, the connection is subtle because it is possible to imagine
Monte Carlo games with finitely long histories but infinite particle densities; conversely, a
non-terminating Monte Carlo game may well simulate a Fredholm equation characterized
by a converging Liouville-Neumann series (see Algorithm 3.2 for example).

More interestingly, let us consider the case where K(P ′, P ) is always negative. The
normalized kernel, Eq. (3.11), can still be interpreted as a probability distribution; however,
the weight multiplier αNK(P ) becomes negative and the weight sign alternates at each
step. A negative weight is difficult to interpret in terms of fractions of histories, but it does
not pose any serious practical difficulty, as long as one modifies Russian roulette in such
a way that negative values are handled correctly. Algorithm 3.4 uses the absolute value of
the weight to perform roulette; in case the particle survives, its weight keeps its sign and its
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1 history← [] ;
2 weight← 1 ;
3 P ← sample(g(·));
4 loop
5 append (P,weight) to history;

// multiply weight by the state-dependent survival
probability

6 weight← weight× αNK(P );
// the rest is the same as before

7 if |weight| < weightRR then
8 ξ ← sample(Uniform[0,1]);
9 if ξ < |weight| then
10 weight← weight/|weight|;
11 else
12 break;
13 end
14 P ← sample(K(·, P ));
15 end
16 endLoop
Algorithm 3.4: Sampling a history using survival biasing and Russian roulette, with
a state-dependent survival probability. This algorithm is applicable to any value of
αNK(P ).

magnitude is reset to 1.
Kernels without a definite sign can be handled by defining their positive and negative

parts,

K+(P
′, P ) = max (K(P ′, P ), 0)

K−(P
′, P ) = max (−K(P ′, P ), 0) ,

so that
K(P ′, P ) = K+(P

′, P )−K−(P
′, P ). (3.13)

We assume that the positive and the negative parts can be separately normalized:

K ′
+(P

′, P ) =
K+(P

′, P )

NK+(P )
(3.14a)

K ′
−(P

′, P ) =
K−(P

′, P )

NK−(P )
, (3.14b)

with

NK+(P ) =

∫
K+(P

′, P )dP ′

NK−(P ) =

∫
K−(P

′, P )dP ′.

The equation can then be rewritten as

f = α (NK+ +NK−)

[
NK+

NK+ +NK−

K ′
+f −

NK−

NK+ +NK−

K ′
−f

]
+ g. (3.15)
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1 history← [] ;
2 weight← 1 ;
3 P ← sample(g(·));
4 loop
5 append (P,weight) to history;

// multiply weight by the state-dependent survival
probability

6 weight← weight× α (NK+(P ) +NK−(P ));
// play Russian roulette with weight, omitted

7 ξ ← sample(Uniform[0,1]);
8 if ξ < NK+(P )/(NK+(P ) +NK−(P )) then
9 P ← sample(K+(·, P ));
10 else
11 P ← sample(K−(·, P ));
12 weight← −weight;
13 end
14 endLoop
Algorithm 3.5: Algorithm for sampling a history for a transition kernel without a
definite sign. The kernel K is written as a difference of two positive kernels K+

andK−, which are selected and sampled at random. Russian roulette is applied, but
omitted for the sake of conciseness.

Equation (3.15) highlights that the transition can be sampled as follows: first, we select a
“positive” or a “negative” transition with respective probabilities

PK±(P ) =
NK±(P )

NK+(P ) +NK−(P )
.

If a positive transition is selected, then the final state is sampled from the kernelK ′
+(P

′, P ).
If a negative transition is selected, then the final state is sampled from the kernelK ′

−(P
′, P )

andwe flip the sign of the statistical weight. In either case, we multiply the statistical weight
by α (NK+ +NK−). The procedure is summarized in Algorithm 3.5.

A moment’s thought will reveal that Algorithm 3.5 is actually applicable to any decom-
position of the form

K(P ′, P ) = K+(P
′, P )−K−(P

′, P )

K±(P
′, P ) ≥ 0

NK±(P ) =

∫
K±(P

′, P )dP ′ <∞,

regardless of the fact thatK+ andK− represent the positive and negative parts of the kernel.
More generally, if the kernel can be written as a sum of finitely many positive and negative
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components of finite norm,

K(P ′, P ) =
∑
i

K+,i(P
′, P )−

∑
i

K−,i(P
′, P )

K±,i(P
′, P ) ≥ 0

NK±,i
(P ) =

∫
K±,i(P

′, P )dP ′ <∞,

then it is possible to sample K by first selecting a sub-kernel according to the probability
distribution

PK±,i
(P ) =

NK±,i
(P )∑

iNK+,i
(P ) +

∑
iNK−,i

(P )

and then sampling the corresponding normalized sub-kernel. Finally, we must remember to
apply the weight multiplier

α ·

(∑
i

NK+,i
(P ) +

∑
i

NK−,i
(P )

)

and to flip the sign of the weight if one of the negative sub-kernels was selected. This proce-
dure actually generalizes fairly easily to kernels that can be expressed as linear combinations
of finitely many sub-kernels,

K(P ′, P ) =
∑
i

K+,i(P
′, P )−

∑
i

∫
K−,i(P

′, P ),

provided that the sub-kernels can be individually normalized,

NK±,i
(P ) =

∫
K±,i(P

′, P )dP ′ <∞,

and provided that the normalization constants |NK±,i
(P )| can be interpreted as a probability

distribution for the choice of the sub-kernel.

3.7 Eigenvalue equations and power iteration
The algorithms outlined so far can be used to solve Fredholm equations of the second kind.
Let us however go back to Eq. (3.2):

ψn = T

(
S +

F

k

)
ψn.

This integral equation is not a Fredholm equation of the second kind, but rather an eigen-
value equation. On physical grounds, we know that this equation admits a set of discrete
eigenvalues {k(0), k(1), . . .}, with k(0) real and bounding the spectrum from above:

k(0) > Re(k(i)) ∀i > 0.

We are generally interested in determining the dominant eigenvalue k(0) and the associated
eigenfunction. Can we adapt our heuristic construction of the Markov process above to this
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problem? The solution is provided by a classic algorithm called power iteration, which is
an adaptation of the power method from linear algebra.

Let us consider more abstractly the following eigenvalue equation:

α · (f −Kf) = F f . (3.16)

Here α is the eigenvalue and f is the unknown. Since this equation is homogeneous, the
solution f is determined up to an arbitrary normalization constant, which we assume to be
fixed by the following (L1) normalization condition:

∥F f∥ =
∫
|F f(P )|dP = 1. (3.17)

Suppose that we replace the right-hand side of Eq. (3.16) with an initial guess g0,

α · (f −Kf) = g0; (3.18)

we assume g0 to be non-negative and normalized, for coherence with Eq. (3.17):

∥g0∥ =
∫
g0(P ) dP = 1.

Equation (3.18) is a Fredholm equation of the second kind, of the form of Eq. (3.3); g0 is
the source term and the unknown is f ′ = α f . We can solve it by constructing a Markov
chain as outlined in the previous section. Let f ′

0 be the solution to the equation

f ′
0 −Kf ′

0 = g0.

This yields the first estimate of the eigenfunction:

f0 =
f ′
0

∥F f ′
0∥
.

We can now iterate. At the n-th step, we solve the equation

f ′
n −Kf ′

n = F fn−1.

This yields the recurrence relation

f ′
n =

(1−K)−1F f ′
n−1

∥F f ′
n−1∥

,

which can be cast in the explicit form

f ′
n =

[
(1−K)−1F

]n
f ′
0

n−1∏
i=0

∥F f ′
i∥

. (3.19)

It is legitimate to ask whether this sequence of functions converges, and what it converges
to if it does. We will give a heuristic argument here. Suppose Eq. (3.16) admits a complete
set of discrete eigenvalue/eigenfunction pairs5:

α(i) ·
(
f (i) −Kf (i)

)
= F f (i);

5This condition is not necessary, but it simplifies the following exposition.
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thus,
α(i)f (i) = (1−K)−1F f (i).

Assume that the eigenvalues are bounded in magnitude from above, that the eigenpairs are
labelled so that

|α(0)| ≥ |α(1)| ≥ |α(2)| ≥ . . . ,

and that the eigenfunctions are normalized:∫
|F f (i)(P )|dP = 1.

By completeness, any function can be expressed as a linear combination of the functions
f (i). In particular, the function f ′

0 can be decomposed as

f ′
0(P ) =

∞∑
i=0

c(i)n f
(i)(P ).

Equation (3.19) yields

f ′
n =

[
(1−K)−1F

]n ∞∑
i=0

c(i)n f
(i)

n−1∏
i=0

∥F f ′
i∥

=

∞∑
i=0

c(i)n α
(i)nf (i)

n−1∏
i=0

∥F f ′
i∥

.

Therefore, if n is sufficiently large and c(0) ≠ 0, the α(0)nf (0) term eventually dominates
the sum and we get

f ′
n ∝ f (0).

This shows that the power iteration algorithm converges to the dominant eigenfunction of
the generalized eigenvalue equation, Eq. (3.16).

The Monte Carlo version of the power iteration algorithm is based on the very same
ideas. Taking Eq. (3.2) as an example, the algorithm is adapted as follows:

1. Sample N unit-weight particles from an arbitrary source distribution; this starts the
first generation (or cycle).

2. Solve the fixed-source problem for the propagation of the source particles, assuming
that fission is treated as absorption.

3. Sample particles emitted from fission during the propagation of the source particles.

4. Somehow resample and/or renormalize the fission particles so that their weight (and
possibly their number) is equal to N . This provides the particle source for the next
generation/cycle.
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5. Go to step 2.

As iterations develop, the distribution of the source particles approaches the distribution
described by the dominant eigenfunction f (0). There are many strategies to monitor the
convergence of the iteration, which we will not discuss here (F. B. Brown 2009). Suffice
it to say that once convergence has been attained, the source particles can be collectively
seen as a representative sample from the dominant eigenfunction f (0). From this point on,
further iterations do not modify the distribution of the source particles. Linear functionals
of the collision or emission density can then be estimated by applying the usual Monte Carlo
estimators. Care must however be taken in evaluating confidence intervals for the Monte
Carlo estimators, because particles from different generations are not independent (F. B.
Brown 2009; Miao et al. 2018).

3.8 An example
We wish to provide a concrete example of the techniques developed in the sections above
by applying them to the solution of a specific Fredholm equation of the second kind. The
equation that we have selected is

f(x) = α

∫ x

0

(β (x− y)− 1)Σ exp (−Σ (x− y)) f(y) dy + δ(x). (3.20)

The parameters β, Σ, and α are assumed to be positive. This equation admits an analytical
solution (Polyanin and Manzhirov 2008, §2.2-2, Eq. 25):

f(x) = δ(x) +
αΣ e−(α

2
+1)Σx

k

[(
k2

αΣ
+
αΣ

4

)
sinh (k x)− k cosh (k x)

]
, (3.21)

with
k =

1

2

√
αΣ(4β + αΣ).

We will use this equation as a reference for our Monte Carlo simulation.
The kernel of this equation is actually a function of s = x− y only and reads

K(s) =

{
(β s− 1)Σ exp (−Σ s) if s > 0

0 otherwise
(3.22)

Following Algorithm 3.5, we splitK into its positive and negative parts:

K+(s) =

{
K(s, 0) if s > β−1

0 otherwise

K−(s) =

{
−K(s, 0) if 0 < s ≤ β−1

0 otherwise
.

A primitive of K is

N(s) =

∫ s

0

K(s′)ds′

=
β

Σ
+

(
1− β s− β

Σ

)
exp(−Σ s)− 1.
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1 Procedure sampleKernelPN()
2 ξ1 ← sample(Uniform[0,1]);
3 ξ2 ← sample(Uniform[0,1]);
4 if ξ1 < NK+(P )/(NK+(P ) +NK−(P )) then

5 s← 1

β
−
W−1

(
ξ2 − 1

e

)
+ 1

Σ
;

6 else

7 s← 1

β
−
W0

(
(1− ξ2)

(
Σ

β
− 1

)
exp

(
Σ

β
− 1

)
− ξ2

e

)
+ 1

Σ
;

8 weight← −weight;
9 end
10 return s;
11 endProcedure
Algorithm 3.6: Procedure for sampling Eq. (3.22) by splitting it into a positive and
a negative part.

This yields the norms of the positive and negative parts,

NK+ = N(+∞)−N(β−1) =
β

Σ
exp

(
−Σ

β

)
NK− = −N(β−1) = 1− β

Σ

[
1− exp

(
−Σ

β

)]
,

and their sum:
NK+ +NK− = 1− β

Σ

[
1− 2 exp

(
−Σ

β

)]
.

The normalized version of the kernels, Eq. (3.14), are omitted for the sake of brevity.
We will need to separately sampleK+ andK−. We will use inverse transform sampling

(Spanier and Gelbard 2008). For the positive part, we need to solve the following equation
for s:

N(s)−N(β−1) = ξ NK+ ,

where ξ is a standard pseudo-random number. The solution is

s =
1

β
−
W−1

(
ξ − 1

e

)
+ 1

Σ
.

HereW−1 is the secondary real-valued branch of the Lambert function6. The choice of the
branch stems from the requirement that the solution must take the limiting values s = β−1

6The Lambert function is defined as the solution of the following (complex) equation:

W (z)eW (z) = z.

It has a countably infinite number of branches, denoted Wn(z). The n = −1 and n = 0 branches are real-
valued, i.e they take up real values for some range of real arguments.
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1 Procedure sampleKernelEL()
2 ξ1 ← sample(Uniform[0,1]);
3 if ξ1 < β/(β + Σ) then

// linear-exponential part selected
4 ξ2 ← sample(Uniform[0,1]);
5 ξ3 ← sample(Uniform[0,1]);

6 s← − log ξ2 + log ξ3
Σ

;

7 else
// exponential part selected

8 ξ2 ← sample(Uniform[0,1]);

9 s← − log ξ2
Σ

;

10 weight← −weight;
11 end
12 return s;
13 endProcedure
Algorithm 3.7: Procedure for sampling Eq. (3.22) by splitting it into an exponential
part and a linear-exponential part.

and s = +∞ for ξ → 0 and ξ → 1, respectively. For the negative part, the equation to
solve is

N(s) = ξ NK− ,

and the solution reads

s =
1

β
−
W0

(
(1− ξ)

(
Σ

β
− 1

)
exp

(
Σ

β
− 1

)
− ξ

e

)
+ 1

Σ
, (3.23)

whereW0 is the principal branch of the Lambert function. Equation (3.23) correctly yields
s = 0 for ξ → 0 and s = β−1 for ξ → 1. We summarize this sampling strategy for the
transition kernel in Algorithm 3.6.

An alternative sampling strategy directly leverages the structure of Eq. (3.22). Indeed,
the kernel can be written as

K(s) =

{
K1(s)−K0(s) if s > 0

0 otherwise
,

where

K0(s) = Σ exp (−Σ s)
K1(s) = β Σ s exp (−Σ s) .

The sub-kernels satisfy
Ki(P

′, P ) ≥ 0, i = 0, 1
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and

NK0(P ) = 1

NK1(P ) =
β

Σ
.

Therefore, we can sampleK using Algorithm 3.7.
Regardless of how we choose to sample the transition kernel, we need to define the

estimators that we will apply to the histories generated by Algorithm 3.5. Since our goal is
to “solve” Eq. (3.20), we want to construct estimators for f(x). To this end, we first define
an interval of interest, say x ∈ [0, xmax], and we partition it into B = 100 equal bins of size
δx = xmax/B. For each bin [xi, xi + δx], we define a one-point estimator h(i)(γ) following
Eq. (3.10), with

h
(i)
1 (x) =

1[xi,xi+1](x)

δx
.

Up to a factor, the estimator h(i)(γ) keeps a weighted count of how many particles have
landed into the i-th bin during history γ. By virtue of Eq. (3.9), the expectation value of h(i)
is

E(h(i)) =
1

δx

xi+δx∫
xi

f(x) dx, (3.24)

which approximates the value of f(x) in the bin.
Finally, for completeness, we need to mention the fact that sampling the source term

of Eq. (3.20) is trivial; for our Monte Carlo simulation, a Dirac delta simply means that all
our particles start at x = 0. For the sake of clarity of illustration, the first point of each
history (the source point) is excluded from the count. This is done in order to improve the
readability of the plots, which would otherwise be marred by a large peak at x = 0. For
coherence, we likewise exclude the δ(x) term of Eq. (3.21) from our plots below.

I have written a small Monte Carlo solver for Eq. (3.20) according to the rules outlined
in this chapter. The code is released as free software (Mancusi 2023). The positions of the
walkers generated by the Monte Carlo solver are tallied on a grid of 100 equal bins between
x = 0 and x = 10. Figure 3.1 shows the result of two Monte Carlo simulations of 108 his-
tories each; the difference between the Monte Carlo calculations lies in the kernel sampling
algorithm used (positive-negative, Algorithm 3.6, or linear-exponential, Algorithm 3.7). In
the top part of Fig. 3.1, the dots represent the sample averages h̄(i) of the estimators h(i),
plotted as a function of the position; the error bars represent the standard errors σ̄h(i) . The
continuous green line represents the analytical solution, Eq. (3.21), with the δ(x) term ex-
cluded. The agreement between the Monte Carlo results and the expected solution can be
somewhat quantified by inspecting the studentized residuals

t(i) =
h̄(i) − f(xi + δx/2)

σ̄h(i)
.

If the number of simulated histories is sufficiently large, then each residual t(i) is expected
to follow a standard normal distribution (zero mean, unit variance). The bottom part of
Fig. 3.1 shows the studentized residuals as a function of position.
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Figure 3.1: Comparison between Eq. (3.21), which is the solution to Eq. (3.20), and the
result of two Monte Carlo simulations. The simulations use different sampling strategies
for the transition kernel.

It is immediately evident from Fig. 3.1 that both Monte Carlo calculations are in very
good agreement with the theory. The residual plot shows a cloud of points that are mostly
contained within the −2 < t(i) < 2 interval. Towards the beginning of the curve, around
x ≲ 1, the magnitude of the residuals becomes somewhat larger. However, we should
remember that our estimators h(i) are not pointwise estimators for the values of the solution,
but they actually estimate the average of the solution over the bin, Eq. (3.24). By developing
f(x) in Taylor series around the bin midpoint xi+δx/2, it is possible to argue that the value
of f(xi+δx/2) differs from the average over the bin by an amount proportional to the second
derivative of the solution, f ′′(xi+δx/2). This is consistent with the somewhat larger values
of the residuals for x ≲ 1.

We should also stress the fact that both kernel sampling methods (positive-negative and
linear-exponential) yield results in good agreement with the theory. However, the error bars
in the top part of Fig. 3.1 are clearly larger for linear-exponential sampling. This illustrates
the fact that there may be reasons to prefer one sampling method over another “equivalent”
one; besides the variance of the results, one should certainly take into account at least the
total CPU time required by the sampling method and the simplicity of the algorithm.

3.9 Conclusions and insights

Even though this chapter did not to provide a rigorous construction of a Markov-process-
based solution to a Fredholm equation, the content presented here will hopefully suffice to
convince the Reader that a whole host of situations actually prove to be treatable by making
ingenious use of statistical weights. Since the goal of this chapter is not to provide a grimoire
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of every possible “trick”, my exposition will stop here. I am not aware of the existence of
an exhaustive collection of Monte Carlo “tricks”, but I would be very interested in reading
one if it exists.

I wish to conclude this chapter by raising a final question. We have mentioned for
example in Section 3.6 that a linear combination of transition sub-kernels without a definite
sign can be treated in the Monte Carlo framework if (i) the sub-kernels can be individually
normalized, and (ii) the magnitudes of the normalization constants can be interpreted as a
probability distribution for the choice of the sub-kernel. What happens if these conditions
do not hold?

Consider the kernel
K(s) = K+(s)−K−(s) (3.25)

with

K+(s) =


1

sin s
if 0 < s < 1

0 otherwise

K−(s) =


1

s
if 0 < s < 1

0 otherwise
.

HereK(s) is perfectly well-behaved: it has a finite limit at s = 0+ (in fact, lim
s→0+

K(s) = 0)
and it has a finite normalization constant, but condition (i) is broken, because

1∫
0

K+(s) ds =
1∫

0

K−(s) ds =∞.

As an example of a kernel that breaks condition (ii) but not condition (i), consider

K(s) =
∞∑
n=1

(−1)n+1 Σ exp(−nΣs) s ≥ 0. (3.26)

This well-known series (which provides a counterexample to the Fubini-Tonelli theorem)
can be summed to yield the Fermi-Dirac function,

K(s) =
1

1 + exp(Σs)
,

which can be normalized:
∞∫
0

K(s) ds = log 2.

The sub-kernels
Kn(s) = (−1)n+1Σ exp(−nΣs)

are individually normalizable:

Nn =

∞∫
0

Kn(s) ds =
(−1)n+1

n
.
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However, the normalization constants cannot be interpreted as a probability distribution
because

∞∑
n=1

|Nn| =
∞∑
n=1

1

n
=∞.

Arguably, these two examples highlight problems with our decompositions into sub-
kernels, rather than problems with the method itself. In fact, there is no need to decompose
Eq. (3.25) into sub-kernels, since the kernel is always non-negative. Equation (3.26) is better
decomposed by combining terms in pairs:

K(s) = Σ
∞∑
n=1
n odd

[exp(−nΣs)− exp(−(n+ 1)Σs)]

= Σ
∞∑
n=1

exp(−2nΣs) [exp(Σs)− 1] .

The norms of the sub-kernels

K̂n(s) = Σ exp(−2nΣs) [exp(Σs)− 1]

are

N̂n =

∞∫
0

K̂n(s) ds =
1

2n(2n− 1)

and their sum converges: ∑
n

N̂n = log 2.
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The application of the Monte Carlo method to the resolution of the Boltzmann equation re-
quires access to a certain number of elementary data, such as cross sections, multiplicities,
double-differential scattering kernels, fission spectra, precursor production multiplicities
and decay constants, etc., for all the nuclides present in our system and for all the temper-
atures and energies of interest (see Chapter 2). So far, we have assumed that these nuclear
data are always available. In practice, there are situations where this may not be the case.

4.1 Exhaustiveness of nuclear data

Exhaustive nuclear data are typically unavailable for nuclear reactions at incident energies
above 100MeV to 150MeV, which we take as our definition of high energy for the purpose
of this manuscript. The reason for this is that the number of open reaction channels and
the average particle multiplicities increase very quickly with increasing incident energy. By
consequence, the coverage of experimental data becomes scarcer and scarcer as the energy
increases, and the evaluation of nuclear data becomes under-constrained. Nuclear data li-
braries still provide the cross sections for the most common channels (total, elastic, total
inelastic), but most of the other channels are just omitted from the evaluation. For example,
according to the online version1 of the JANIS software provided by IAEA (Soppera et al.
2014), the n+ 208Pb entry of the ENDF/B-VIII.0 library (D. A. Brown et al. 2018) contains
double-differential particle emission cross sections (MF=6) for 112 distinct reaction channels
(counting each discrete inelastic channel as a different one). According to the AME2016
nuclear mass evaluation (Wang et al. 2017), there are 862 combinations of ejectiles that are
energetically accessible by the n + 208Pb reaction at 150MeV. Note that a given combina-
tion of ejectiles may be realized by more than one reaction channel. Thus, it is clear then
that traditional nuclear data evaluations are far from being able to provide all the information
that is necessary for particle-transport codes at high energy.

For these reasons, Monte Carlo particle transport codes have to resort to another solu-
tion in order to sample the outcomes of high-energy collisions. One possibility, which has
been thoroughly explored in the last ten to fifteen years by the TENDL library (Koning et al.
2019), is to extend the coverage of evaluated nuclear data by making ample use of many ad-
justable nuclear reaction models. To quote from Koning et al. (2019), “[t]he TENDL library
[…] striv[es] for completeness and quality of nuclear data files for all isotopes, evaluation
methods, processing and applied performance”. However, I feel that it is hard to formulate

1Information retrieved on the 4th April 2022 from https://www.oecd-nea.org/janisweb/.

https://www.oecd-nea.org/janisweb/
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strong a priori guarantees about the quality of the evaluation if the available experimental
datasets are few and far between.

The other option, which represents the subject of the present chapter, is to rely on few,
frugal nuclear reaction models to generate the information necessary for the Monte Carlo
calculation. A model is frugal if it is able to explain a large body of experimental evidence
with relatively few adjustable parameters. The free parameters can be adjusted to globally
reproduce the available experimental datasets. The advantage of a frugal model is that it is
expected to have more predictive power than a model with a large number of adjustable pa-
rameters. In other words, a model with many free parameters will in general provide a better
fit to the available experimental data, but it will also generalize badly to new experimental
data. In the jargon of statistical inference, this problem is known as overfitting.

4.2 Nuclear reaction models as event generators
The use of evaluated nuclear data library is fraught with another limitation. The nuclear
reaction models that are used to build the evaluated nuclear data libraries often guarantee
that the fundamental conservation laws (energy, momentum, angular momentum, etc.) are
respected. However, when these models are used to build a library, part of this information
is lost. This happens in particular in the evaluation of “singles” spectra for channels with
more than one outgoing particle. For example, neutron emission in an (n, 2n) reaction is
fully described by a sextuple-differential cross section d6σn,2n/dE1dΩ̂1dE2dΩ̂2, where E1

andE2 are the energies of the outgoing neutrons and Ω̂1 and Ω̂2 are their directions2. Indeed,
the energies and momenta of the outgoing neutrons are correlated by the dynamics of then
nuclear reaction, so (for example) not all energies E2 are accessible if the first neutron has
an energy E1. However, evaluated nuclear data library typically only provide the “singles”
cross section

d3σn,2n
dEdΩ̂

=
1

2

∫
d6σn,2n

dE1dΩ̂1dE2dΩ̂2

δ(E − E1)δ(Ω̂− Ω̂1)dE1dΩ̂1dE2dΩ̂2

+
1

2

∫
d6σn,2n

dE1dΩ̂1dE2dΩ̂2

δ(E − E2)δ(Ω̂− Ω̂2)dE1dΩ̂1dE2dΩ̂2,

where E and Ω̂ are the energy and direction of a single neutron. The fact that two neu-
trons are simultaneously emitted is accounted for using a channel multiplicity of 2. The
reason for this choice is obvious: the amount of storage required to describe the differential
cross section for a reaction channel increases exponentially with the channel multiplicity.
Besides, the singles cross section is sufficient for the calculation of Boltzmann observables
(see Chapter 3), because the (n, 2n) production term of the Boltzmann equation is anyway
proportional to

Sn,2n = 2

∫
dE ′dΩ̂

′
∫

dEdΩ̂
d3σn,2n
dEdΩ̂

φ(r, Ω̂
′
, E ′, t).

However, the Monte Carlo calculation of non-Boltzmann observables cannot be carried out
using the singles cross section. Indeed, non-Boltzmann observables are in principle sensi-
tive to the state of all the particles present in the system at all times, and therefore they are

2Note that our kinematic variables do not include the energy and direction of the recoiling nucleus, which are
determined by energy and momentum conservation.
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indirectly affected by the particle-particle correlations in reaction channels that produce sev-
eral particles. In the example of an (n, 2n) reaction, the best a Monte Carlo code can do is to
independently sample two neutron energies E1 and E2 from the singles spectrum provided
in the evaluated nuclear data. Consider the recoil energy of the target nucleus Erecoil, which
can be defined by conservation:

Erecoil = Ein − E1 − E2 −Qn,2n;

hereEin is the energy of the incident neutron andQn,2n is theQ-value of the (n, 2n) reaction.
Because of statistical independence, the sampled energies do not, in general, satisfy the ap-
propriate conservation law; this will lead to unphysical values for Erecoil, which can even be
negative. Therefore, if we wish to estimate for example the probability that the recoil energy
exceeds a certain threshold, the neutron energies cannot be independently sampled. How-
ever, if we are interested in the average recoil energy, then independent sampling is fine,
because the singles spectrum has the correct average energy. This example goes to indicate
that the nature (Boltzmann or non-Boltzmann) of the observables that we wish to calculate
is crucial. Unfortunately, in many high-energy physics applications of particle transport, it
is very common that the relevant observables are non-Boltzmann; as an example, consider
energy deposition in calorimeters (Fabjan and Gianotti 2003). Non-Boltzmann observables
are sometimes relevant even in low-energy applications, such as nuclear safeguards (Swin-
hoe et al. 1991).

Instead of using a nuclear reaction model to produce an evaluated nuclear data library,
which in turn can be used in a Monte Carlo particle-transport code, it is sometimes possible
to directly use nuclear reaction models in Monte Carlo codes as event generators. For the
purpose of this manuscript, we will define an event generator as a program that accepts as
input a projectile type, a particle energy, and a target nucleus, and outputs a sampled final
state (i.e. a collection of particles) for a given reaction channel. Different event generators
can describe different reaction types.

In practice, each time a collision must be sampled, the Monte Carlo transport code dele-
gates the sampling of the final state of the collision to a suitable event generator. In the case
of event generators that are themselves based on the Monte Carlo method, it is arguably
more natural to call them directly from the transport calculation than to use them to build a
cross section library. In addition, the direct solution has the added benefit of preserving all
the properties of the event generator in the transport calculation; for instance, if the event
generator guarantees energy conservation, then the transport calculation can also attempt to
provide the same guarantee.

There are two main disadvantages to event generators, compared to evaluated nuclear
data. The first one is that event generators typically require more computing time than nu-
clear data. This is not unexpected, in view of the fact that, as we have seen, nuclear data
contain less information than the output of an event generator. The second, perhaps surpris-
ing, disadvantage is that some information about the reaction is only accessible via evaluated
nuclear data, and not via event generators. For example, an event generator for (say) elastic
scattering makes it possible to sample the angular distribution of the scattered particle, but
generally does not provide any access to the distribution function for the scattering angle.
As a consequence, certain types of sophisticated Monte Carlo estimators, such as next-event
estimators (Spanier and Gelbard 2008), are not available when event generators are used.

Event generators are a cornerstone of Monte Carlo particle transport codes for high-
energy physics. The archetypical example of a high-energy particle-transport code is proba-
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bly Geant4 (Allison et al. 2016), which offers a customizable palette of event generators for
hadronic and electromagnetic physics, from thermal energy up to several TeV. Geant4 also
includes a module for nuclear-data-driven low-energy neutron transport (Geant4 Physics
Reference Manual 2022). I think it is telling that the Geant4 documentation refers to the
module as a “model”, and I hasten to add that I like this unusual choice of terminology.

In the following chapter, I wish to focus on a particular class of event generators for
nuclear reactions, which was the main focus of my research for a few years.



5Event generators for highenergy
nuclear reactions

As we have mentioned in the previous chapter, the number of emitted particles grows very
rapidly with the energy of the incident particle. Niels Bohr had foreseen this in his well-
known 1936 article about neutron capture (Bohr 1936):

Even if we could experiment with neutrons or protons of energies of more than
a hundred million volts, we should still expect that the excess energy of such
particles, when they penetrate into a nucleus of not too small mass, would in the
first place be divided among the nuclear particles with the result that a liberation
of any of these would necessitate a subsequent energy concentration. Instead
of the ordinary course of nuclear reactions we may, however, in such cases
expect that in general not one but several charged or uncharged particles will
eventually leave the nucleus as a result of the encounter.

At the time, the cyclotron had just been invented, and particle beamswere limited to energies
of about 10MeV. A few years later, as 200MeV deuteron and 400MeV 4He particle beams
became available at the Berkeley cyclotron (Brobeck et al. 1947), physicists confirmed that
high-energy reactions did indeed lead to abundant emission of charged and neutral particles.
However, the mechanism that led to the emission was not what Bohr had imagined. In mod-
ern language, Bohr expected that reactions at several hundred MeV would proceed via the
formation of a compound nucleus, i.e. an excited nucleus that forms when the target nu-
cleus captures the projectile nucleon and absorbs its energy; the energy is then thermalized,
in the sense that it is shared among all the nuclear degrees of freedom. Eventually (and this
is Bohr’s model in a nutshell) random fluctuations concentrate enough energy on a single
particle (usually a neutron) to allow it to escape from the nucleus; we refer to this process
as evaporation (Bohr 1937; Frenkel 1936), by analogy with the process that leads to the
preferential emission of faster-than-average molecules from a liquid. Evaporation repeats
until the compound nucleus has exhausted all the available excitation energy. This is the
appropriate picture for neutron capture, which was Bohr’s concern at the time.

Bohr’s model is the prototype of statistical de-excitation models. Their main, common
assumption is that particle emission is due to a system that is in quasi-static equilibrium,
which makes it possible to use the tools of statistical mechanics to make predictions about
the lifetime and the features of the emitted particles. In particular, evaporation is character-
ized by a soft and isotropic particle-emission spectrum, with relatively small fluctuations in
themultiplicity of the emitted particles. Therefore, evaporation also results in the production
of a relatively small number of different reaction products. By contrast, early experimental
evidence immediately showed that the reaction products of high-energy proton-nucleus re-
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actions span a range of several tens of mass units (Batzel et al. 1951; O’connor and Seaborg
1948). This and other observations could not be explained in the framework of Bohr’s
compound-nucleus model.

The first successful model for high-energy proton-nucleus reactions was created by
Robert Serber (1947), former member of the Manhattan project1 and head of the theoret-
ical division of the Berkeley laboratory at the time. Today, Serber’s model is still at the core
of our current understanding of high-energy nuclear reactions. In this chapter we will review
the main tenets of this model, its limitations and its numerous variants and extensions.

5.1 The two-stage reaction model

The central idea of Serber’s model is that a collision between a high-energy nucleon and a
nucleon at rest is short compared to the typical timescale of the movement of the nucleons in
the target nucleus. To illustrate this point with some orders of magnitude, a Fermi energy of
EF = 38MeV corresponds to an orbit period of T = ℏ/EF ≃ 1.7× 10−23 s. If we assume
that the nuclear forces have a range a = 1 fm (as can be estimated from rough cross section
measurements), and if we assume that the incident nucleon moves at the speed of light, then
the interaction will last about t = a/c ≃ 3.3× 10−24 s. Thus, we have T/t ≃ 5, i.e. the
collision time is smaller than the duration of a “nuclear orbit”, but not by a large factor.

We can also compare the de Broglie wavelength of the incoming particle to the radius
of the nucleus. A proton with an incident kinetic energy E = 1GeV has a wavelength
λ = ℏ/p ≃ 5.7× 10−16m. The radius of a lead nucleus is of the order of R = 6.5 fm.
Thus, we have roughly R/λ ≃ 10, i.e. the proton wavelength is smaller than the size of the
nucleus, but again not by much.

Finally, we can compare the mean free path for the incident particle in nuclear mat-
ter with the size of the nucleus. If we assume that the nucleon-nucleon cross section is
of the order of the square of the range of nuclear forces, we obtain σ = πa2 ≃ 31mb.
The average nuclear density (number of nucleons per unit volume) for a 208Pb nucleus is
ρ = 208/(4πR3/3) ≃ 0.18 fm−3. Thus, the mean free path for a high-energy nucleon in
a nucleus is of the order of (ρσ)−1 ≃ 1.8 fm, which is slightly smaller than, but definitely
comparable to the nuclear radius.

It is now clear why Bohr’s picture fails. In that model, the target nucleus absorbs the
high-energy nucleon and results in the formation of a compound nucleus. However, at high
energy, the nucleus is too transparent to completely stop the projectile. Note also that one
collision is not sufficient to absorb a high-energy projectile and dissipate its kinetic energy.
First, because of kinematic constraints, at most half of the projectile energy can be trans-
ferred at any collision; second, the typical momentum transfer is actually of the order of
∆p = ℏ/a ≃ 200MeV/c, and the typical energy transfer is of the order of 25MeV.

The picture painted by our back-of-the-envelope calculations is not as clear as one could
hope for. Nevertheless, a somewhat reasonable model seems to emerge. The collisions
between the incident particle and the target nucleons can be treated as collisions between
free nucleons, to a first approximation. However, the momenta of particles in the nucleus
are of the order of the Fermi momentum, pF = 270MeV; since the typical momentum
transfer in collisions is ∆p ≃ 200MeV/c, the target nucleons cannot really be regarded

1In his memoirs, Serber claims to be the person that suggested the code names for the bombs that were dropped
on Hiroshima and Nagasaki, “Little boy” and “Fat man” (Serber and Crease 1998).
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as free. The binding of the target nucleons is expected to manifest itself in several ways.
First, the kinematics will deviate from the free kinematics because the target nucleons are
not at rest. Second, the presence of a degenerate gas of nucleons is expected to suppress soft
collisions, which would lead to violations of the Pauli exclusion principle; this also results
in an increase of the nucleon mean free path.

The secondary nucleons arising from the first collision can in turn induce further nu-
cleon-nucleon collisions. For collisions that take place near the surface of the nucleus, es-
cape is also possible. Eventually, the nucleons that could not escape will redistribute their
energy over all the nuclear degrees of freedom and result in the formation of a thermalized
nucleus, which is also called remnant nucleus in this context. At this point, we can apply
Bohr’s evaporation model to describe the de-excitation of the remnant; however, the mass,
charge, excitation energy, and spin of the remnant are not determined by the absorption of
the projectile nucleus, but rather by the dynamics of the first stage.

To summarize, Serber’s model consists of two stages. In the first stage, called intranu-
clear cascade (INC), the incident nucleon triggers an avalanche of binary nucleon-nucleon
collisions, leading to the emission of particles before thermal equilibrium is reached. The
INC stage leaves behind a remnant nucleus with an excess of excitation energy, which is
subsequently evacuated according to Bohr’s evaporation model.

It immediately became clear that the intranuclear-cascade model lent itself well to a
Monte Carlo-based implementation. Indeed, cascade particles are assumed to follow quasi-
classical trajectories between collisions and undergo collisions with the nuclear medium;
this is exactly the dynamics described by the Boltzmann equation (Chapter 2). The earliest
calculations with this model were performed by hand (Goldberger 1948), and the earliest
computer implementations date back to at least 1958 (Metropolis, Bivins, Storm, Miller, et
al. 1958; Metropolis, Bivins, Storm, Turkevich, et al. 1958). The devil, of course, is in the
details. In the seventy-five years that have elapsed since Serber’s seminal publication, we
have had the opportunity to explore several variations over the common theme of the two-
stage model. Many INC models have been implemented since. In the following sections, I
will make a non-exhaustive attempt at identifying the most common themes that have since
been researched.

5.2 Theoretical foundations and domain of validity

Intranuclear cascade, as described by Serber, is essentially a semi-classical and semi-em-
pirical model based on reasonable assumptions about the physics of the nucleon-nucleon
collisions. The conditions for the validity of the model, although plausible, were not rigor-
ously specified; moreover, the model lacked a solid theoretical foundation. These matters
were clarified towards the end of the 1980s by a series of papers that represented the culmi-
nation of a large amount of theoretical effort (Bunakov and Matvejev 1985; Goldberger and
Watson 1964). Our exposition is inspired in particular by Bunakov and Matvejev (1985)
and by Cugnon’s lucid review (Cugnon 2012, and references therein).

The initial condition for our system represents a set of A bound nucleons in a Fermi sea,
plus a free incident nucleon. At each collision, a nucleon is promoted from the Fermi sea
into the continuum, leaving behind a hole state in the sea. The probability to observe the
system in a state whereK particles have been promoted to the continuum, in a semi-classical
approximation, can be written as a probability distribution function fK,α(t, P1, . . . , PK),
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where α is the (K − 1)-tuple of the quantum numbers of the hole states2, and Pi = (ri,pi)
are the quasi-classical phase-space coordinates of the i-th excited nucleon. Starting from the
Dyson formulation of the many-body Schrödinger equation, Bunakov and Matvejev (1985)
showed that the dynamics of the K-body distribution functions fK,α can be approximately
described by a system of Boltzmann equations of the form(

∂

∂t
+

K∑
i=1

pi
m
· ∂
∂ri
− ∂U(ri)

∂ri
· ∂
∂pi

)
fK,α =

K−1∑
i=1

∑
α′

∫
dP ′

i f
K−1,α′

(P1, . . . , P
′
i , . . . , PK−1)W (P ′

i → Pi, α
′ → (α, PK))

−
K∑
i=1

fK,α(P1, . . . , Pi, . . . , PK)
∑
α′

∫
dP ′

idP
′
K+1W (Pi → P ′

i , α→ (α′, P ′
K+1)). (5.1)

The left-hand side of this equation is the usual drift term for particles of mass m moving
in a common potential U(r). On the right-hand side, we have a gain term and a loss term.
The gain term has the structure of an external source: it is proportional to fK−1,α′ , which
is assumed to be known when solving for fK,α. The functionW (P ′

i → Pi, α
′ → (α, PK))

represents the transition probability for the collision of the i-th nucleon; before the transition,
the i-th nucleon is at P ′

i and the Fermi sea configuration is given by the (K − 1)-tuple α′;
after the transition, the i-th nucleon has coordinates Pi, the Fermi-sea configuration is α,
and the newly promoted nucleon has coordinates PK . The loss term is the transition rate
from the observedK-particle, (K − 1)-hole state to any other state.

Equation (5.1) is valid under the following conditions:

• semi-classical approximation: particle trajectories between collisions can be treated
classically;

• no collision interference: the wave function of a scattered nucleon reaches its asymp-
totic state before undergoing a new scattering event.

Interestingly, these conditions essentially ensure that the wave packet formed by the cas-
cading nucleons is well localized in space and in time. Localization in space is important
for the semi-classical form of the drift term; it amounts to requiring that the wave packet is
small compared to the typical length scale of variation of the potential U(r). Localization
in time is important for the collision term, because it guarantees that the collision integral
can be written as an incoherent sum of individual, quasi-free scatterings.

Quantitatively, the conditions for the validity of Eq. (5.1) are the plain-language transla-
tion of the following quantitative conditions:

∆p · d > ℏ (5.2a)
∆E · τfree > ℏ (5.2b)

p > ∆p (5.2c)
E > ∆E. (5.2d)

Here p and E are the momentum and kinetic energy of the cascading nucleon,∆p is its mo-
mentum dispersion,∆E is its energy dispersion, d is the typical length scale of variation of

2IfK nucleons are above the Fermi sea, then the system must contain exactlyK − 1 holes.
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the potential U(r), and τfree is the mean free time between collisions. Numerically, we have
d ≃ 0.5 fm (a typical value of the diffuseness parameter for the Woods-Saxon potential).
For the mean free time between collisions, we can relate it to the mean free path

τfree =
1

v σnn(E)ρ
,

where v = p/m is the (non-relativistic) nucleon speed, σnn is the nucleon-nucleon cross
section and ρ ≃ 0.18 fm−3 is the nucleon density for cold nuclear matter. Equation (5.2b)
can be rewritten as

∆E >
p

m
ℏσnn(E)ρ.

If we assume that ∆E ≃ p∆p/m, we obtain

∆p > ℏσnn(E)ρ (5.3)

which should be compared to Eq. (5.2a):

∆p >
ℏ
d
.

Numerically, σnn(E)ρ ≃ 0.7 fm−1, assuming that the cross section takes its high-energy
limiting value of ≈ 40mb. Thus, for nucleon-nucleus reactions, the inequality given by
Eq. (5.2a) is marginally tighter than Eq. (5.3) or, equivalently, than Eq. (5.2b).

In summary, Eq. (5.2), taken together, imply

E >
ℏ2

2md2
.

When the numerical values form and d are substituted, one obtains

E ≳ 85MeV.

This number is slightly smaller than the values that are typically derived from a priori ar-
guments (Cugnon 2012), but of course it should only be taken as an order-of-magnitude
estimate.

Does the comparison with experimental data confirm the domain of validity inferred
from first principles? As Cugnon (2012) notes, the predictions of INC models are indeed in
excellent agreement with the evidence for incident kinetic energies above some 200MeV.
Interestingly, in double-differential particle-emission spectra, the agreement is very good
for essentially any energy of the ejectiles (Leray et al. 2011). This is illustrated by Fig. 5.1,
which shows a typical comparison of double-differential cross sections for neutron emis-
sion from 1.2GeVp + 56Fe reactions. The experimental data are taken from Leray et al.
(2002), and the calculations were performed with the INCL4.5-ABLA07 model (Boudard,
Cugnon, David, et al. 2013; Kelić et al. 2008). The agreement with the experimental data
for the emission of low-energy neutrons is a bit surprising, in light of the fact that the condi-
tions of Eq. (5.2) should apply to all the cascading nucleons, and not just the incident one;
therefore, even at energies of the order of 100MeV, where conditions Eq. (5.2) are barely
satisfied, one should expect marginal agreement with the experimental data. At energies
below some 20MeV, most of the neutrons are not emitted during the intranuclear-cascade
phase (see Section 5.3); therefore, no conclusions can be drawn on the validity of the model
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Figure 5.1: Double-differential neutron emission spectra for the 1.2GeV p+56Fe reaction, as
measured by Leray et al. (2002) and calculated by the INCL4.5-ABLA07 model (Boudard,
Cugnon, David, et al. 2013; Kelić et al. 2008). Image retrieved from the website of the
IAEA benchmark of spallation models (IAEA Benchmark of Spallation Models 2022; Leray
et al. 2011).
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from those data. The low-energy behavior of the model can also be explored by decreasing
the energy of the incident nucleon. As expected, the quality of the model predictions deteri-
orates below 200MeV; however, the model remains remarkably accurate, even at incident
kinetic energies of the order of 40MeV to 50MeV (Leray et al. 2011).

There is no general agreement about the reason why INC/de-excitation models work
reasonably well, even in conditions where they should not. The matter has been mostly dis-
cussed by Yariv, Aoust, et al. (2007) and Cugnon (2012). As the energy of the projectile is
reduced, the total nucleon-nucleon cross section increases; however, it is possible to argue
that the mean free time between collisions τfree actually increases, for the following reason:
at low energy, the typical momentum transfer is small and most collisions are suppressed
by the Pauli exclusion principle in the Fermi sea. Thus, Eq. (5.2b) may be violated at lower
energy than what one would expect based on the calculations above. Additionally, the dy-
namics of low-energy reactions is actually fairly simple. For collisions with central impact
parameters, the most likely outcome is the absorption of the incoming nucleon; the details
of the dynamics leading to absorption do not matter, since the final state of INC is fully de-
termined by the conservation laws. On the other hand, for sufficiently peripheral collisions,
the dynamics is dominated by one collision, for which INC is rather well suited. There-
fore, INC provides a reasonable description for both small and large impact parameters, and
arguably this constrains the behavior at intermediate impact parameters, too.

Finally, we should spend a few words about the high-energy limit of INC models. The
question here is less controversial, as it is clear that high-energy collisions eventually excite
the internal degrees of freedom of the nucleons (baryonic resonances, meson production,
etc.). The production and decay of the first few resonances can be easily accommodated into
the standard INC picture, leading to models that are accurate up to a few GeV; this limit can
be pushed to even higher energies if more resonances are taken into account (Folger et al.
2004; Niita, Sato, et al. 2006; Wright and Kelsey 2015). Alternatively, it is possible to argue
that heavy baryonic and mesonic resonances are generally3 so short-lived on the timescale
of INC that they need not be treated individually. An effective model for multiple pion
production in high-energy collisions was shown to be quite efficient at reproducing integral
and differential pion yields from nucleon-nucleus and pion-nucleus reactions above 3GeV
(Pedoux and Cugnon 2011). At very high energies, the (proper) time between collisions
becomes comparable to the hadronization time of the nucleon-nucleon collisions (Ferreres-
Solé and Sjöstrand 2018); at that point, the hypothesis of independent collision breaks down
and the model is no longer directly applicable.

5.3 Pre-equilibrium and statistical de-excitation

After numerous collisions, the kinetic energy of the projectile will degrade and the nucleus
will reach thermal equilibrium; at that point we stop the INC phase. The exact stopping
criteria for INC vary between the models. In some cases (Folger et al. 2004; Mashnik,
Gudima, et al. 2008; Wright and Kelsey 2015), the final state of the INC phase becomes the
input of an intermediate stage, called pre-equilibrium or pre-compound model (Griffin
1966). In pre-equilibrium models, the phase-space picture of INC is abandoned in favor of
a model that describes the relaxation of the nuclear remnant towards thermal equilibrium in

3With the notable exception of the lightest strange resonances, which are constrained to decay by weak inter-
action.
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terms of the dynamics of excitons and holes in the Fermi sea. The argument in favor of a
pre-equilibrium model is easy to see: as we have discussed in the previous section, the INC
approximation degrades as the energy of the cascading nucleons decreases, and is downright
unjustified for most of the struck target nucleons. Pre-equilibrium models try to bridge the
gap between the semi-classical INC picture and the statistical framework of de-excitation
models, discussed below. When a pre-equilibrium model is used, the INC phase is typically
stopped rather early, often using a criterion based on the energies of the cascading nucleons;
the idea is to avoid handling low nucleon energies, for which INC is ill-suited.

Albeit pre-equilibrium tries hard to avoid the “language” of INC, the elementary ingredi-
ents of the model are nevertheless influenced by and tightly connected with it. The transition
rates for exciton-hole annihilation and generation are more or less directly inspired by the
same physical picture that underlies INC, namely transport and collisions of fermions over
a Fermi-sea background. In introducing a new model, it is clear that we can improve the
agreement with the known experimental data; after all, we are giving ourselves new degrees
of freedom, in the form of the free parameters of the new model. However, it is necessary to
evaluate if the improved predictions on known experimental data are offset by a loss of pre-
dictive power on unknown experimental data. As we have already discussed in Section 4.1,
frugal models, with fewer free parameters, usually generalize better.

For these reasons, some INC models made the choice to forgo an intermediate pre-
equilibrium stage (Yariv and Fraenkel 1979; Yariv and Fraenkel 1981). In these cases, the
INC phase usually runs a little longer. The case of the Liège Intranuclear Cascade model
(Boudard, Cugnon, David, et al. 2013) is rather unique, insofar as its stopping criterion is i)
based on the time since the beginning of the cascade, and not on the energies of the nucleons,
and ii) self-consistently determined from the dynamics of the INC phase itself.

Regardless of the use of an intermediate pre-equilibrium model, the nuclear reaction
results in the production of an excited, thermalized remnant nucleus, which is entirely char-
acterized by its conserved quantities: mass, charge, momentum, angular momentum and
excitation energy. The thermalized nucleus is also frequently referred to as a compound
nucleus, although this term actually comes from (and makes most sense in the context of)
low-energy neutron capture. For the sake of clarification, the timescale leading to the emis-
sion of a new particle is assumed to be much longer than the typical internal timescales of
the nucleus. Therefore, we are led to assume that further particle emission proceeds via a
sequence of quasi-static states. The transition rates and the emission spectra are described
by statistical de-excitation models.

5.3.1 Evaporation

The oldest example of a statistical de-excitation model is probably the Weisskopf-Ewing
evaporation model (Weisskopf 1937; Weisskopf and Ewing 1940). In this model, the rate
for the emission of a neutron of energy ϵ by a nucleus withA nucleons and excitation energy
E∗ is determined by detailed balance, i.e. by assuming that the emission rate would be equal
to the absorption rate for a neutron of energy ϵ, A − 1 nucleons, and the appropriate exci-
tation energy. These assumptions lead to the following equation for the energy-differential
transition width Γn(ϵ):

Γn(ϵ) = σA−1(E
∗ − Sn − ϵ, ϵ)

2mn ϵ

π2ℏ2
ρA−1(E

∗ − Sn − ϵ)
ρA(E∗)

. (5.4)
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Here Γn(ϵ) dϵ/ℏ represents the probability per unit time to emit a neutron with energy be-
tween ϵ and ϵ+ dϵ; σB(E, ϵ) is the cross section for the absorption of a neutron of energy ϵ
by a nucleus of mass number B and excitation energy E;mn is the neutron mass; Sn is the
neutron separation energy for the emitting nucleus; and, finally, ρB(E) is the level density
for a nucleus of mass number B and excitation energy E, i.e. ρB(E) dE is the number of
levels found between excitation energies E and E + dE.

The connection with evaporation can be made more conspicuous by introducing the
entropy, i.e. the logarithm of the level density:

SB(E) = log ρB(E).

Equation (5.4) then reads

Γn(ϵ) = σA−1(E
∗ − Sn − ϵ, ϵ)

2mn ϵ

π2ℏ2
exp [SA−1(E

∗ − Sn − ϵ)− SA(E∗)] . (5.5)

If we assume that SA(E) and SA−1(E) are the same function, and that the excitation energy
E∗ is large with respect to the separation energy Sn and the neutron emission energy ϵ, then
we can develop

SA−1(E
∗ − Sn − ϵ) ≃ SA(E

∗)− (Sn + ϵ)
dSA(E∗)

dE∗ .

The quantity dSA/dE∗ has the dimensions of the inverse of an energy, which can be inter-
preted as a nuclear temperature TA:

1

TA
=

dSA
dE∗ .

Replacing in Eq. (5.5), we obtain the characteristic evaporation formula,

Γn(ϵ) = σA−1(E
∗ − Sn − ϵ, ϵ)

2mn ϵ

π2ℏ2
exp

(
−Sn
TA

)
exp

(
− ϵ

TA

)
,

which shows that the energy distribution for the evaporating neutrons is proportional to

Γn(ϵ)∫
Γn(ϵ) dϵ

∝ σA−1(E
∗ − Sn − ϵ, ϵ) · ϵ · exp

(
− ϵ

TA

)
.

If we assume that the cross section is independent of the excitation energy and has the typ-
ical k/v shape as a function of the energy of the neutron, we can derive an approximate
expression for the total evaporation width:

Γn =

∫
Γn(ϵ) dϵ =

mn k T
3/2
A

π3/2ℏ2
exp

(
−Sn
TA

)
. (5.6)

5.3.2 Fission
Statistical models have also been applied to the description of nuclear fission. In the semi-
classical liquid-drop nuclear structure model, the spherical shape corresponds to the state
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Figure 5.2: Schematic picture of the structure of the fission barrier in a liquid drop model
(without any shell correction).

with the lowest energy if the charge is sufficiently small4. Figure 5.2 shows a schematic
outline of the shape of the potential energy predicted by the liquid-drop model for a fissile
nucleus, as a function of the deformation of the nucleus along a particular axis. In this
model, the equilibrium point corresponds to no deformation. The equilibrium shape is stable
under small shape perturbations, i.e. the potential has a minimum around the state with
no deformation. However, the potential reaches an extremum for a certain value of the
deformation. The configuration corresponding to the extremum value of the potential is
called saddle point, and the difference between the potential energy at the saddle point and
the ground-state energy is called fission barrier. Beyond the saddle point, the nucleus gains
energy by increasing its deformation. At some critical deformation value, the nucleus splits
into two fragments (scission).

Although fission is exothermic for sufficiently large nuclei, the presence of the fission
barrier suppresses the transition to the scission state. Quantum-mechanical tunneling effects
make spontaneous fission possible even for nuclei in their ground state, but the correspond-
ing half-lives are generally very large. However, the tunneling probability increases very
quickly with the excitation energy of the nucleus. When the excitation energy becomes
larger than the fission barrier, quantum-mechanical effects stop playing an important role.
At this point, fission starts to efficiently compete against evaporation in the dynamics of
de-excitation.

The first model for describing the fission rate of an excited nucleus was conceived by
Bohr andWheeler (1939). Bohr andWheeler build onWeisskopf’s statistical formalism and
onWigner’s concept of transition states (Wigner 1938), i.e. states of the excited nucleus that
inevitably lead to fission when they are visited. These states conceptually correspond to the
saddle point of Fig. 5.2. For an excited nucleus of mass number A and excitation energy
E∗, Bohr and Wheeler’s fission width reads

Γf =
1

2πρA(E∗)

∫
ρ∗A(E

∗ −Bf −K) dK,

whereK is the kinetic energy along the deformation degree of freedom, Bf is the height of
4For large values of the nuclear charge, the liquid-drop model predicts that spherical nuclei becomes unstable
and spontaneously fission.
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the fission barrier, and ρ∗A(E) is the level density of transition states, i.e. the level density at
the saddle point.

Compared to the Weisskopf-Ewing evaporation formula, Eq. (5.4), Bohr and Wheeler’s
fission width leaves several unanswered questions. First of all, one may wonder how to
determine the fission barrier, Bf . The existence of fission induced by thermal neutrons is
direct evidence that this quantity cannot be larger than a few MeV; indeed, the excitation
energy of the compound nucleus formed by the absorption of a thermal neutron is equal
to the Q-value for absorption, which is of the order of 6MeV in actinides. More quantita-
tive evidence about the height of the fission barrier can be extracted from the analysis of
fission excitation curves, but the resulting values are in general model-dependent. Sierk
(1986) used a refined version of the liquid-drop model to predict the values of the fission
barrier for essentially all the relevant nuclei, for any value of the nuclear angular momentum.
However, fission barriers based on the liquid-drop model neglect shell and pairing effects,
and are only applicable if the internal excitation energy is sufficiently large. I hasten to
add that shell and pairing effects are far from being negligible: in several nuclei (notably
the actinides) the simplified picture of Fig. 5.2 does not hold. First, the ground state has a
non-vanishing deformation. Second, the fission barrier actually has a double hump, which
allows for the existence of metastable states in the pocket between the humps (Bjørnholm
and Lynn 1980). Double-humped fission barriers can be handled in the context of a general-
ized Bohr-Wheeler model, with a set of transition states for each barrier hump. For certain
nuclides, the existence of a triple-humped fission barrier is also well established.

The other mysterious ingredient of the Bohr-Wheeler formula is the level density of tran-
sition states, ρ∗A. This quantity is well-defined only if we assume that the collective motion
along the axis of deformation is adiabatic, in the sense that the dynamics of the nucleons
inside the nucleus is in quasi-static equilibrium at all times. Within this approximation, we
can consider the set of quantum states for nucleons moving in a nucleus at the saddle point
deformation, and their level density ρ∗A. As for the fission barrier, experimental data only
provide indirect, model-dependent indications about the saddle-point level density. There-
fore, ρ∗A is often described by semi-empirically modifying the parameters of models for the
(unconditional) level density (Handbook for Calculations of Nuclear Reaction Data Refer-
ence Input Parameter Library 1998; Ignatyuk et al. 1975), adjusting them to the available
experimental data.

In the same spirit as in Section 5.3.1, we can derive a simplified expression for the
fission width by introducing the entropies for the level densities SA(E) and S∗

A(E). Again,
we need to assume some relation between the saddle-point level density and the ground-state
level density. In actinides, the saddle-point configuration is actually very close to spherical
(excluding shell effects); therefore, it is reasonable to assume that S∗

A(E) ≃ SA(E). By
developing S∗

A(E
∗ −Bf −K) in power series around E∗, we obtain

Γf =
TA
2π

exp
(
−Bf

TA

)
,

which should be compared to the approximate expression for the total evaporation width
Eq. (5.6), obtained under similar assumptions:

Γn =

∫
Γn(ϵ) dϵ =

mn k T
3/2
A

π3/2ℏ2
exp

(
−Sn
TA

)
.
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The ratio of the fission width to the evaporation width is therefore proportional to

Γn
Γf
∝ exp

(
Bf − Sn
TA

)
.

This shows that, at least in this approximate model, the dominant de-excitation mechanism
is determined by the relative values of the fission barrier and the neutron separation energy.

Once the saddle point is reached, it is generally assumed that the nucleus will inevitably
progress towards fission. However, a certain amount of time might still be required for the
nucleus to reach the scission configuration. During this time, the system may cool down by
emitting more particles, especially if the excitation energy is large. Thus, the mass, charge
and total energy available at the scission point may be different from what was available
at the saddle point. In this model, it is generally assumed that the scission configuration
is selected relatively late during the descent from saddle to scission (Benlliure, Grewe, et
al. 1998; Kruglov et al. 2002; Schmidt et al. 2008); the details about the sharing of mass,
charge, energy and angular momentum at scission are influenced by shell effects in the
nascent fission fragments, which are responsible for the notorious asymmetric fission yields
of actinides. If the residual excitation energy is sufficiently large, the fission fragments may
undergo further de-excitation.

5.3.3 Production of intermediate-mass fragments
Neutron evaporation and fission are not the only mechanisms available for nuclear de-ex-
citation. First, evaporation is not restricted to neutrons; there is clear evidence that the de-
excitation spectra of many light particle types can be accurately described by an evaporation
formalism. For light charged particles, such as protons, deuterons, alpha particles, etc., it
is important to take into account the presence of the Coulomb barrier, which suppresses the
emission of low-energy particles. In the Weisskopf-Ewing formalism, the Coulomb barrier
modifies the inverse absorption cross section σA−1.

One of the limitations of the Weisskopf-Ewing formalism is that it does not track the
evolution of the angular momentum of the nucleus, which must also be conserved. If the
angular momentum is large, then the angular distribution of the evaporated particles is ex-
pected to be anisotropic. Moreover, the energy reservoir available for evaporation only
contains thermal energy; when the angular momentum is large, a significant fraction of the
total excitation energy is locked in a collective mode and is not available to the evaporat-
ing particles. These effects can be handled within the framework of the Hauser-Feshbach
evaporation model (Hauser and Feshbach 1952). In this formalism, the energy-differential
evaporation width is expressed as

Γn(ϵ) =
1

2πρA(U, SA)

∞∑
SA−1=0

SA+SA−1∑
J=SA−SA−1

J+1/2∑
ℓ=|J−1/2|

Tℓ(ϵ) ρA−1(E
∗ − Sn − ϵ, SA−1),

where SA is the spin of the evaporating nucleus, SA−1 is the spin of the daughter nucleus, J
is the total angular momentum of the evaporated neutron, ℓ is its orbital angular momentum,
Tℓ(ϵ) is the transmission coefficient for an incoming spherical wave of angular momentum
ℓ, and ρA−1(E, S) is the level density of the daughter nucleus with excitation energy E
and spin S5. The Hauser-Feshbach formula keeps track of all the possible combinations of

5Note that the only levels with spin S are counted in this definition of the level density.
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spin and angular momentum that can result in the emission of a neutron. As a result, the
evaluation of the evaporation width is more cumbersome, because a triple sum needs to be
evaluated.

An interesting question arises about the relationship between fission fragments and evap-
oration. One can extend the evaporation formalism to handle the emission of particles of
essentially any mass. For example, the Generalized Evaporation Model by Furihata (2000)
considers ejectiles up to 24Mg and finds that the evaporation width decreases with increas-
ing charge number, mostly because of the effect of the Coulomb barrier. At the same time,
the fission fragment distribution has a tail that extends down to very small mass numbers.
It is legitimate to ask which formalism should be used to describe the emission of ejectiles
in the overlap.

The reconciliation of evaporation and fission was discussed by Moretto (Moretto 1975)
and Świątecki (Świątecki 1983). I personally feel that it is not even clear whether the two
formalism are actually describing the same phenomenon. The question is difficult to settle
in part because evaporation relates the emission rate to the asymptotic ejectile + remnant
state; in fission, on the other hand, the rate is expressed as a function of the characteristics
of the transition state (the saddle-point configuration), which is unobserved. Additionally,
the fission fragments retain some excitation energy, but Furihata’s generalized evaporation
formalism (Furihata 2000) only considers ejectiles in their ground-state configuration. This
assumption is surely justified for neutrons, protons, and probably alpha particles (due to
the latter’s large energy gap between the ground state and the first excited state), but it is
less obvious that it applies to heavier ejectiles, that may have many low-lying excited states.
The formalism can be straightforwardly extended to handle excited ejectiles, but the inverse
absorption cross section is not known for excited ejectiles. These considerations further
complicate the comparison with fission. Finally, since the definition of the saddle-point
level density is a bit nebulous, it is my feeling that it is difficult to say much about the
relationship between the two formalisms.

In fission, it is difficult to relate the characteristics of the transition state to those of the
scission state. In order to clarify the meaning of this statement, we need to parametrize the
nuclear shape with a set of deformation coordinates qi and introduce the nuclear potential
energy surface V (qi) (neglecting pairing and shell effects for a moment) (Nix and Swiatecki
1965). The saddle point and the ground state are both characterized as solutions of the
equation

∂V

∂qi
= 0.

In the example of thermal fission of 235U, the saddle-point configuration is almost spheri-
cal and relatively close to the ground state, whereas the scission configuration is character-
ized by the distinct presence of two fragments. It is well-known however that nuclei with
a low value of the fissility parameter have dumbbell-shaped saddle-point configurations;
moreover, the lower the fissility parameter is, the more constrained the neck between the
fragment becomes. Thus, in non-fissile nuclei, the saddle-point configuration and the scis-
sion configuration are very close in the space of deformation parameters; in other terms,
the saddle-point configuration essentially defines the mass asymmetry of the split. This
suggests that binary “fission” of non-fissile nuclei should be described by a modified Bohr-
Wheeler formalism, where the transition state however is characterized by a well-specified
mass/charge asymmetry. This idea was introduced by Moretto (1975) and Moretto and
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Wozniak (1988), who suggested the use of the following formula:

Γf (y) =
1

2πρA(E∗)

∫
ρ∗A,y(E

∗ −Bf (y)−K) dK.

Here y is a parameter measuring the charge asymmetry and ρA,y(E) is the level density at
the conditional saddle point, i.e. the saddle point seen along a line of constant y. This for-
malism goes under the somewhat confusing name of asymmetryic fission, where the term
“asymmetric” does not refer to the symmetry of the fragment mass or charge distribution, but
rather to the fact that the saddle-point is constrained to be asymmetric. Moretto’s formalism
was later extended by Charity, McMahan, et al. (1988) to saddle points with fixed mass and
charge asymmetries, and was proved to be quite successful in describing the yields of light
particles and complex fragments from fusion reactions (Charity 2010; Charity, Jing, et al.
1990). Perhaps unexpectedly, asymmetric fission is also applied to the description of the
yields of very asymmetric splits of fissile nuclei, which are similarly characterized by short
saddle-to-scission distances (Thomas et al. 1985).
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6The Liège intranuclear cascade model

The intranuclear-cascade model has seen many incarnations since its inception, which differ
in several details. In what follows, I wish to discuss in particular the Liège intranuclear
cascade model (INCL), which is one of the most sophisticated models for nucleon-nucleus
reactions on the market and has been the object of a great deal of development. In this
chapter we will first give a description of the most specific aspects of INCL in Section 6.1,
and then we will focus on a few recent selected topics which I actively contributed to; these
are the emission of composite particles from the INC phase (Section 6.2), the extension of
INCL to nucleus-nucleus reactions (Section 6.3) and the improvement of the description
of proton-nucleus reactions where exactly one nucleon is removed from the target nucleus
(Section 6.4).

6.1 Model description

The Liège intranuclear cascade model (INCL) was conceived by Cugnon (1980) and devel-
oped with the help of many collaborators over the years (Boudard, Cugnon, David, et al.
2013; Boudard, Cugnon, Leray, et al. 2002; Cugnon 1982; Cugnon 1987; Cugnon 1992;
Cugnon, Deneye, et al. 1989; Cugnon, Deneye, et al. 1990; Cugnon and Lombard 1984;
Cugnon, Mizutani, et al. 1981; Cugnon, Volant, et al. 1997; Mancusi, Boudard, Cugnon,
et al. 2014; Mancusi, Boudard, Carbonell, et al. 2015; Pedoux and Cugnon 2011). We will
now briefly touch upon the characteristics of the Liège model that set it apart from the other
incarnations of the INC model.

We mentioned in Chapter 5 that intranuclear cascade results from certain approxima-
tions to the K-body Schrödinger equation (Bunakov and Matvejev 1985). In this context,
intranuclear cascade describes the propagation of energetic nucleons in a nucleus; the en-
ergetic nucleons are semi-classically described by their phase-space coordinates, while the
nucleus is represented as a Fermi sea of nucleons. The incident particle can undergo colli-
sions with the Fermi sea and excite particle-hole states; the secondary cascading nucleons
are also treated semi-classically, while the hole states are identified by their quantum num-
bers.

This picture is more or less faithfully reproduced by most implementations of INC mod-
els, with a few variations. In many INC models, the nucleus is represented as a continuous
Fermi sea (Mashnik, Gudima, et al. 2008; Yariv and Fraenkel 1979; Yariv and Fraenkel
1981). In the Liège model, on the other hand, the Fermi sea is realized as a semi-classical
collection of nucleons, which are assumed to be bound in a potential representing the mean
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field of the nucleon-nucleon interaction. There is no real distinction between cascading and
target nucleons in INCL.

The semi-classical representation is admittedly difficult to justify for the Fermi-sea nu-
cleons, which have wavelengths of the order of the nuclear size. However, one can argue
that the traditional representation of the nucleus as a continuous Fermi sea is unable to model
any correlation between the target nucleons, while the semi-classical representation is able
to naturally capture at least part of the correlations. Indeed, continuousmodels need to resort
to ad-hoc recipes aimed at capturing correlations. In the ISABELmodel (Yariv and Fraenkel
1979; Yariv and Fraenkel 1981), for instance, a collision between a cascading nucleon and
a Fermi-sea nucleon punches a “hole” in the Fermi sea, i.e. it slightly depletes the nuclear
density around the collision point. The size of the hole and its lifetime are free parameters
of the model and need to be adjusted on a phenomenological basis. In contrast, the Liège
model does not need to introduce any specific treatment, because depletion is (again, at least
partially) accounted for by the semi-classical representation.

In the mean-field picture, nucleons move around in a potential that varies smoothly with
the particle position. Due to the short range of the nuclear forces, the shape of the potential
resembles the shape of the nuclear density distribution (De Vries et al. 1987). Clearly, a
smooth density distribution is important for the description of peripheral reactions, which
are dominated by collisions happening at the surface of the nucleus. However, a smoothly
varying potential well induces curved trajectories, which require numerical integration tech-
niques for propagation. Because of this, INCL uses a simpler nuclear potential model. In-
stead of a smoothly varying potential, each nucleon sees a spherical potential well. The
smooth density distribution is recovered via a clever superposition of potential wells of
different radii. Specifically, the radius of the well is assumed to depend on the nucleon ki-
netic energy; Boudard, Cugnon, Leray, et al. (2002) showed that any spherically symmetric
density distribution can be modelled this way, on condition that the radial distribution is
monotonically decreasing.

Further details about the reference version of the INCL model can be found in Boudard,
Cugnon, Leray, et al. (2002).

6.2 Cluster production

High-energy nucleon-nucleus reactions are well known for spallation, which is generally
intended as the production of a large amount of small fragments1. The most commonly
occurring fragments are neutrons and protons, as it is known since the inception of the ac-
celerator era (Serber 1947). However, it is an experimentally established fact that spallation
reactions also lead to the emission of heavier fragments, such as deuterons, tritons, 3He and
4He nuclei (Bertrand and Peelle 1973; Cowley et al. 1996; Guertin et al. 2005; Herbach et al.
2006; Letourneau et al. 2002; PISA Collaboration, Bubak, et al. 2007; PISA Collaboration,
Budzanowski, et al. 2008; PISA Collaboration, Budzanowski, et al. 2009). Emission of
heavier nuclei is also possible. In the context of spallation reactions, the emission of such
particles is often referred to as cluster production. Clusters go by many other names in
the literature, often with slightly different connotations. Among the most commonly em-
ployed terms we cite light ions, light nuclei, intermediate mass fragments (IMFs, especially

1The term was imported from solid mechanics, where it is used to describe the ejection of splinters from the
impact between a projectile and a target.
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Figure 6.1: Typical spectra of 4He, 7Li, 9Be, and 11B ejectiles (upper left, upper right, lower
left, and lower right parts of the figure, respectively) measured at 35° for three energies
of the proton beam (1.2GeV, 1.9GeV, and 2.5GeV) impinging onto an Au target. Open
circles represent the lowest energy, full squares represent the intermediate energy, and open
triangles represent the highest energy. Adapted from PISA Collaboration, Budzanowski,
et al. (2008), with permission.

in the context of de-excitation models), composite particles, light charged particles, and
light heavy ions (yes, really: Brandan and Satchler 1997).

Similarly to neutron and proton emission, the production of clusters in spallation re-
actions appears to be due to multiple mechanisms. Figure 6.1 shows several examples of
experimental double-differential cross sections for the emission of light nuclei from high-
energy proton-nucleus reactions. Such spectra are known to be broadly compatible with
phenomenological moving source emission mechanism (PISA Collaboration, Bubak, et al.
2007; PISA Collaboration, Budzanowski, et al. 2008; PISA Collaboration, Budzanowski,
et al. 2009). In this framework, the shape of the spectra are interpreted as the superposition
of a thermal particle sources at rest in the laboratory frame, and one or more moving thermal
particle sources.

It is of course very tempting to look at the moving sources through the lens of the two-
stage reaction model of Section 5.1. Indeed, the source at rest can be naturally identified
with the statistical de-excitation stage, which involves emission from a thermalized source
with a very small recoil velocity. The out-of-equilibrium nuclear-reaction stage (involving
intranuclear-cascade and possibly pre-equilibrium models) would then be responsible for
the emission of the moving sources.
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Figure 6.2: Schematic view of the INCL clustering model. Arrows represent the nucleon
momenta.

Historically, there have been many attempts to generalize INC, pre-equilibrium and sta-
tistical de-excitation models to accommodate the emission of light clusters (Charity, McMa-
han, et al. 1988; Kelić et al. 2008; Toneev and Gudima 1983; Wright and Kelsey 2015). In
this section, I wish to focus in particular on the extension of the INCL model (Boudard,
Cugnon, David, et al. 2013).

6.2.1 The INCL coalescence model
Cluster production in INCL proceeds via coalescence, a term which broadly refers to any
model where clusters are produced by aggregating several nucleons in the system. In some
coalescencemodels (Toneev and Gudima 1983), clusters are formed ex post, using the nucle-
ons emitted during the INC phase. Typically, nucleons are assumed to coalesce if they are
“close” in momentum space; the critical momentum distance is typically a free parameter of
such models.

The INCL coalescence model is more sophisticated, because coalescence takes place in
phase space; the distance in both momentum space and configuration space plays a role.
This choice does not really increase the number of free parameters of the model. The INCL
clustering model is schematically represented in Fig. 6.2. Clustering is triggered when a
nucleon reaches the system boundary (a sphere of radius Rmax) and is about to leave the
system. However, the position of the leading nucleon considered by the clustering algorithm
is not the position on the system boundary. In fact, since Rmax is typically much larger
than the nuclear radius2, the region around the leading nucleon will be relatively devoid of
nucleons. Besides, if we were to use the leading nucleon as a coalescence seed, the result
of the clustering procedure would depend on the radius of the system boundary, which is

2In a proton-nucleus reactions at 1GeV, for instance, Rmax = 12.2 fm, which should be compared to a typical
half-density radius for 208Pb of 6.6 fm.
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parameter value
h 1 fm

h0(2) 424 fmMeV/c
h0(3) 300 fmMeV/c
h0(4) 300 fmMeV/c

h0(A) (A > 4) 210A1/3 fmMeV/c
µmincl 0.7

Table 6.1: Free parameters of the INCL clustering model.

only a calculation parameter and does not have any physical meaning. For this reason, the
leading nucleon first backtracks along its line of flight until it meets the clustering sphere;
the clustering radius D is a free parameter of the model, and it is fixed as D = R0 + h,
where R0 is the half-density nuclear radius and h = 1 fm.

Next, all potential clusters are incrementally constructed, starting with the backtracked
leading nucleon (which is considered as a cluster of massAcl = 1) and up to somemaximum
cluster mass Amax

cl . Let j = {j1, . . . , jAcl} be the indices of the Acl selected nucleons, rcl(j)
the coordinates of the center of mass of the cluster and pcl(j) the total momentum of the
cluster. The i-th nucleon is assumed to coalesce with the cluster if the following phase-space
proximity condition is satisfied:

|ri − rcl(j)| · |pi − pcl(j)| < h0(A+ 1).

Here h0 is a free parameter. Its values for A ≤ 4 are explicitly fixed, and a simple system-
atics is used for A > 4, as given in Table 6.1.

Once all the clusters have been built, the “less virtual” cluster is selected. Let
√
s(j)

be the Mandelstam variable representing the total center-of-mass energy of the cluster. We
consider the “virtuality”

v(j) =

[
√
s(j)−

∑
j∈j

mj −Bcl(Zcl, Ncl)

]/
Acl. (6.1)

Heremj is the mass of the j-th nucleon, Zcl andNcl are respectively the numbers of protons
and neutrons in the cluster, and Bcl(Z,N) is the experimental binding energy. The cluster
that minimizes v(j) is selected. Eq. (6.1) can be interpreted as the excitation energy per
nucleon of the cluster, diminished by twice the binding energy per nucleon. The introduction
of this quantity is largely phenomenological and is solely justified by the relative success of
the model.

The candidate cluster is only emitted if three conditions are met:

1. The total kinetic energy of the cluster must be positive, i.e.

Tcl =
∑
j∈j

(Tj − Vj)−Bcl > 0,

where Tj and Vj are the kinetic and potential energy of the j-th nucleon in the nucleus.

2. The cluster must penetrate the Coulomb barrier.



86 Chapter 6. The Liège intranuclear cascade model

3. Emission of the candidate cluster must be “radial”: the angle θcl between the total
cluster momentum and the radial direction must satisfy cos θcl > µmincl . This condition,
which can be qualitatively justified by considering that clusters are unlikely to survive
a long time in the nuclear surface, is admittedly required to suppress an otherwise
abundant cluster emission at low energies.

If any of these tests fails, execution of the INCL code resumes as normal by considering the
possibility of emitting the leading nucleon, according to the standard INCL rules (Boudard,
Cugnon, Leray, et al. 2002).

This clustering model is admittedly highly phenomenological. It has six free parameters,
plus a number of more or less arbitrary choices. However, it is perhaps worth stressing that
a much simpler model is actually sufficient for the reproduction of high-energy data only
(Boudard, Cugnon, Leray, et al. 2004). In the simplified model, for example, only one free
phase-space parameter is used, and priority is always given to the heaviest possible cluster.
The extended clustering model is only necessary if one wishes INCL to describe cluster
emission at low energy (< 200MeV), a phenomenon which is at the limit of the domain of
validity of intranuclear cascade.

6.2.2 Results

We present here a few results obtained with the INCL coalescence model. Since clusters can
also be produced during the de-excitation phase, it is necessary to couple INCL to a statisti-
cal de-excitation model in order to perform a meaningful comparison with the experimental
data. These results were obtained with INCL/ABLA07, ABLA07 being the traditional com-
panion de-excitation model to INCL (Kelić et al. 2008). Without going into too much detail
about its ingredients, suffice it to say that ABLA07 models the emission of light nuclei
as generalized evaporation. The model considers all possible ejectiles up to the Businaro-
Gallone maximum of the mass-asymmetry-dependent barrier (Businaro and Gallone 1955a;
Businaro and Gallone 1955b).

Figure 6.3 shows a plot of the double-differential cross section for the emission of 2H,
3H, 2He, and 4He, from a high-energy proton-induced reaction (p+ 197Au). Analysis of the
calculation results shows that the spectra are characterized by two components. The evap-
oration component is roughly isotropic and it is characterized by an energy of the order of
10MeV to 20MeV. The cascade component is forward-peaked and it extends to very high
energies; for this particular reaction, the INCL model predicts that clusters can be emitted at
essentially any energy up to the beam energy, albeit the cross section drops quickly above
∼ 150MeV. Unfortunately, experimental data are not available above the same energy.
However, it is reasonable to assume that the emission of such high-energy clusters is sen-
sitive to the details of the momentum distribution of the target nucleons in the surface, at
momenta close to the surface of the Fermi sea. The INCL nuclear model is probably too
simple to account for these phenomena (although see Section 6.4 below).

The overall agreement between the calculation and the experimental data can be con-
sidered to be quite good. The global trend of the experimental data is correctly reproduced,
with occasional discrepancies of up to a factor of 2. However, the low-energy part of all
the spectra is somewhat underestimated, although the impact on the integrated cross section
is probably small. This effect is probably due to the modelling of the Coulomb barrier for
cluster emission in ABLA07.
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Figure 6.3: Double-differential energy-angle cross section for the emission of 2H (a), 3H
(b), 3He (c) and 4He (d) from a 1.2GeV p + 197Au reaction. The points are experimental
data (PISA Collaboration, Budzanowski, et al. 2008). The red lines represent the result of
an INCL/ABLA07 calculation. In order to fit all the data on the same figure, the spectra
are multiplied by 100, 10−1, 10−2, etc., for increasing angles, starting at the lowest angle.
Adapted from Boudard, Cugnon, David, et al. (2013), with permission.
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Figure 6.4: Double-differential energy-angle cross section for the emission of 6He (a), 7Be
(b), 6Li (c) and 7Li (d) from a 1.2GeV p+ 197Au reaction. The points are experimental data
(Herbach et al. 2006). The red lines represent the result of an INCL/ABLA07 calculation.
The blue lines represent the contribution of the INCL stage alone. Spectra are rescaled
according to the same convention as in Fig. 6.3. Adapted from Boudard, Cugnon, David,
et al. (2013), with permission.
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ejectile 1.2GeVp+ 197Au 63MeVp+ 208Pb
cascade evaporation cascade evaporation

2H 5.05× 10−1 1.66× 10−1 3.35× 10−2 3.5× 10−4
3H 1.24× 10−1 8.1× 10−2 1.02× 10−2 1.1× 10−4
3He 4.6× 10−2 6.7× 10−3 1.47× 10−3 0
4He 1.67× 10−1 3.52× 10−1 1.41× 10−2 1.36× 10−2

Table 6.2: Average multiplicity of clusters produced in cascade and in evaporation stages
for two systems, as given by the INCL/ABLA07 model. The numbers in boldface indicate
the dominant component, if it is clearly defined. Adapted from Boudard, Cugnon, David,
et al. (2013), with permission.

Similar conclusions can be drawn from the analysis of the spectra for heavier clusters.
Figure 6.4 shows the spectra for 6He, 7Be, 6Li, and 7Li, from the same p + 197Au reaction.
Again, the experimental data stop around 150MeV, which makes it hard to evaluate the
accuracy of the high-energy part of the cascade component. Nevertheless, the model pre-
dictions are roughly in the ballpark. This is not a trivial result, since the integrated cross
sections for the production of heavy clusters are sensibly different; for instance, the 6He
yield is about an order of magnitude larger than the 7Be yield, and about two orders of mag-
nitude smaller than the 4He yield. Cascade dominates the integrated 6He and 7Be yields; it is
also the dominating mechanism for the production of high-energy (> 60MeV) 6Li and 7Li.
The shape of the spectra is generally reasonably reproduced, although the cascade compo-
nent appears to be too hard; these observations seems to be confirmed by other calculations
at lower incident energies (∼ 200MeV), but these results are not shown here for the sake
of conciseness.

All things considered, the coalescence mechanism is relatively successful in describing
the production of clusters from high-energy reactions, although not all the details of the
spectra are correctly reproduced. This suggests that coalescence is more than a modelling
“trick”; it is a physical mechanism that participates in the production of high-energy clusters.

We conclude this section with a brief incursion in the realm of low-energy reactions,
which is generally considered to be out of reach for INC models. Figure 6.5 shows double-
differential spectra for the productions of the four light clusters (A ≤ 4) from p + 208Pb
at 63MeV. At such incident energy, the excitation energy of the cascade remnant is fairly
small, hindering charged-particle evaporation. Thus, cascade largely dominates the produc-
tion of clusters. The global trend of the data is remarkably well reproduced by INCL. Dis-
crepancies with the experimental data are most apparent in the low-energy and high-energy
ends of the spectra. At low energy, it appears like the Coulomb barrier used by INCL is
too high, and perhaps too sharp; the barrier for 4He, for instance, is of the order of 25MeV,
while the evaporation barrier is of the order of 15MeV. At high energy, the spectra show
a forward-peaked structure that is clearly due to coherent scattering mechanisms; as such,
we do not expect it to be reproducible by INC. Finally, it is worth stressing that cluster
yields at low incident energy are heavily influenced by the “radial emission” cut described
in Section 6.2.1 above. Without this criterion, the production of clusters is much larger than
the experimental observations.

As discussed in Section 5.2, the relative success of INCL at low energy is somewhat
surprising. The intranuclear-cascade model is not justified in this energy range, and it is not
expected to be able to describe the production of composite particles; and yet, it manages
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Figure 6.5: Double-differential energy-angle cross section for the emission of 2H (a), 3H (b),
3He (c) and 4He (d) from a 63MeV p + 208Pb reaction. The points are experimental data
(Guertin et al. 2005). The red lines represent the result of an INCL/ABLA07 calculation.
The blue lines represent the contribution of the INCL stage alone. Spectra are rescaled
according to the same convention as in Fig. 6.3. Adapted from Boudard, Cugnon, David,
et al. (2013), with permission.
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to capture the essential features of this phenomenon.
More comprehensive comparisons with experimental data for cluster emission were per-

formed in the context of the Benchmark of SpallationModels (David 2015), an international
intercomparison effort organized under the auspices of IAEA in 2008 involving 17 nuclear-
reaction codes. Among these, we included the results of couplings between INCL and other
statistical de-excitation models (Botvina et al. 1987; Charity, McMahan, et al. 1988; Man-
cusi, Charity, et al. 2010), which fared quite well overall. Many different observables were
considered. The intercomparison results are invaluable to evaluate the sensitivity of the
various reaction observables to the ingredients of the INC state and the de-excitation stage.

6.3 Extension to nucleus-nucleus reactions

Reactions involving light nuclei play an important role in several applications. In hadron-
therapy, for instance, cancer patients are treated using accelerated beams of protons or light
nuclei (Kraft 1990; Kraft 2000). Nuclear reactions between the beam particles and the
body of the patient can be responsible for dose deposition outside the clinical target volume,
which is undesirable. The radiation environment in space also involves energetic protons
and heavy ions (Durante 2002). The Galactic Cosmic Rays are one of the contributing
sources to radiation in the Solar System; their hadronic component mainly consists of pro-
tons and alpha particles, but ions as heavy as iron are known to yield sizable contributions
to the equivalent dose absorbed by space crews. Nuclear reactions induced by light nuclei
are also involved in the production of beams of unstable nuclei. The in-flight projectile-
fragmentation method (Morrissey and Sherrill 1998) is often realized using 9Be production
targets. Radioactive beams produced with the ISOL method (Ravn 1998) typically rely on
light charged particles (LCPs) to induce spallation or fission in the production target. In
either case, the luminosity of the secondary beam crucially depends on the fragment yields
in light-ion-induced reactions. Reactions on light nuclei are also often used in fundamental
research at the limits of nuclear stability, for instance in the quest for very neutron-rich or
neutron-poor residues (e.g. Alvarez-Pol et al. 2010; Benlliure, Fernández-Ordóñez, et al.
2008; Benlliure, Kurtukian-Nieto, et al. 2007; Blank et al. 1994; Kurcewicz et al. 2006;
Stolz et al. 2002).

The applications listed above typically involve projectile energies of the order of a few
tens to several hundreds or even thousands of MeV per nucleon. Since INC in general, and
INCL in particular, is quite successful in describing several observables of nucleon-nucleus
reactions in this energy range, it is quite natural to consider the possibility to extend the
model to light incident nuclei. This is not a novel idea: INC models have a long tradition
of nucleus-nucleus extensions (e.g. Yariv and Fraenkel 1979; Yariv and Fraenkel 1981),
with mixed success. As far as INCL is concerned, a simple extension to light-ion-induced
reactions, based on an old FORTRAN77 version of the model, was attempted in 2011 (Kai-
taniemi et al. 2011). The model yielded promising physical results, but maintaining the code
quickly grew to the proportions of a formidable task. This was mainly due to the fact that
the FORTRAN77 version was monolithic, hardly flexible and not very legible from the start.
This is one of the motivations that led us to redesign the INCL code from scratch and cast
it in modern, object-oriented C++.

I wish to spend just a few words on the rewriting of the INCL code. The FORTRAN77
version (INCL4.6) stood at about 19 kSLOC (physical source lines of code, excluding blanks
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and comments). According to a Basic Constructive Cost Model (Basic COCOMO, Kemerer
1987), this corresponds to an effort of about 4 person-years; of course this only accounts
for software development, and not for the research effort in nuclear physics. The initial
C++ conversion, targeting the same set of features as INCL4.6, resulted in a slightly smaller
code base, of the order of 16 kSLOC. Basic COCOMO yields again a development effort of
the order of 4 person-years. Reviving old, unmaintainable scientific software by rewriting
it in a more modern language is a crucial task that needs to be performed every so often;
however, it is very difficult for young researchers to draw any value from this kind of work
in the form of publications, grants, and so on. The C++ incarnation of INCL is the fruit of
the effort of several persons, and it is my personal opinion that it deserved better recognition
than a short paragraph in an article on another subject (Mancusi, Boudard, Cugnon, et al.
2014).

6.3.1 Challenges

Let us go back to the main topic of this section, which is the extension of INCL to reactions
induced by light ions. The treatment of nucleus-nucleus reactions in an INC framework
poses several challenges that do not apply to nucleon-nucleus reactions. First and foremost,
there is no natural way of accounting for the binding of the projectile nucleus within the
INC scheme. The cascade takes place in a single mean-field potential, which is typically
assumed to be that of the target nucleus; this essentially amounts to neglecting the mean-
field interaction between the projectile constituents. This approximation might be tenable
for central collisions of a light projectile on a heavy target, which rarely lead to the emis-
sion of a projectile-like fragment; however, it is clear that no model can describe projectile
fragmentation if the binding of the projectile nucleons is neglected. Second, INC models
typically do not treat the mean-field potentials as dynamical quantities and assume that they
do not evolve during the cascade phase. This is justifiable for nucleon-nucleus reactions,
where only a relatively small fraction of the nucleons directly participates in the reaction,
but it is clear that pre-fragments produced in nucleus-nucleus reactions can be very different
from the initial reaction partners. Therefore, any collective rearrangement of the mean field
is beyond the reach of traditional INC models. Third, nucleons in nuclei are endowed with
Fermi motion. A realistic description of the intrinsic momentum content of both reaction
partners is necessary for an accurate description of certain observables. This is somewhat
at odds with the independent-particle Fermi-gas model that is typically used to describe the
structure of the reaction partners, especially for light nuclei. The definition of Pauli block-
ing is unambiguous only if the initial momentum distribution of the nucleons is assumed
to be a hard, uniform Fermi sphere. It is well-known however that nucleons in light nuclei
exhibit smoother distributions (de Witt Huberts 1990), which manifest themselves (among
other things) in the momenta of nucleons from the break-up of the projectile.

Clearly, a faithful description of the collective behavior of symmetric nucleus-nucleus
reactions is beyond the reach of any INC model. It is possible however to obtain a reason-
ably accurate phenomenological description of reactions induced by light nuclei with a few
practical decisions and a bit of suspension of disbelief. The approach taken by INCL is to
constrain the model predictions via the respect of global conservation laws. For the sake
of conciseness, we will only detail the most important aspects of the nucleus-nucleus ex-
tension below. The interested Reader is encouraged to consult Mancusi, Boudard, Cugnon,
et al. (2014) for a painstakingly detailed description of all the relevant modelling choices



6.3. Extension to nucleus-nucleus reactions 93

made in INCL.

6.3.2 The projectile nucleus
The first step in the simulation of a light-ion-induced reaction is the preparation of the pro-
jectile and target nuclei. Since the preparation of the target is standard for INCL, we refer
the Reader to Boudard, Cugnon, Leray, et al. (2002) and we limit ourselves to describing
the preparation of the projectile in its center-of-mass frame.

We assume that the density distribution for the nucleons is given. The positions ρi of the
nucleons in the center-of-mass frame are determined in such a way that the first and second
central moments of their distribution are “correct”, i.e. the first moment vanishes and the
second moment is equal to the second moment of the assumed empirical density distribution.
Also, the ρi vectors roughly follow the assumed distribution. Deviations from the shape of
the assumed distribution are smaller if the number of nucleons is larger; if the assumed
distribution is Gaussian, then the ρi vectors exactly follow the assumed distribution. The
center-of-massmomenta of the projectile nucleonsπi are constructed in a similar way. Since
the momentum distributions are taken to be Gaussian for all projectile nuclei, the generated
momenta are normally distributed with the correct width parameter and sum up to zero total
momentum, as appropriate for the center-of-mass system.

We choose to account for the projectile binding by putting the nucleons off their mass
shell. It is assumed that the center-of-mass nucleon energies εi are given by

εi =
√

πi2 +m2 − Vp,

where m is the common proton-neutron mass used in INCL and Vp is the dynamical pseu-
dopotential. This quantity is used to enforce the nominal dispersion law for the projectile
nucleus in the center-of-mass frame and in the laboratory frame, namely:∑

εi =Mp, (center of mass)∑
πi = 0.

and ∑
ei = Ep (laboratory)∑
pi = Pp,

withMp,Ep andPp being the nominal mass, energy andmomentum of the projectile nucleus
in the laboratory frame, and (ei,pi) being the four-momenta of the nucleons in the laboratory
frame. Although the dynamical pseudopotential is merely a unphysical calculation device,
it has the right order of magnitude for light nuclei (a few tens of MeV) and it is always
positive (see Mancusi, Boudard, Cugnon, et al. 2014, for more details).

An important ingredient of the nucleus-nucleus extension is the assumption that pro-
jectile nucleons propagate with the (Coulomb-distorted) collective velocity of the projectile
beam until they undergo a collision. As a consequence, projectile nucleons can immediately
be divided in two classes: those whose trajectory intersects the INCL calculation volume
are labeled as geometrical participants; the others are called geometrical spectators. The
distinction between geometrical participants and spectators is not physical, because it is a
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consequence of the finite radius of the INCL calculation volume, Rmax, which is not a phys-
ical parameter. Ideally, the model predictions (e.g. cross sections) should be completely
independent of Rmax (for sufficiently large values of Rmax). In reaction models such as
quantum molecular dynamics (QMD; Aichelin 1991), there is no difference between pro-
jectile and target nucleons. The nuclear force is modeled as the result of pairwise nucleon
interactions, which naturally generate the projectile and the target mean fields. In INC-type
models, as discussed above, it is difficult to treat the mean field as a true dynamic quantity.
The complexity of the projectile preparation algorithm described here reflects this limita-
tion of INC. One of the main concerns of the INCL nucleus-nucleus extension is therefore
to blur the distinction between the treatment of projectile and target nuclei. In regard to
geometrical spectators and participants in particular, they should be treated on exactly the
same footing, but this is not always possible in INCL (see below).

6.3.3 The INC phase

The INC phase of nucleus-nucleus reactions is pretty similar to standard INCL. The main
differences concern the entrance and the exit of nucleons from the calculation volume. In
particular, nucleons that enter the calculation volume undergo twomodifications. First, their
energy is adjusted to accommodate the Q-value for the transfer reaction from the projectile
nucleus to the target nucleus, and possibly the energy transferred to the projectile nucleus,
which may be left in an excited state. These corrections are necessary in order to ensure
that the energy conservation law holds, taking into account the real particle masses. Second,
since cascading nucleons in INCL are always assumed to be on mass shell, the entering
nucleons are put on mass shell by rescaling their momenta. These modifications are only
applied to particles that enter the calculation volume; in particular, they are never applied
to geometrical spectators. Clearly, this breaks the desirable symmetry of treatment between
geometrical spectators and participants.

At the end of the intranuclear cascade, a projectile pre-fragment may be defined if some
nucleons missed the calculation volume (geometrical spectators) or traversed the calculation
volume without undergoing any collision (dynamical spectators). If no dynamical specta-
tors are present, the mass, charge, excitation energy and state of motion of the projectile pre-
fragment are already defined (they are those of the geometrical spectators) and are guaran-
teed to satisfy four-momentum conservation. However, if dynamical spectators are present
and are to be merged back into the projectile-like pre-fragment, some adjustment is neces-
sary to make sure that the resulting pre-fragment is well-defined. Indeed, the application
of empirical thresholds for particle absorption/emission may result in a net energy transfer
between the dynamical spectators and the target, possibly resulting in negative projectile
excitation energies.

We then tentatively define the pre-fragment four-momentum as the sum of the four-
momenta of the dynamical and geometrical spectators. If the resulting four-momentum
leads to a negative excitation energy, we apply a greedy iterative procedure to determine
the maximal number of dynamical spectators that can be incorporated in the pre-fragment
without leading to negative excitation energy. This is done as follows: we start from a candi-
date pre-fragment consisting ofA nucleons, with negative excitation energy. We remove the
dynamical spectator that maximizes the excitation energy of the remaining A− 1 nucleons.
If the resulting excitation energy is non-negative, we stop; otherwise, we keep removing
dynamical participants until either the excitation energy of the pre-fragment is non-negative
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or we have removed all the dynamical spectators. In the latter case, the excitation energy
of the projectile-like pre-fragment reduces to that of the geometrical spectators, which is
guaranteed to be non-negative.

From our discussion it clearly emerges that, despite our efforts, dynamical and geometri-
cal spectators are not (and cannot) be treated on exactly the same footing. The crucial reason
for this is that the four-momenta of dynamical spectators are perturbed when they enter the
target nucleus. Indeed, their energy is corrected to keep the energy balance satisfied and to
possibly make room for some excitation energy of the projectile-like pre-fragment.

6.3.4 Low-energy fusion model

So far, we have implicitly assumed that the transfer of one nucleon from the projectile to the
target is always possible. However, serious conceptual and technical complications arise if
the kinetic energy of one of the entering nucleons is lower than the Fermi energy of the
target. One would expect such a process to be forbidden by the Pauli exclusion principle,
especially for the first projectile nucleon entering the unperturbed target Fermi sea. This
difficulty has already been encountered in the extension of the FORTRAN version of INCL
to light incident clusters (Kaitaniemi et al. 2011). In that case, it was observed that the prob-
lematic circumstance is most likely to occur when the projectile kinetic energy per nucleon
is comparable to or smaller than the dynamical projectile pseudopotential. Under these con-
ditions, it seems reasonable to assume that, independently of the details of the dynamics,
most of the incoming nucleons will be trapped by the target potential well, resulting in (pos-
sibly incomplete) fusion of the projectile and the target. This argument is especially cogent
for reactions between a light composite particle (A ≤ 4) and a large nucleus.

Therefore, for problematic events, INCL abandons normal INC in favor of a simple
geometrical fusion model if, at any moment during the intranuclear cascade, the particle-
entry procedure (see above) endows the entering projectile nucleon with a kinetic energy
lower than the target Fermi energy. Normal intranuclear cascade is then abandoned, but the
information about the initial position and momenta of the projectile nucleons is retained.
In the spirit of critical-distance fusion models (Bass 1974; Galin et al. 1974), we define
an interaction radius Rint and we prescribe that only nucleons whose collective trajectory
intersects the sphere of radius Rint will fuse with the target nucleus. The interaction radius
is defined as

Rint = R0 + dint

in terms of the interaction distance dint,

dint =
√
max (σpp, σnn, σpn) /π,

where the elementary nucleon-nucleon cross sections σi are calculated at the nominal kinetic
energy per nucleon of the light-ion projectile.

Nucleons that miss the interaction sphere are assumed not to fuse with the target and
are collectively considered as a projectile-like pre-fragment. This defines another (possi-
bly excited) source and is expected to mimic incomplete fusion. The four-momentum of
the compound nucleus (the source composed of the target and the fusing nucleons) is de-
fined as the difference between the initial total four-momentum and the four-momentum of
the projectile-like pre-fragment. If the compound-nucleus four-momentum corresponds to
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Figure 6.6: Double-differential cross sections for neutron production at (a) 5°, (b) 10°, (c)
20°, (d) 30°, (e) 40°, (f) 60° and (g) 80°, from a 290AMeV 12C+ C reaction, as calculated
by INCL, QMD, and BIC. All models are coupled to G4ExcitationHandler. Experimental
data are taken from Iwata et al. (2001). Adapted from Mancusi, Boudard, Cugnon, et al.
(2014), with permission.

negative excitation energy, the event is discarded and treated as a non-reaction. As a conse-
quence, and in accordance with known phenomenology, incomplete fusion at low projectile
kinetic energy is automatically suppressed because energetically forbidden.

6.3.5 Results
We illustrate the predictions of the INCL nucleus-nucleus extension with a few examples.
Figure 6.6 shows the predictions for the double-differential cross section for neutron produc-
tion for the 12C+C reaction at 290MeV per nucleon. Figure 6.7 shows the same observable
for the 4He + Cu reaction at 230MeV per nucleon. The INCL results are compared to the
results of other Geant4 reaction models: the Binary Cascade model (BIC, Folger et al. 2004)
and Quantum Molecular Dynamics (QMD, Mancusi, Niita, et al. 2009; Niita, Chiba, et al.
1995). For the 4He + Cu reaction, we also show the results of the Bertini+PreCompound
model (Wright and Kelsey 2015). All models are coupled to the G4ExcitationHandler sta-
tistical de-excitation model (Quesada et al. 2011), except Bertini+PreCompound, which in-
cludes its own internal de-excitation model.

One notices that the BIC predictions are generally in less good agreement with the ex-
perimental data than INCL. The QMD results are everywhere comparable to or worse than
the INCL calculation, except at the forward-most angle, which were shown to be improv-
able in INCL by using the empirical Fermi momentum (Mancusi, Boudard, Cugnon, et al.
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Figure 6.7: Double-differential cross sections for neutron production at (a) 4°, (b) 9°,
(c) 20°, (d) 30°, (e) 40°, (f) 60° and (g) 80°, from a 230AMeV 4He + Cu reaction, as
calculated by INCL, QMD, BIC, and Bertini+PreCompound. All models are coupled
to G4ExcitationHandler, except Bertini+PreCompound which uses its own internal de-
excitation module. Experimental data are taken from Heilbronn et al. (2007). Adapted
from Mancusi, Boudard, Cugnon, et al. (2014), with permission.
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Figure 6.8: Angle-differential cross section for the production of (a) protons, (b) 4He, (c)
7Li and (d) 11C from the 95AMeV 12C+ 12C reaction. Calculations with INCL , QMD and
BIC are shown; all models except are coupled to G4ExcitationHandler. Experimental data
are taken from Dudouet, Juliani, et al. (2013a) and Dudouet, Juliani, et al. (2013b). Adapted
from Mancusi, Boudard, Cugnon, et al. (2014), with permission.

2014). Note also that the CPU time for QMD is about two orders of magnitude larger than
for INCL. All the other models fail to describe the 4He fragmentation peak, which (in view
of the above) might suggest that they also employ unrealistic Fermi momenta for this pro-
jectile. In addition, the BIC model shows some unphysical structures at small angles for the
4He+ Cu system.

We now turn to the production of charged particles. We focus in particular on an experi-
ment by Dudouet, Juliani, et al. (2013a) and Dudouet, Juliani, et al. (2013b), who measured
double-differential cross sections for the production of several charged particles from re-
actions induced by a 95AMeV 12C beam on targets ranging from hydrogen to titanium.
We are mostly interested in the carbon-target data for the purpose of verifying the INCL
nucleus-nucleus extension. Calculations with some Geant4 models have been presented in
Dudouet, Cussol, et al. (2014), where however the authors used an old version of the INCL
model, which was shown above to be affected by serious drawbacks for the 12C + 12C re-
action (Mancusi, Boudard, Cugnon, et al. 2014). Our results should be considered as the
reference.

First, we observe that the incident energy (95AMeV) is rather low. The conditions
for the applicability of the intranuclear-cascade hypothesis (independent binary nucleon-
nucleon collisions) are not very well fulfilled here. Moreover, INCL’s low-energy fusion
sector is responsible for 43% of the reaction cross section, which is far from negligible.
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Figure 6.9: Fragmentation cross sections for the 500AMeV 86Kr+ 9Be reaction, as a func-
tion of the fragment mass number. Model calculations are compared to the data taken from
Weber et al. (1994). In the plot legend, G4EH stands for G4ExcitationHandler. Adapted
from Mancusi, Boudard, Cugnon, et al. (2014), with permission.

Given the empirical nature of the fusion sector, we do not expect very accurate predictions.
Figure 6.8 shows angular-differential cross sections for the production of protons, 4He,

7Li, and 11C. For each angle, the calculated ejectile energy distributions were integrated
above the detection thresholds reported by Dudouet, Juliani, et al. (Table IV in 2013b). It
is striking that none of the considered models can accurately reproduce all the experimental
data (see however calculations with LAQGSM in Mashnik, Kerby, et al. 2014). The proton
angular distributions predicted by INCL are quite close to the experimental data. The agree-
ment progressively degrades as the mass of the ejectile increases. Dudouet, Juliani, et al.
(2013b) showed that the experimental angular distributions can be represented as a sum of
a Gaussian and an exponential contribution, and claimed (Dudouet, Cussol, et al. 2014) that
no model can reproduce this trend. Figure 6.8 shows that this is incorrect: although the
exponential tail of the angular distribution might be quantitatively incorrect (especially for
11C), INCL is clearly the only model that can capture the trend of the experimental data. In
spite of the crudeness of the model ingredients, the agreement with the experimental data
is remarkable, except for the case of 11C. As far as the other models are concerned, QMD
seems to systematically underpredict the fragment yields at small angles. In general, the
shape of the angular distribution is very different from the experimental result. Even for
protons, one can observe a sizable overestimation of the yield. The BIC results manage to
capture at least some qualitative features of the experimental data, but its predictions are in
general less accurate than those of INCL.

We conclude this section by analyzing some results for fragmentation cross sections. We-
ber et al. (1994) measured isotopic fragmentation cross sections for 500AMeV 86Kr+ 9Be.
For this system, we also show calculations with the ABLA07 de-excitation model (Kelić
et al. 2008). The reason for this is that fragmentation cross sections are clearly very sen-
sitive to de-excitation. Figure 6.9 shows that INCL/ABLA07 can reproduce most of the
experimental data fairly well, but it underestimates the production of fragments close to the
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projectile 86Kr. QMD performs slightly better close to the projectile but slightly worse at in-
termediate mass (A ≃ 35). The INCL/G4ExcitationHandler and BIC/G4ExcitationHandler
couplings well reproduce the data forA > 40, but overestimate the cross sections for lighter
fragments.

The isotopic distributions in Fig. 6.10 illustrate that INCL/ABLA07 is affected by a
defect. The yields for neutron-rich isotopes of Z > 25 nuclei are systematically overesti-
mated. This defect might be correlated with the underestimation of the cross sections for
the heaviest fragments. INCL/G4ExcitationHandler does not exhibit the same defect, but
QMD/G4ExcitationHandler does. The emerging picture is unclear and no conclusion can
be drawn. We have anyway verified that the overestimation of the neutron-rich isotopes is
not due to the neglect of Pauli blocking on the first collision in the projectile. This is reason-
able in the light of the QMD/G4ExcitationHandler results, which are surprisingly similar to
those of INCL/ABLA07 on the neutron-rich sides of the isotopic distributions, but must be
generated by a completely different dynamics.

In summary, we have described the crucial elements of the extension and we have dis-
cussed the limitations of our approach, which is admittedly more phenomenological than
the core of the model. A broad comparison with heterogeneous observables has shown
that, in spite of the conceptual difficulties, the extended INCL model yields predictions in
fair agreement with the considered experimental data. In comparison to other models for
nucleus-nucleus reactions available in Geant4, INCL stands out as one of the most viable
options. We conclude that our extended model is successful at capturing the physics that is
essential for the description of inclusive observables from reactions induced by light nuclei.

6.4 One-nucleon-removal reactions
The last topic I wish to discuss is the description of one-nucleon removal reactions in INC
models. It has been known for some time that these models systematically, and in a some-
what puzzling manner, fail to describe inclusive cross sections for the removals of few nucle-
ons (see for example Audirac et al. 2013; Jacob and Markowitz 1975). Note that, in general,
the prediction of the inclusive one-nucleon-removal cross sections at high energy can reason-
ably be tackled only with a two-step dynamical/de-excitation model. The dynamical stage
may be described by INC or by other models, such as the Boltzmann-Uehling-Uhlenbeck
(BUU) or Vlasov-Uehling-Uhlenbeck (VUU) approaches (Remler and Sathe 1975), or mod-
els from the family of quantum molecular dynamics (QMD) (Aichelin 1991; Niita, Chiba,
et al. 1995; Sorge et al. 1989). These models are all “INC-like” insofar as they superimpose
a cascade of binary collisions on some kind of particle dynamics. For the sake of simplicity,
in what follows we will always refer to INC models, but most of the following analysis can
be generalized to other classes of dynamical models.

In this section we will briefly present how INC fails to describe one-nucleon removal
reactions, and we will concentrate on the solution that my collaborators and I first proposed
in 2015 (Mancusi, Boudard, Carbonell, et al. 2015), and subsequently refined a few years
later (Rodríguez-Sánchez et al. 2017).

6.4.1 Failure of INC for one-nucleon removal
Figure 6.11 shows the experimental data for one-nucleon removal in proton-induced reac-
tions at energies≳ 500MeV, as a function of the target mass (all targets are close to the sta-
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Figure 6.11: Experimental data for one-proton- (a) and one-neutron-removal cross sec-
tions (b) in proton-nucleus reactions above 500MeV incident energy, as a function of
the target mass. Diamonds refer to experimental beam energies between 500MeV and
750MeV, while circles represent energies above 750MeV. The solid lines represent
calculations with INCL/ABLA07 (red), ISABEL/ABLA07 (blue), CEM03.03 (cyan) and
Geant4’s Bertini+PreCompoundmodel (green) at 1000MeV. The dashed red lines represent
INCL/GEMINI++ calculations at 1000MeV. The dotted red lines represent INCL/ABLA07
calculations at 500MeV. Adapted from Mancusi, Boudard, Carbonell, et al. (2015), with
permission.

bility valley). For comparison, we also show calculations with INCL/ABLA07 at 500MeV
and 1000MeV, and with other INC/de-excitation models at 1000MeV. It is clear that the
INCL/ABLA07 predictions are in the right ballpark for neutron removal, but they overesti-
mate the proton-removal data by a factor that can be as large as 3–4 for heavy nuclei.

The role played by de-excitation can be clarified by comparing the INCL/ABLA07 cal-
culations with the INCL/GEMINI++ calculations (Charity, McMahan, et al. 1988; Mancusi,
Charity, et al. 2010). The resulting cross sections (shown in Fig. 6.11 as dashed red lines)
are within 20% of the INCL/ABLA07 values and indicate that the influence of de-excitation
is rather mild. Therefore, it seems unlikely that de-excitation can be held responsible for
the gross overestimation of proton-removal cross sections. Other models exhibit different
biases, but no model can reproduce all the experimental data trends (Mashnik, Gudima, et al.
2008; Wright and Kelsey 2015; Yariv and Fraenkel 1979).

The calculations presented in Fig. 6.11 globally demonstrate that INC models have diffi-
culty in correctly predicting the inclusive one-nucleon-removal cross sections. This is rather
surprising on two counts. First, one-nucleon-removal cross sections are among the largest
isotopic cross sections, they are only modestly influenced by de-excitation and they vary
slowly with the target mass and the projectile energy; thus, they represent an excellent test
bench for INC models, but they seem to have attracted little attention so far. Second, one-
nucleon removal reactions are typically dominated by very peripheral impact parameters,
which probe regions of the nucleus with large mean free path (low density); in addition, the
collision partners are somewhat localized in the nuclear surface, i.e. they are loosely bound.
One would expect the INC approximation to be fully justified under these conditions. The
failure illustrated by Fig. 6.11 suggests that INC models might be affected by a fundamental
defect.

There are other remarkable features of the INC failure. One might expect even more
conspicuous mispredictions for the removal of a larger number of nucleons, but one instead
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finds that the models can generally reproduce most of the isotopic distributions rather well
(David 2015). This should be understood as a consequence of the larger excitation energies
associated with the emission of several nucleons. Since large excitation energies can be
realized in numerous ways, some averaging takes place and the predictions become less
sensitive to the details of the initial conditions. At the same time, it should be stressed that
discrepancies do seem to increase for the removal of e.g. several protons from stable nuclei
(Audirac et al. 2013). This is consistent, inasmuch as the constraints on the excitation energy
in that case are even stricter than for one-proton removal, as evidenced by the smallness of
the associated cross sections.

Note that the experimental cross sections do not seem very sensitive to the reaction pa-
rameters, such as the beam energy and the target species. This suggests that the details of
the level structure of the individual nuclides involved do not play an important role. There-
fore, it might be possible to amend INC and describe these observables, but it is probably
necessary to go beyond the naive semi-classical model of the nuclear surface. We will do
so in the following sections, but we first need to clarify the mechanism that leads to proton
and neutron removal within the INC framework.

Let us first concentrate our attention on proton removal. The analysis of the INC/de-
excitation calculations indicates that proton removal is dominated (about 90% of the cross
section) by events with only one proton-proton collision. The two protons leave the nucleus,
which however retains some excitation energy. If only one collision takes place, the excita-
tion energy is simply given by the depth of the proton hole, i.e. the difference between the
Fermi energy and the initial energy of the ejected proton. In any case, the excitation energy
remaining at the end of cascade is evacuated during the de-excitation phase.

Note that, for most β-stable, non-fissile nuclei, particle emission at low excitation en-
ergy is largely dominated by neutron evaporation. If the excitation energy is lower than the
neutron separation energySn, no particle can be evaporated and the energywill be evacuated
as gamma rays. This is also true at energies slightly larger than Sn, as long as gamma-ray
emission outcompetes neutron evaporation; thus, the effective neutron-evaporation thresh-
old S∗

n is slightly larger than Sn. Therefore, the proton-removal channel is populated if and
only if exactly one proton was ejected during INC and the excitation energies at the end
of cascade lies below S∗

n. If the excitation energy allows for neutron evaporation, the final
residue will be lighter (target minus one proton minus x neutrons).

Thus, the proton-removal cross section is extremely sensitive to the excitation energy left
in the nucleus after the ejection of a proton during INC. More precisely, the cross section is
determined by the probability that the ejection of a proton during INC deposits an excitation
energy smaller thanS∗

n. Furthermore, there is a subtle difference between proton and neutron
removal. Neutron removal can be realized in two ways: either as a neutron ejection during
INC followed by no evaporation (this is the analog of the proton-removal mechanism), or
as no neutron ejection during INC followed by evaporation of one neutron. In the latter
scenario, it is of course required that the incoming proton undergoes at least one binary
collision and that it succeeds in escaping from the target; some conditions on the excitation
energy also apply.

In either case, the fate of the de-excitation stage is essentially determined by the ex-
citation energy at the end of INC and by the neutron separation energies in the region of
the nuclide chart around the target. In this sense, our results are essentially independent of
the choice of the de-excitation model, as far as all of them employ very similar separation
energies for stable nuclei. The second-order dependence on the de-excitation model (see
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Figure 6.12: Probability that a proton (a) or neutron (b) hole in 208Pb results in an excitation
energy smaller than the shell-model neutron separation energy, as a function of the distance
of the hole from the center of the nucleus. The dashed line denotes the result of the shell-
model calculation. The solid red line represent the standard INCL initial condition, while the
solid green line represents the improved initial condition. One-proton removal is dominated
by impact parameters to the left of the vertical dotted lines. Adapted fromMancusi, Boudard,
Carbonell, et al. (2015), with permission.

the ABLA07/GEMINI++ difference) can be ascribed to differences in the neutron-gamma
competition, i.e. by slightly different values of the effective neutron-evaporation thresholds
S∗
n.
It is clear then that the smallness of the excitation energy at the end of INC, especially in

the proton-removal case, is the crucial element that determines one-nucleon-removal cross
sections. Comparison with the experimental data (Fig. 6.11) seems to suggest that INCL
largely underestimates the excitation energy associated with the ejection of a proton.

The nuclear surface in the INCL initial conditions is predominantly populated by nucle-
ons whose energy is close to the Fermi energy. The ejection of one such nucleon during
INC results in little excitation energy for the cascade remnant. However, in the quantum-
mechanical square-well problem, the density outside the well does not vanish, even for
states close to the bottom of the well. This means that there is a non-zero probability to find
deeply bound particles outside the well, and eject them. This genuine quantum phenomenon
is missing in the naive INC nuclear picture3. Another detail that is usually neglected in the
INC picture is the presence of neutron (or proton) skins in certain nuclei. It is for instance
rather well ascertained that 208Pb exhibits a neutron skin thickness (defined as the difference
of the neutron and proton root-mean-square radii) of about 0.2 fm (Zenihiro et al. 2010). For
grazing collisions, this means that the local neutron density is several times larger than the
proton density, leading to an enhanced probability for collisions on neutrons.

These observations suggest that the INCL predictions for proton-removal cross sections
can be improved by refining the description of the nuclear surface. In order to bolster our

3A word of caution is due. In a purely quantum-mechanical treatment, the surface diffuseness is at least partly
due to the penetration of the nucleon wave functions into the classically forbidden region; in spite of this, the
INC initial conditions typically do account for a realistic diffuseness of the nuclear surface (e.g. the space
density of the INCL model is a realistic Woods-Saxon distribution), although this is entirely enforced by a
classical correlation between the particle position and energy. The failure of the INC initial conditions is
therefore more subtle. It does not concern the presence of the tail of the spatial density but rather its energy
density.
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confidence in this interpretation, we compared the energy content of the nuclear surface in
the INCL nuclear model with the result of an independent-particle shell-model calculation.
Figure 6.12 shows the probability that a proton or neutron hole punched in the Fermi sea
of a 208Pb nucleus, at a given distance from the center, results in a small excitation energy
(smaller than the neutron separation energy). In the standard INCL model, the probability
for shallow holes becomes equal to 1 beyond a certain radius. This is due to the fact that
there is a strict minimum kinetic energy for nucleons that are found beyond a given radius.
In contrast, the shell-model calculation predicts that the probability to punch a deep hole is
sensibly different from zero even very far out in the surface. How can INCL accommodate
this phenomenology?

6.4.2 Neutron skin and surface fuzziness
Ideally, we would like to use the shell-model proton and neutron densities as inputs for our
INC calculation; however, the particle densities in INCL cannot be described by an arbitrary
function, so we must somehow adapt the shell-model densities. We choose to fit them with
Woods-Saxon distributions. The best-fit parameters show that the shell-model densities for
208Pb exhibit a neutron skin, although its thickness is slightly larger than the experimentally
accepted value; this is a well-known defect of mean-field calculations (Friedman and Gal
2007).

We thus decouple the INCL parameters describing the neutron space density from those
describing the proton space density. We choose not to modify the proton densities (because
they are already given by fits to the experimental charge radii), but we adjust the neutron
parameters relative to the proton parameters by the amounts indicated by the shell-model
calculations. This is the first refinement that we apply to the INCL nuclear model.

As mentioned in Section 6.1 above, an INCL nucleon moves in a square-well potential
whose radius R(T ) depends on the kinetic energy of the nucleon. The function R(T ) is
uniquely determined by the choice of the space density ρ(r) and by the assumption that
nucleon momenta are uniformly distributed in the Fermi sphere. We have shown above
that this construction results in excitation energies for one-collision reactions that are much
smaller than those resulting from the shell model and, arguably, than those suggested by the
available experimental data.

We refine the INCL initial conditions by allowing fluctuations in R(T ). We introduce
a fuzziness parameter f (0 ≤ f ≤ 1) and a fuzzy square-well radius R(T ; f). The precise
choice of R(T ; f) is not very important (see Mancusi, Boudard, Carbonell, et al. 2015, for
more details); what matters are its properties. First,R(T ; f) is a random variable, described
by a conditional probability distribution P (R|T ; f). Second, for f = 0 fluctuations are
suppressed, and we recover the standard sharp radius-energy correlation:

R(T ; 0) = R(T )

P (R|T ; f = 0) = δ(R−R(T )).

Third, for a given value of T , fluctuations in R(T ; f) are small if f is close to zero and they
are large if f is close to one; in other words, P (R|T ; f) interpolates between the standard
sharp radius-energy correlation at f = 0 and statistical independence of R and T at f = 1.
Fourth, the fluctuations are constructed in such a way that the space density is still given by
ρ(r) and the momentum density is still given by a uniform Fermi sphere. The construction
of the fuzzy INCL nucleus is analogous to the standard preparation algorithm (Boudard,
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Figure 6.13: Space–kinetic-energy density of protons in 208Pb in the standard INCL initial
conditions (a) and in the refined initial conditions with f = 0.5 (b). The dotted vertical
lines indicate the region of impact parameters which dominates one-proton removal. The
contour of the colored shape in panel (a) represents the inverse of the function R(T ) and
is reported as a solid black line in panel (b). Adapted from Mancusi, Boudard, Carbonell,
et al. (2015), with permission.

Cugnon, Leray, et al. 2002). The only difference is that the radius of the square-well poten-
tial is no longer in one-to-one correspondence with the nucleon energy.

The phase-space structure of the fuzzy initial conditions is illustrated by Fig. 6.13(b),
which refers to protons in 208Pb with fuzziness parameter f = 0.5. Contrary to Fig. 6.13(a),
we see that the density does not sharply drop to zero. Instead, protons of a given kinetic en-
ergy can sometimes be found at much larger distances than in the standard initial conditions
[Fig. 6.13(a)]. By construction, the marginal kinetic-energy and space distributions of the
fuzzy initial conditions are identical to those of the standard initial conditions. The fluctu-
ations in one of the variables disappear when integrating over the full domain of the other
one. Note however that different results are obtained if one limits the integration domain to
some sub-range. This is illustrated by the dotted lines in Fig. 6.13, which indicate the region
of impact parameters which dominates one-proton removal. The distribution of the standard
initial conditions vanishes below a certain energy, while the fuzzy initial conditions extend
much deeper in the Fermi sea.

6.4.3 Results

We turn now to the analysis of the results of the refined INCmodel. First, the introduction of
the neutron skin in 208Pb boosts the neutron-removal cross section, as expected. This is how-
ever undesired, since the cross section calculated by standard INCL is already in moderate
excess of the experimental value. Second, surface fuzziness suppresses the cross sections
for both channels. Third, neither effect is sufficient to compensate for the overestimation of
the proton-removal cross section in 208Pb if considered alone.

When the two refinements are simultaneously applied to 208Pb, the effect of surface
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Figure 6.14: Excitation function for neutron- (blue) and proton-removal (red lines) cross
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Carbonell, et al. (2015), with permission.

fuzziness for neutron removal almost exactly compensates the effect of the neutron skin, and
the final result (83.8mb) is very close to the value calculated with standard INCL (82.1mb),
which is within two standard deviations (about 30%) of the experimental value. The proton-
removal cross section, on the other hand, is reduced by almost a factor of two, which brings
it much closer to the experimental value, but not quite in agreement with it.

The excitation curves for one-nucleon removal are shown in Fig. 6.14. The refined
predictions are globally similar to the standard ones for neutron removal; for proton removal,
the excitation function is roughly rescaled as a whole by a factor of ∼ 0.6. This brings the
prediction in better agreement with the trend shown by the experimental data.

The INCL results based on the shell-model densities and correlations are promising,
but not entirely satisfactory. However, it was later shown that a more sophisticated nu-
clear model brings further improvements to the cross-section predictions. Indeed, one of
the limitations of the shell model is that is only applicable to magic or almost magic nu-
clei. Rodríguez-Sánchez et al. (2017) removed this limitation by performing Hartree-Fock-
Bogoliubov (HFB) calculations for all the nuclei between the proton and neutron drip lines.
Woods-Saxon and Modified-Harmonic-Oscillator density shapes were used to fit the HFB
densities and were injected in INCL. Surface fuzziness was found to be roughly independent
of the nucleus, so constant values of the fuzziness parameter f were used (different parame-
ters were used for neutrons and protons). With this setup, the INCL predictions were found
to improve for proton- and neutron-removal cross sections; this was by design. However, the
refinement also improved predictions for proton-proton coincidence detection, for isotopic
residue production cross sections, and even for reaction cross sections in nucleus-nucleus
reactions. This unexpected side-product strengthens our confidence in the appropriateness
of the physical model.
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7Kinetics and dynamics in Monte Carlo
neutron transport

In many technological applications, encompassing reactor start-up analysis and reactivity
measurements, one is interested in determining the time behavior of the neutron flux φ in
a system, starting from a given initial condition. The full description of such behavior is
provided by the time-dependent Boltzmann equation, Eq. (2.19), which we reproduce here
for the convenience of the Reader:

1

v

∂φ

∂t
(r, Ω̂, E, t) + Ω̂ · ∇φ(r, Ω̂, E, t) + Σt(r, E, t)φ(r, Ω̂, E, t)

=

∫
Ms(r, E

′, t) Σs(r, E
′, t) fs(r, Ω̂

′ → Ω̂, E ′ → E, t)φ(r, Ω̂′, E ′, t) d2Ω̂′ dE ′

+

∫
νp(r, E

′, t) Σf (r, E
′, t) fp(r, Ω̂

′ → Ω̂, E ′ → E, t)φ(r, Ω̂′, E ′, t) d2Ω̂′ dE ′

+
J∑
j=1

λjcj(r, t)
fd,j(E)

4π
+Qn(r, Ω̂, E, t). (7.1)

This equation must be coupled with Eq. (2.17) for the precursors concentrations cj:

∂cj
∂t

(r, t) + λj cj(r, t) =

∫
νd,j(r, E

′, t) Σf (r, E
′, t)φ(r, Ω̂′, E ′, t) d2Ω̂′ dE ′ +Qc,j(r, t).

(7.2)
The goal of kinetic Monte Carlo methods is to address the solution of the full time-

dependent Boltzmann Eq. (7.1), coupled to the precursor equations, Eq. (7.2). The first
attempts at solving these two equations were proposed by Kaplan (1958) but they were soon
somewhat forgotten because of limitations in computer power. They were later revived
by Legrady and Hoogenboom (2008), Sjenitzer and Hoogenboom (2013), and Sjenitzer
(2013).

It is uncommon but somewhat natural to distinguish between the kinetics and the dynam-
ics of neutron transport. The distinction hinges on the presence of multi-physics feedback
mechanisms. In what follows, I will use the term “kinetics” to refer to the time evolution of
a free system, as described by Eqs. (7.1) and (7.2). I will use “dynamics” to refer to the time
evolution of a system in which the physical parameters that appear in Eqs. (7.1) and (7.2)
(cross sections, scattering kernels, etc.) are not time-independent, but are rather determined
by some other physics, which is not described by the Boltzmann equation.

In this chapter, I wish to highlight the main challenges of kinetic and dynamic Monte
Carlo for particle transport, along with the contributions that my collaborators and I have
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brought to the field. Most of the work described in this chapter is extracted from my student
Margaux Faucher’s Ph.D. thesis (Faucher 2019).

7.1 Kinetic Monte Carlo for neutron transport
The greatest difficulty for kinetic Monte Carlo is the presence of largely different timescales.
Indeed, the characteristic timescale of the precursor population (i.e. the average decay time
1/λ ∼ 0.1 s to 10 s) is much longer than the typical neutron timescale (i.e. the mean genera-
tion time; Λ ∼ 10−5 s in a typical PWR). In spite of the fact that the delayed neutron fraction
is very small (β ∼ 0.7%), precursors are much more abundant than neutrons in, say, a PWR
at equilibrium. The typical ratio β/(λΛ) is of the order of 104.

In the context of kinetic Monte Carlo, the timescales manifest themselves as fluctua-
tions1. In a system close to criticality, each neutron chain on average produces a single pre-
cursor, which in turn induces a neutron chain by decaying to a delayed neutron. Due to the
large separation between the neutron and precursor timescales, during the time between the
creation of a precursor and its decay to a delayed neutron, no particle is produced (Legrady
and Hoogenboom 2008). In a real system at full power, the number of fission events per unit
time is so large (∼ 1019 s−1) that fission chains will thoroughly superpose by the mere effect
of statistics (Sjenitzer 2013). In Monte Carlo simulations, the number of simulated chains
has to be much smaller than in real reactors because of limitations on CPU time and memory.
Hence, ingenious algorithms are required to handle the presence of the two timescales and
suppress the appearance of large fluctuations in the neutron population.

Sjenitzer and Hoogenboom (2013) proposed to use stratified sampling of precursor de-
cay to curb the appearance of large fluctuations. To this aim, they introduced a time grid
in the Monte Carlo simulation. Let t0 < t1 < . . . < tK be the time grid, with t0 = 0
representing the initial simulation time and tK representing the final simulation time. At
the beginning of each time step, each precursor is split into two particles; one of them is
forced to decay before the end of the time step, while the other is forced to survive without
decaying until the end of the time step. The statistical weights of the surviving precursor
and of the delayed neutron produced by precursor decay are adjusted in order to ensure a
fair game. Specifically, let t ∈ [tk, tk+1[ represent the current time step, j be the index of the
precursor family2 and wj(t) be the weight of a precursor particle at time t. The surviving
precursor is forced to jump to the final time tk+1 with weight

wj(tk+1) = wj(t) exp [−λj(tk+1 − t)] ,

where λj is the decay constant for the j-th family (see Eq. (2.16)). By conservation of
probability, the delayed neutron needs to be assigned an average weight of

E(wdelayed) = wj(t)− wj(tk+1).

The forced-decay time tdecay is assumed to be uniformly distributed between t and tk+1. In
order to keep the game unbiased, the neutron weight must be adjusted by the importance

1The presence of different timescales is also problematic in deterministic solvers. In numerical analysis, sys-
tems of differential equations that are characterized by vastly different scales are called stiff. Stiff systems are
hard to solve numerically because they require very small integration time steps.

2Sjenitzer and Hoogenboom (2013) prefer the use of condensed precursors, which treat the decay of several
families at once. For the sake of the simplicity, we have omitted this detail from our exposition, but the
interested Reader may consult Faucher, Mancusi, et al. (2018).
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ratio, i.e. by the ratio of the PDFs for decay:

wdelayed(tdecay) = wj(t)
λj exp [−λj(tdecay − t)]

1

tk+1 − t
= wj(t)λj (tk+1 − t) exp [−λj(tdecay − t)] .

One can easily verify that weight is conserved on average:

E(wdelayed) =

∫ tk+1

t

1

tk+1 − t
wdelayed(tdecay)dtdecay (7.3)

= wj(t)

∫ tk+1

t

λj exp [−λj(tdecay − t)] dtdecay (7.4)

= wj(t) [1− exp (−λj(tk+1 − t))] (7.5)
= wj(t)− wj(tk+1). (7.6)

In addition to the forced-decay scheme, kinetic Monte Carlo requires other important
ingredients. For example, one often wishes to simulate the kinetic response to some pertur-
bation of a critical system at equilibrium. This requires an algorithm to sample the source for
the kinetic phase from the stationary distribution of neutrons in a critical system. Another im-
portant element of kinetic simulations is population control. In sub-critical or super-critical
systems, the number of simulated particles either approaches zero or grows without bound.
Neither outcome is desirable for Monte Carlo; thus, the size of the simulated population
must be artificially controlled. We will not dwell on these aspects here, but the interested
Reader may consult Faucher, Mancusi, et al. (2018) for more details.

Note that the Sjenitzer-Hoogenboom forced-decay scheme is unbiased. It does not in-
troduce any discretization of the time evolution of the system. The purpose of the time
grid is simply to perform variance reduction on the transport calculation. The choice of the
grid affects the efficiency of the calculation, but it does not modify the expected value of
any (linear) observable. But how should one choose the time grid to achieve good variance
reduction? The scheme provides no guidance in this respect.

Consider indeed the case where one wishes to study the population kinetics on a time-
scale that is short compared to the typical precursor lifetimes (i.e. tK ≲ λ−1

j ). Such is the
case, for instance, of transients related to reactivity insertion accidents (RIA). In this case
one may develop the exponential in Maclaurin series in Eq. (7.6), yielding

E(wdelayed) ≃ wj(t)λj (tk+1 − t) .

Thus, for small time steps, the average weight of the delayed neutron is approximately pro-
portional to the length of the time step. Once the weight drops below the threshold for
Russian roulette, the scheme becomes unable to force decays and loses much of its effi-
ciency. If we are interested in short transients, then we are on the horns of a dilemma. If we
use short time steps, then Russian roulette will kill most of our delayed neutrons, resulting
in a large number of missed opportunities for variance reduction. Using large time steps
does not force enough precursor decays and does not help with reducing the variance of the
calculation. Either alternative is unsatisfactory.
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7.2 Neutron-precursor importance sampling
In 2018, my collaborators and I introduced a refinement of the Sjenitzer-Hoogenboom
scheme that paves the way towards more efficient kinetic calculations on short timescales;
the scheme was implemented in the TRIPOLI-4 code (Brun et al. 2015). The intuition
behind this method is that kinetic Monte Carlo à la Sjenitzer-Hoogenboom is inefficient
because it allocates computational resources to neutrons and precursors proportionally to
the size of the respective populations. Precursors are much more abundant than neutrons,
and therefore represent the vast majority of the considered particles; however, basically all
the detector responses of interest (reaction rates, power deposition, etc.) are sensitive to
neutrons only. Thus, it stands to reason that neutrons should be favored over precursors in
the simulation.

For this purpose, we introduce an importance-sampling scheme3. We wish to define a
global importance value for the neutron population, IN , and for the precursor population,
IC . Let us denote the total neutron weight as WN and the total precursor weight as WC ;
these are the physical particle weights. We wish to replace them with simulation weights,
which are defined as

W̄N = WN IN (7.7a)
W̄C = WC IC . (7.7b)

We require that their sum equals the sum of the physical weights:

W̄N + W̄C = WN +WC . (7.8)

With this constraint, the simulation weights can be rewritten as

W̄N = (WN +WC)
RWN

RWN +WC

W̄C = (WN +WC)
WC

RWN +WC

.

Here we have introduced the importance ratio

R =
IN
IC

, (7.9)

which is the only free parameter of the scheme; indeed, the importance values are expressed
as

IN = R
WN +WC

RWN +WC

IC =
WN +WC

RWN +WC

.

The rules of the importance sampling scheme are as follows.
3The notation used in this section is slightly different from the one used in Faucher, Mancusi, et al. (2018) and
Faucher, Mancusi, et al. (2019). The main difference with respect to the published articles is that I prefer to
use 1/IN and 1/IC where the articles use IN and IC , respectively. My definition of the importance ratioR is
the same as the article (Eq. (7.9)), but the numerical values are obviously different. The reason for this change
is that, for short time steps, my choice results in importance ratios much larger than one. This lends itself
better to the intuition that neutrons are more important than precursors on short timescales. It also fits better
with the interpretation of the importance as expected contribution to the detector and solution of the adjoint
Boltzmann equation (see Chapters 2 and 8).
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Figure 7.1: Figure of merit for the integral neutron flux in a PWR fuel assembly, for dif-
ferent values of the time step duration, as a function of the value of the neutron/precursor
importance ratio. The dashed vertical lines represent the optimal values of the importance
ratio, according to Eq. (7.10). Adapted from Faucher, Mancusi, et al. (2019).

• The weights of the source particles are multiplied by the corresponding population
importance (Eq. (7.7)), which converts them to simulation weights. The populations
are resampled so that Eq. (7.8) is respected.

• When neutrons produce precursors or precursors decay into neutrons, particle weights
need to be adjusted to take into account the population importance values. The weight
of a delayed neutron created by a precursor decay is multiplied by R.

• Similarly, when a neutron creates a precursor by fission, the precursor weight is di-
vided by R.

• In order to keep the result unbiased, neutron and precursor scores are respectively
divided by the importance factors IN and IC .

All these steps are rather standard for importance sampling.
The scheme can also be generalized to piecewise-constant, time-dependent importance

ratios. Indeed, if we wish to change the importance ratio fromR to R′ at time t, we stop the
particles andmodify their simulation weights. Let us denote as W̄ ′

N,C the simulation weights
after the change of importance. The relation between W̄N,C and W̄ ′

N,C can be derived by first
converting all the simulation weights to physical weights using the old importance ratio R,
and then reconverting the physical weights to simulation weights using the new importance
ratio R′. Note that the population weights need to be adjusted only if the importance ratio
changes (nothing needs to be done if R′ = R).

It remains to discuss how the importance ratio should be chosen. The intuition is that the
importance ratio should somehow depend on the length of the time step. Indeed, consider
a time step of length δt and consider that we wish to estimate some physical neutron ob-
servable integrated over the time step, for instance the energy deposited in the core. Let us
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denote by δEN the average amount of energy deposited by a typical neutron. Since precur-
sors do not directly contribute to the energy deposition, they first need to decay into delayed
neutrons. For a precursor decay constant λ (typically of the order of a few ms to a few s),
the decay probability is

pdecay = 1− exp(−λ δt) ≃ λ δt

for short time steps. Once the precursor has decayed, the expected contribution of the de-
layed neutron is of the same order of magnitude as the contribution of a typical neutron.
Therefore, the expected precursor contribution is given by

δEC ≃ δEN λ δt.

Keeping in mind the interpretation of importance as the expected contribution to some de-
tector response (here energy deposition), the optimal importance ratio can be estimated as

Ropt ≃
δEN
δEC

≃ 1

λ δt
. (7.10)

In order to estimate the efficiency of the Monte Carlo calculation for a particular observ-
able, we can use the figure of merit (FOM), which is defined as

FOM =
1

σ2T
,

where σ is the (estimated) standard error of the observable and T is the duration of the
simulation. Figure 7.1 shows the figure of merit for the estimation of the total neutron flux,
for different values of the importance ratio, as measured in a TRIPOLI-4 kinetic calculation
in a reflected fuel assembly, for three different values of the duration of the time step. For
each curve, the values of the figure of merit are normalized to the value for R = 1, which
corresponds to no importance sampling. Thus, Fig. 7.1 shows the gain in figure of merit
that can be realized with importance sampling in this particular case.

All the curves have similar shapes. As the importance ratio increases, the figure of merit
initially increases, then reaches a plateau, and finally decreases. The plateau value depends
on the time step duration, and it is roughly inversely proportional to the length of the time
step; for δt = 10−1 s the maximum FOM gain is around 3, while for δt = 10−3 s it is around
100.

The curve shapes can be understood as the result of two competing effects. In the nat-
ural simulation (R = 1), neutrons are under-represented, relative to their importance; thus,
values of the importance ratio larger than one favor the appearance of neutrons and improve
the Monte Carlo estimate. It is interesting to remark that the saturation of the FOM approx-
imately coincides with the optimal value of the importance ratio, as given by Eq. (7.10).
The FOM starts decreasing for large values of the importance ratio (around 106), apparently
independently of the time step duration. This is probably due to the occurrence of excessive
precursor splitting or neutron roulette.

We will come back on the subject of the variance-reduction scheme in Chapter 8, where
we will discuss the relationship between the sampling scheme discussed in this section and
the optimal sampling scheme for kinetic simulations. We now turn to the illustration of the
kinetic capabilities of TRIPOLI-4 in more realistic settings.
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7.3 Dynamic simulations of reactor cores

The goal of this section is to illustrate simulations that are reasonably achievable in reactor
physics with a kinetic Monte Carlo code today. We performed extensive tests of the kinetic
capabilities of TRIPOLI-4 (Faucher 2019; Faucher, Mancusi, et al. 2018; Ferraro, Faucher,
et al. 2019), but I will not dwell on these calculations in this manuscript. Instead, I wish
to present dynamic calculations, that include the effect of physical feedback mechanisms.
Kinetics without feedback is arguably of limited practical use. The calculations presented in
this section were performed with a coupling between the TRIPOLI-4 code (Brun et al. 2015)
and the sub-channel thermohydraulics code SUBCHANFLOW (Imke and V. H. Sanchez
2012).

In order to verify and test the dynamic capabilities of Monte Carlo codes, the partici-
pants of the McSAFE EU project (Sanchez-Espinoza et al. 2021) selected a few reference
configurations, which are illustrated in Fig. 7.2. The first one is a 3× 3 mini-core based on
TMI-1 fuel assemblies (Ferraro, Faucher, et al. 2019); the second one is SPERT III E-core,
a small research reactor that was used to perform several experiments on reactivity insertion
accidents in the 1960s in the United States (Mancusi, Faucher, et al. 2022). For each system,
a handful of reactivity insertion scenarios were studied.

For the TMI-1 mini-core, the benchmark specifies the precise configuration to be tested,
in the interest of simplifying code-to-code comparisons. The benchmark specifies a few
transient configurations that can be simulated with or without thermal-hydraulics feedbacks.
As an example of purely kinetic (no feedback) results, Fig. 7.3 shows a power ramp induced
by the movement of the control rods in the central assembly, as calculated by TRIPOLI-4
and Serpent2 (Leppänen et al. 2015). The rods are removed from the mini-core between
t = 0.2 s and t = 1.2 s. In the absence of feedback effects, the total power diverges. The
TRIPOLI-4 and Serpent2 calculations show some mild discrepancy for large times, but are
overall in fairly good agreement. Since the TRIPOLI-4 and Serpent2 implementations are
independent, this result strengthens our confidence in the correctness of the implementations.
It should be borne in mind that quantitative comparisons of time-dependent calculations
can be a delicate matter, for two reasons. First, results obtained in different time steps
are not statistically independent, especially in supercritical scenarios (like the one under
consideration); neutrons have a tendency to positively correlate estimates in consecutive
time steps. Second, the error bars in Fig. 7.3 were not estimated with ensemble averages
but with ergodic averages over the power iteration; they underestimate the true uncertainty
of the Monte Carlo calculation. All things considered, there is no reason to be concerned
about the disagreement in Fig. 7.3.

A few examples of transient calculations with thermal-hydraulic feedback are shown in
Fig. 7.4 (Faucher, Mancusi, et al. 2021). Simulations were performed for two scenarios,
which differ for the total length of the control rod movement (30 cm or 40 cm). The calcula-
tion for the 30 cm scenario is comparable to the kinetic calculation in Fig. 7.3. Comparison
of Figs. 7.3 and 7.4 highlights the stabilizing role of thermal-hydraulic feedback: the ex-
cess reactivity is absorbed by the Doppler effect, and the total power quickly drops back to
roughly the initial level.

The SPERT III E-core calculations with TRIPOLI-4 are shown in Fig. 7.5; the Serpent2
results can be found in Ferraro, García, et al. (2020). The TRIPOLI-4/SUBCHANFLOW
calculations differ in the initial condition (total power of 19MW vs. 20MW) or in the way
the initial control-rod extraction event is modelled (sudden vs. gradual extraction). The
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Figure 7.2: Geometries of the systems used for validating dynamic calculations with
TRIPOLI-4. Top: TMI 3 × 3 mini-core (Ferraro, Faucher, et al. 2019). Bottom: SPERT
III E-core (Mancusi, Faucher, et al. 2022). Left column: radial cuts. Right column: axial
cuts. Adapted from Mancusi, Faucher, et al. (2022), with kind permission of the European
Physical Journal (EPJ).
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Figure 7.3: Results of kinetic simulations of a reactivity insertion in the TMI-1 mini-core,
as performed with Serpent2 (black) and TRIPOLI-4 (red). Adapted from Ferraro, Faucher,
et al. (2019), with permission.
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Figure 7.4: Results of dynamic simulations of a reactivity insertion in the TMI-1 mini-core,
as performed with Serpent2/SUBCHANFLOW (black) and TRIPOLI-4/SUBCHANFLOW
(red), for two different scenarios. The green lines represent the position of the control rods,
and refer to the scale on the right-hand side of the plots. Top: 40 cm control-rod extraction.
Bottom: 30 cm control-rod extraction. Adapted from Faucher, Mancusi, et al. (2021).
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Figure 7.5: Results of dynamic simulations of reactivity insertion transients in the SPERT III
E-core, as performed with Serpent2/SUBCHANFLOW (blue) and TRIPOLI-4/SUBCHAN-
FLOW (orange, green, red), for two different scenarios (top: 0.47 $ reactivity insertion;
bottom: 0.84 $ reactivity insertion). Experimental data are represented as a gray band. The
Serpent2/SUBCHANFLOW calculation results are taken from Ferraro, García, et al. (2020).
Adapted from Mancusi, Faucher, et al. (2022), with kind permission of the European Phys-
ical Journal (EPJ).
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variations in the initial condition and in the withdrawal speed reflect the uncertainty in the
initial condition of the experiment. The experimental data are displayed as a gray band,
whose width represents the nominal experimental uncertainty. Finally, the Serpent2/SUB-
CHANFLOW results are displayed as blue lines. Both calculations are in good agreement
with the experimental data.

The agreement between the TRIPOLI-4 and Serpent2 is surprisingly good, especially for
the 20MW initial condition. This is partly explained by the fact that the system response
exhibits little sensitivity to the details of the model, as shown in more detail in Mancusi,
Faucher, et al. (2022). Unlike the TMI-1 mini-core, the Serpent2 and TRIPOLI-4 models
for SPERT III are sensibly different. In particular, the static reactivity of the Serpent2 model
differs from the nominal values of up to 3000 pcm, while the TRIPOLI-4 model yields static
reactivities within a few hundred pcm of the experimental values. These large differences
between the models are reabsorbed in the adjustment of the system parameters (mostly the
control-rod positions) that are required for the dynamic simulations, where they seem to
leave very little trace. Thus, in spite of the large differences in the static characterization of
the models, the kinetic behavior is very similar.

It is worth to conclude this chapter with a few observations about the efficiency and the
cost of the dynamic simulations presented here. The comparison between the TRIPOLI-4
and Serpent2 kinetic calculations showed that the efficiency of the two codes is very similar.
The SPERT III transients of Fig. 7.5 cost 10 khcore to 15 khcore each, which corresponds to
a 24 h run on about 500 cores. The maximum (apparent) uncertainty on the integral power
distribution is of the order of 8%; this value comes from an ergodic average and therefore is
surely underestimated. Arguably this precision is insufficient for high-fidelity simulations,
which we (somewhat arbitrarily) define as calculations with less than 1% uncertainty. In
addition, a reliable estimate of error bars would require multiple independent replicas. To-
day, the actual cost of a high-fidelity Monte Carlo calculation of a SPERT III transient is
probably of the order of 0.5Mhcore to 1Mhcore.

We can perform a back-of-the-envelope estimate of the expected calculation time for a
larger reactor by scaling by the volume ratio. For a large commercial pressurized water reac-
tor (e.g. an EPR), this yields an estimate of about 100Mhcore, barring possible complications
due to the large dominance ratio of the reactor. Such calculations are practically unattain-
able today. Even a cost of the order of 10Mhcore (ten times smaller than our estimate) is
unrealistically large for routine validation of deterministic transient calculations. If we are
to apply Monte Carlo methods to transient simulations on the scale of a commercial reactor
core, we need another breakthrough in calculation efficiency.
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8Variancereduction schemes for
particletransport Monte Carlo

Variance reduction encompasses all the techniques that aim at improving the efficiency
of Monte Carlo calculations (thereby “reducing the variance” for a given computational
effort). The universal metric for this purpose is the figure of merit (FOM). This quantity
has already been introduced in Chapter 7, but given the crucial role that it plays in variance
reduction, we will repeat the definition here.

Let h(γ) be a Monte Carlo estimator (see Chapter 3), mapping a Monte Carlo history
γ to a real number. Let us consider K independently and identically distributed histories
{γ1, . . . , γK}. The empirical average is

h̄ =
1

K

K∑
k=1

h(γk).

By independence of the γk, the variance of the average h̄ is given by

V(h̄) =
1

K
V(h).

This shows that, if the variance of the estimator is finite, then the variance of the empir-
ical average decreases as the inverse of the number of histories1. Now let T be the total
simulation time. On average, T is proportional toK. Therefore, the figure of merit

FOM =
1

V(h̄)T

is approximately independent of the number of histories. For a given simulation time, the
FOM is larger if the variance is smaller, i.e. larger FOMs correspond to more efficient sim-
ulations. The goal of variance reduction is to maximize the figure of merit for one or more
given Monte Carlo estimates.

In this chapter, I wish to focus on two items of my work that are related to variance
reduction. The first one concerns the optimization of variance reduction for kinetic Monte
Carlo (Section 8.1). The second one concerns the development and application of weight
cancellation techniques (Section 8.2).

1Sometimes people invoke the central limit theorem to justify this trivial fact, but clearly this is not necessary,
unless one wishes to convert the estimate of the variance of the mean into a confidence interval for the mean.
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8.1 Zero-variance schemes for kinetic Monte Carlo
As we saw in the previous chapter, kinetic Monte Carlo calculations are not going to be
applicable to the scale of a full reactor core in the short term, unless a major methodological
breakthrough drastically improves the efficiency of these calculations. In this context, it
makes sense to turn to the theory to seek guidance on the optimization of the simulation.

A noteworthy class of variance-reduction techniques is represented by importance sam-
pling. This term embraces all the techniques that somehow modify the sampling rules of
the Monte Carlo game in order to improve its efficiency (Lux and Koblinger 2018). We
have seen in Chapter 3 that the resolution of integral equations with Monte Carlo requires
interpreting the kernels of the integral operators as probability distributions. The probability
distributions involved in transport simulations are related to

• the source distributions Qn(P ) and Qc,j(P );

• the flight kernels Tn(P, P ′) and Tc,j(P, P ′);

• the collision kernel C(P, P ′); or, equivalently, the scattering, fission, precursor pro-
duction and decay kernels.

The Reader should refer to Chapter 2 for the definition of these quantities. Importance-
sampling techniques consist in replacing any or all of the natural source and kernels with
modified quantities:

• modified source distributions Q̂n(P ) and Q̂c,j(P );

• modified flight kernels T̂n(P, P ′) and T̂c,j(P, P ′);

• a modified collision kernel Ĉ(P, P ′).

In the modified game, instead of sampling from the natural probability distributions, we
sample from the modified distributions, and we correct the statistical weight of the history
to take into account the modification in the sampling2; this is necessary because we want to
constrain the importance-sampling game to be unbiased.

8.1.1 Optimal Monte Carlo schemes in stationary conditions
Among the unbiased importance-sampling games, it makes sense to search for the optimal
one, i.e. the game that would result in the most efficient simulation for the observable(s) of
interest. To fix the ideas, let us limit our attention to the stationary Boltzmann equation (so
that P = (r, Ω̂, E)) and letR denote some linear functional of the neutron collision density

R =

∫
ψn(P )ηψn(P ) dP . (8.1)

We assume that we want to construct the optimal Monte Carlo simulation for the estimation
ofR. To this aim, we introduce a one-point (collision) estimator hR(P ) forR (Section 3.3.1).

2This is done according to the well-known rule of importance sampling; if we should sample from f(P ), but
we choose to sample from g(P ) instead, then the statistical weight of the sample is f(P )/g(P ). This also
requires that g(P ) ̸= 0 wherever f(P ) ̸= 0; otherwise, importance sampling is biased. See Mancusi and Zoia
(2020).
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Note that a possible choice for hR(P ) is ηψn(P ), but that this is not the only possibility. Let
R̂ be the estimate ofR produced by the Monte Carlo simulation. We restrict our attention to
the unbiasedMonteCarlo games, i.e. games such thatE(R̂) = R. The following remarkable
theorem holds: for a given estimator hR, there exist an unbiasedmodifiedMonte Carlo game
that yields an estimator R̂ with a variance of zero, i.e.V(R̂) = 0. Games with this property
are called zero-variance schemes.

Before discussing the practical feasibility of the zero-variance scheme, there is an impor-
tant question we have to treat: is the zero-variance scheme the optimal one? This question
is legitimate because efficiency is defined in terms of the figure of merit, not variance. Of
course, any zero-variance scheme that terminates in finite time will yield an infinite figure
of merit, and is optimal. However, some zero-variance schemes generate infinitely long his-
tories. For this case, it is necessary to consider modified Monte Carlo games that are close
(in some sense) to the zero-variance scheme, and study how the figure of merit changes as
the zero-variance scheme is approached. If it diverges, then it can be reasonably argued that
the zero-variance scheme is optimal. All the zero-variance schemes that I have studied are
optimal in this sense, but I am not aware of a systematic discussion of this point (there is
a very brief mention in Lux and Koblinger (2018, Sec. 5.VIII.I)). In what follows, I will
assume that the zero-variance scheme is optimal, in the sense given above.

8.1.2 Practical feasibility
The astute Reader may be suspicious about the possibility of practically realizing a zero-
variance scheme, which seems too good to be true. For the sake of this discussion, we need
to look at the precise shape of the zero-variance scheme. For the sake of simplicity, let us
consider the condensed prompt-delayed Boltzmann equation. In the notation of Chapter 2,
Eq. (2.43), it reads (omitting the n subscript for the sake of conciseness)

ψ = T χ (8.2a)
χ = C ψ +Qχ, (8.2b)

Consider the following modified forms of the kernels and of the source term:

T̂ (P, P ′) = T (P, P ′)
hR(P

′) +
∫
C(P ′, P ′′) I(P ′′) dP ′′

I(P )
(8.3a)

Ĉ(P ′, P ′′) = C(P ′, P ′′)
I(P ′′)∫

C(P ′, P ′′) I(P ′′) dP ′′ (8.3b)

Q̂(P ) = Q(P )
I(P )∫

I(P ′)Q(P ′) dP ′ . (8.3c)

Here I(P ) is a hitherto unspecified function of the phase-space coordinates, which we call
importance map. If the appropriate importance-sampling weight correction rules are ap-
plied, the Monte Carlo game defined by Eq. (8.3) is unbiased for any reasonable choice of
the importance map3.

The shapes of the kernels given by Eq. (8.3) can be justified as follows. Let us interpret
I(P ) as an estimate of the contribution to the detector of a particle starting a flight at P .

3By “reasonable” we essentially mean that the importance map is not allowed to vanish on any state that can
be visited by the Monte Carlo game.
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The interpretation for Ĉ is rather straightforward: each possible states after the collision P ′

is weighted by the estimate of their future contribution to the detector. The denominator
in the definition of Ĉ is just a normalization factor to keep the kernel normalized. The
interpretation of Q̂ is similar: each possible particle state at the source is weighted by I(P ),
and a global normalization factor is applied. Now consider T̂ (P, P ′). How much do we
estimate the particle to contribute to the detector response after its flight from P to P ′?
Well, the particle always contributes hR(P ′) at the end of its flight at P ′; in addition, after
the collision, each possible final stateP ′′ is estimated to contribute I(P ′′). If we put together
these terms, we can conclude that we estimate the flight from P to P ′ to contribute hR(P ′)+∫
C(P ′, P ′′) I(P ′′) dP ′′. Thus, the interpretation for the flight kernel is the same as for the

collision kernel and the source term: each state after the transition is weighted proportionally
to the estimated future contribution to the detector response. This rule is the centerpiece of
zero-variance schemes (T. E. Booth 1989).

It can be shown (Lux and Koblinger 2018) that the zero-variance scheme for R and hR
is realized by a particular choice of the importance map. Given the Boltzmann observable
R defined above, Eq. (8.1), consider the adjoint Boltzmann equation, Eq. (2.53), with ηψ
playing the role of the source term Qψ†:

χ† = T † ψ† (8.4a)
ψ† = C† χ† + ηψ. (8.4b)

The zero-variance scheme simply corresponds to the choice I = χ†. Thus, the zero-variance
source term and kernels depend on the solution χ† of Eq. (8.4), the adjoint Boltzmann equa-
tion, and there’s the rub: solving these equations is at least as difficult as solving the original
transport problem for R.

Does this observation relegate zero-variance schemes to the realm of theoretical curiosi-
ties of little practical interest? Not at all! Suppose that we have an algorithm that produces
an approximate solution χ̃† of Eq. (8.4). Since the unbiasedness of the modified Monte
Carlo game does not depend on the choice of I , we can set I = χ̃† in Eq. (8.3) and obtain a
Monte Carlo game that will be close (in some sense) to the optimal one. One hopes that this
game will be efficient for the estimation of R. This idea has indeed been put into practice
by using deterministic solvers to obtain a practical approximation of the adjoint flux, and
injecting the resulting solution as importance maps in modified Monte Carlo games, with
great success (Munk and Slaybaugh 2019; Wagner and Haghighat 1998).

The practical applications of zero-variance schemes are fraught with other difficulties,
but none of them are as severe as the somewhat circular dependence between the optimal
Monte Carlo game and the solution to the adjoint Boltzmann equation. A common miscon-
ception, perpetuated even byHoogenboom (2008), is that all zero-variance schemes result in
infinitely long histories. Of course, practical applications always involve some form of pop-
ulation control (e.g. Russian roulette and splitting), which truncates infinitely long histories;
therefore, infinitely long histories would never be a problem in practice anyway. However,
there actually exist zero-variance schemes that do not result in infinitely long histories, even
in the absence of population control. We demonstrated this in Mancusi and Zoia (2020) (see
Section 8.1.5 for more details and for a discussion of the schemes with this property).
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8.1.3 Zero-variance schemes for kinetics
In Mancusi and Zoia (2020) we extended the construction of zero-variance schemes to the
time-dependent form of the Boltzmann equation. We note that the time-dependent Boltz-
mann equation, in integral form, is formally identical to the stationary form, Eq. (8.2). This
result is key, because it suggests that the strategy that yields the zero-variance scheme for
the stationary problem should also yield the zero-variance scheme for the time-dependent
problem. Indeed, we found that the zero-variance kernels and source term for kinetics are
formally identical to those of stationary problems:

T̂ (P, P ′) = T (P, P ′)
hR(P, P

′) +
∫
C(P ′, P ′′)χ†(P ′′) dP ′′

χ†(P )
(8.5a)

Ĉ(P ′, P ′′) = C(P ′, P ′′)
χ†(P ′′)∫

C(P ′, P ′′)χ†(P ′′) dP ′′ (8.5b)

Q̂(P ) = Q(P )
χ†(P )∫

χ†(P ′)Q(P ′) dP ′ . (8.5c)

Here we are working in a slightly more general framework where we allow the estimator
hR to be a function of the start and end points of the flight, P and P ′.

There are two notable differences with Eq. (8.3). First, here P involves the time vari-
able too: P = (r, Ω̂, E, t). Second, in the presence of precursors, the collision operator
C(P ′, P ′′) is non-local in time. Indeed, it is given by

C(P ′, P ′′) = Cp(P
′, P ′′) + Cd(P

′, P ′′),

where the prompt (local) part Cp is given by

Cp(P
′, P ′′) =

[
Σs(r

′, E ′)

Σt(r′, E ′)
fs(Ω̂

′
, E ′ → Ω̂

′′
, E ′′) +

νpΣf (r
′, E ′)

Σt(r′, E ′)
· fp(E

′′)

4π

]
· δ(t′ − t′′) · δ(r′ − r′′),

and the delayed (non-local) part Cd is given by

Cd(P, P
′) =

∑
j

νjdΣf (r
′, E ′)

Σt(r′, E ′)
· f

j
d(E

′′)

4π
· λj exp [−λj(t′′ − t′)] · δ(r′ − r′′).

Note that both prompt and delayed parts are already non-local in energy and angle, even in
stationary problems.

8.1.4 Sampling the zero-variance kernels

A remarkable result, which holds under verymild conditions4, is that the zero-variance flight
kernel, Eq. (8.5a), admits a general decomposition of the form

T̂ (P, P ′) = pU(P )U(P, P
′) + [1− pU(P )]V (P, P ′). (8.6)

4The estimator is required to be partially unbiased and non-negative. The condition of partial unbiasedness is∫
T (P, P ′)hR(P, P

′) dP ′ =

∫
T (P, P ′) ηψn

(P ′) dP ′.

See Mancusi and Zoia (2020) for the details.
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HereU and V are normalized probability distributions forP ′ givenP , and pU is a probability
(0 ≤ pU ≤ 1) given by

pU(P ) =
ηχ(P )

χ†(P )
,

where we have introduced the response function ηχ for the emission density:

R =

∫
χ(P ) ηχ(P ) dP .

It is easy to show in general that ηχ and ηψ are related by

ηχ = T † ηψ.

The kernels U and V are related to the analogue flight kernel T :

U(P, P ′) = T (P, P ′)
hR(P, P

′)

ηχ(P )
(8.7a)

V (P, P ′) = T (P, P ′)
ψ†(P ′)− ηψ(P ′)

χ†(P )− ηχ(P )
. (8.7b)

This decomposition lends itself to a relatively simple interpretation. First of all, for a
flight starting at P , the quantity pU(P ) = ηχ(P )/χ

†(P ) represents the expected fraction of
the detector response due to the flight that we are about to sample; we might call this the
importance of the next flight. Accordingly, if we select the U kernel, then the next flight
must be sampled by weighting the analogue flight kernel by the contribution of the flight
itself, i.e. by the estimator hR(P, P ′). Otherwise, if we select the V kernel, then we must
weight the analogue flight kernel by the quantity ψ†(P ′)− ηψ(P ′). Equation (8.4b) tells us
that

ψ†(P ′)− ηψ(P ′) =

∫
C(P ′, P ′′)χ†(P ′′) dP ′′;

therefore, the weighting factor represents the expected detector response summed over all
the flights after the flight from P to P ′. One can then see that there is a clear correspondence
between the importance of the flight and the kernel that should be used to sample the flight
itself.

Equation (8.6) is also interesting because it shows that the zero-variance kernel can be
sampled (at least in principle) with the following algorithm:

1. Evaluate the probability pU(P ), which only depends on the initial coordinates P of
the flight;

2. Select the kernel U with probability pU , and the kernel V with the complementary
probability 1− pU ;

3. Sample P ′ from the selected kernel.

In practice, sampling from U or V may require the use of rejection or delta tracking (Wood-
cock et al. 1965).

It is more difficult to devise an equivalent sampling algorithm for the zero-variance col-
lision kernel, Eq. (8.5b), even in the case of stationary problems. The most straightforward
approach consists in sampling from the analogue collision kernelC(P ′, P ′′) and treating the
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importance function χ† as a rejection factor. It is easy to show that the expected number of
analogue samplings required before accepting a collision is

⟨ncoll⟩ =
∫
C(P ′, P ′′) dP ′′ ·X(P ′)∫
C(P ′, P ′′)χ†(P ′′) dP ′′ ,

where X(P ′) is an estimate of the maximum value that χ† achieves over the states that can
be reached via a collision at P ′:

X(P ′) ≥ max
P ′′

C(P ′,P ′′) ̸=0

χ†(P ′′). (8.8)

Even assuming that the inequality in Eq. (8.8) is tight (i.e.X(P ′) takes its smallest possible
value), the number of required collisions may still be large if χ† is sharply peaked. For these
and other reasons, the zero-variance collision kernel is seldom sampled from in practical
applications.

8.1.5 On the length of zero-variance histories
We are now in a position to provide an informal characterization of the zero-variance games
that result in finitely long histories. Suppose that the zero-variance flight kernel T̂ leads the
particle into a state P ′ such that no further contribution to the detector response is possible
after visiting it. By virtue of the interpretation provided above, this is expressed by the
condition

ψ†(P ′)− ηψ(P ′) =

∫
C(P ′, P ′′)χ†(P ′′) dP ′′ = 0.

If this happens, then χ† and ψ† must vanish for any state that can be possibly reached from
P ′ (remember that χ† and ψ† integrate the contribution of all possible future histories). At
this point, the history can safely be terminated without biasing the response and without
introducing any variance. Informally, we can think of points with this property as points
outside the system.

Now consider again the decomposition of Eq. (8.6):

T̂ (P, P ′) = pU(P )U(P, P
′) + [1− pU(P )]V (P, P ′).

If ψ†(P ′) − ηψ(P ′) = 0 for some state P ′, then, by construction, P ′ cannot be reached via
the V kernel, which is given by Eq. (8.7b). It may however be reachable via the U kernel,
Eq. (8.7a), provided that pU(P ) > 0 and hR(P, P ′) > 0. Based on the discussion above,
we can informally state the following sufficient condition for the existence of finitely long
histories. Let F be the set of states “outside the system”, in the sense outlined above:

F =
{
P ′ : ψ†(P ′) = ηψ(P

′)
}
.

Then the histories of the zero-variance game will eventually terminate if there exists a subset
of finite measure of reachable states that are connected via U to F .

Obviously, if the set F is empty, then no finitely long histories may exist. Even in
cases where F is not empty, it is possible that finitely long histories do not exist if for
example hR(P, P ′) = 0 for P ′ ∈ F , or if pU(P ) = 0 whenever P ′ ∈ F and h(P, P ′) > 0.
However, the generic zero-variance game actually generates finitely long histories. This
conclusion contradicts several statements made by Hoogenboom (2008). The following
section demonstrates that the statement is true with practical examples.
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8.1.6 A simple demonstration
Following Mancusi and Zoia (2020), we will now demonstrate that it is possible to imple-
ment the zero-variance scheme in the simple, zero-dimensional, point-kinetics model, where
we neglect the space, energy and angle dependence of the neutron flux. In this simplified
model, the functions ψ, χ, ψ†, and χ† are functions of time only. The analogue kernels read

T (t, t′) = vΣt exp [−vΣt(t
′ − t)] ·Θ(t′ − t)

Cp(t
′, t′′) =

Σs + νpΣf

Σt

· δ(t′′ − t′)

Cd(t
′, t′′) =

νdΣf

Σt

· λ exp [−λ(t′′ − t′)] ·Θ(t′′ − t′),

where Θ represents the Heaviside function. The adjoint source is taken to be

ηψ(t) =
1

Σt

1[0,tf ](t),

with 1[0,tf ](t) being the indicator function of the [0, tf ] time interval. This choice corre-
sponds to constructing a zero-variance game for the response

R =

∫
ψ(t) ηψ(t) dt (8.9)

=
1

Σt

∫ tf

0

ψ(t) dt,

which is the fluence between t = 0 and t = tf . The adjoint Boltzmann equation can be
solved and yields a closed analytical form for χ†(t), which we omit for the sake of concise-
ness (Mancusi and Zoia 2020).

We consider four estimators for the response R:

• the collision estimator
hcoll(t, t

′) =
1[0,tf ](t

′)

Σt

; (8.10)

note that this estimator is actually a one-point estimator, because it is independent of
t;

• the expectation estimator
hexp(t, t

′) = ηχ(t); (8.11)
this is also a one-point estimator, but contrarily to Eq. (8.10) it only depends on the
starting time t and is independent of the final time t′;

• the “modified expectation estimator”

hexp*(t, t
′) = ηχ(t)

ψ†(t′)− ηψ(t′)
χ†(t)− ηχ(t)

; (8.12)

• the track-length estimator

htrack(t, t
′) = v ·min(t′ − t, tf − t) · 1[0,tf ](t). (8.13)

Each estimator corresponds to a different form of the zero-variance flight kernel T̂ (t, t′),
Eq. (8.5a). We omit the proof that these estimators are partially unbiased (Lux andKoblinger
2018; Mancusi and Zoia 2020).
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The collision estimator

For the collision estimator, Eq. (8.10), the flight kernel T̂coll(t, t′) takes the form of a non-
homogeneous exponential distribution:

T̂coll(t, t
′) = vΣ̂t(t

′) exp

[
−v ·

∫ t′

t

Σ̂(u)du

]
·Θ(t′ − t),

where the modified cross section Σ̂t is given by

Σ̂t(t) = Σt −
1

v
· ∂ lnχ

†(t)

∂t
.

Given these definitions and the fact that χ†(t) = 0 for t ≥ tf , it is easy to show that the final
time t′ always satisfies t < t′ < tf . In other words, the zero-variance flight kernel can never
lead the history outside the [0, tf ] time interval. At each jump, the current time t approaches
the final time tf but never quite reaches it. In a game with Russian roulette, the history will
eventually be truncated by the weight cutoff, but without Russian roulette the zero-variance
history would be infinitely long. A similar behavior is observed in the zero-variance scheme
based on the collision estimator in stationary conditions (Hoogenboom 2008).

In terms of the analysis of Section 8.1.5, there exist states from which no further contri-
bution to the detector is possible (t′ > tf ). However, these states are not reachable because
U(t, t′) = 0 if t′ > tf ; the estimator vanishes if the final time t′ is outside the detector
interval [0, tf ]. Therefore, the collision estimator results in infinitely long histories.

The modified expectation estimator

The zero-variance flight kernel for the modified expectation estimator is given by the fol-
lowing expression:

T̂exp*(t, t
′) = T (t, t′)

ψ†(t′)− ηψ(t′)
χ†(t)− ηχ(t)

.

Comparing with Eq. (8.7b), one should immediately remark that

T̂exp*(t, t
′) = V (t, t′).

In other words, the modified expectation estimator can be cast in the form of Eq. (8.6),
provided that one sets pU(t) = 0. Therefore, this estimator can never lead particles outside
the system (because this is the property that characterizes V ). The zero-variance game
results in infinitely long histories, just like the collision estimator.

Note however that infinitely long histories are a peculiar property of the collision esti-
mator and the modified expectation estimator. According to the discussion of Section 8.1.5,
infinitely long histories can only arise if, roughly speaking, pU(P ) ·U(P, P ′) = 0 for any P ′

outside the system. The collision estimator realizes this by ensuring that the second factor
vanishes, while the modified expectation estimator realizes this by suppressing the first one.

The expectation estimator and the track-length estimator

Consider now the zero-variance flight kernels T̂exp(t, t′) and T̂track(t, t′), associated to the ex-
pectation estimator (Eq. (8.11)) and track-length estimator (Eq. (8.13)), respectively. They
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wRR collision mod. expectation expectation track
10−1 0.945 91(4) 0.945 99(7) 0.945 90(1) 0.945 896(6)
10−2 0.945 891(4) 0.945 90(1) 0.945 889 8(3) 0.945 890 0(2)
10−3 0.945 891 4(6) 0.945 889(2) 0.945 890 360(4) 0.945 890 361(5)
0 — — 0.945 890 360 6 0.945 890 360 6
R 0.945 890 360 6

Table 8.1: Results of calculations for the total particle fluence R (Eq. (8.9)), for different
Monte Carlo calculations (differing in the choices of the estimators/kernels), and for dif-
ferent values of the Russian roulette threshold wRR. A threshold of zero corresponds to a
calculation without Russian roulette. The uncertainties represent the standard error. The
final row (R) contains the value of the response, calculated according to the analytical solu-
tion of the point-kinetics equations. The results correspond to the supercritical scenario from
Mancusi and Zoia (2020). Adapted from Mancusi and Zoia (2020), with kind permission
of the European Physical Journal (EPJ).

can be written in the form of Eq. (8.6), with

Uexp(t, t
′) = T (t, t′)

for the expectation estimator, and

Utrack(t, t
′) = T (t, t′)

htrack(t, t
′)

ηχ(t)

for the track-length estimator. Since neither of these kernels vanishes for t′ > tf , each
flight has a finite probability to lead the particle outside the system, thereby ending the
history. Russian roulette is not necessary for the zero-variance schemes to terminate.

Numerical results

Table 8.1 shows the results of four different Monte Carlo calculations, each of which was
performed using a different set of zero-variance kernels and source distributions, as indi-
cated by the column titles. The observable is the total fluence, defined by Eq. (8.9); the
names of the columns also indicate which estimator was used (for example, the collision es-
timator was used in the calculation with the zero-variance kernels associated to the collision
estimator). Results are given for several values of the Russian roulette threshold, in order
to highlight the fact that the variance of the result does not quite vanish for finite values
of the threshold, but it approaches zero as the threshold approaches zero. The calculation
without Russian roulette (wRR = 0) is not possible (does not terminate) for the collision
and modified expectation estimator, as discussed above, but it is possible for the expecta-
tion estimator and the track-length estimator. We could not reliably estimate the uncertainty
on the zero-variance calculations without Russian roulette, because under these conditions
the uncertainty is essentially determined by numerical round-off errors. More extensive
demonstrations are presented in Mancusi and Zoia (2020).

8.2 Weight cancellation
We saw in Sections 3.6 and 3.8 that it is sometimes useful to introduce negative weights
when solving an integral equation with the Monte Carlo method. In particular, this remark
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applies to the solution of the Boltzmann equation. Even though the kernels involved in the
standard forms of the Boltzmann equation (e.g. Eq. (2.49)) are usually positive, neutrons
with negative weights can be introduced for the purpose of solving variants of the Boltzmann
problemwhere the solution flips sign, such as in the determination of higher harmonics of the
k-eigenvalue equation (T. E. Booth and Gubernatis 2010). In other problems, the equation
to solve (and the solution) are complex, and the Monte Carlo algorithm requires complex
neutron weights; this happens for instance in the search for critical buckling (Yamamoto
2012) or in the study of power reactor noise (Yamamoto 2013). “Power reactor noise”
denotes the fluctuations in the neutron population induced by periodic perturbations of the
reactor state, which may be due for example to mechanical vibrations of pins, assemblies,
or even of the whole core. There are also uses of this idea outside the domain of particle
transport (Assaraf et al. 2007; G. H. Booth et al. 2009; Spencer et al. 2012).

8.2.1 Negative-weighted delta tracking
Let us consider a specific example of Monte Carlo game for particle transport that uses
negative weights. Woodcock’s delta tracking (Woodcock et al. 1965) is a tracking tech-
nique for particles in continuously varying media. In the simplest variant of delta tracking,
particle flights are sampled using a constant macroscopic sampling cross section, which is
required to be larger than or equal to the total macroscopic cross section at any point in
the system. Recently, Legrady, Molnar, et al. (2017) proposed negative-weighted delta
tracking (NWDT), a generalization of delta tracking that relaxes the requirement that the
sampling cross section should be a majorant of the total cross section. This comes at the
cost of occasionally flipping the sign of the particle weights. The new tracking algorithm
was proved and verified to be unbiased in fixed-source problems. Thus, the introduction of
particles with negative weights seems relatively harmless at first sight.

A few years ago, in the context of a Ph.D. thesis supervised by me, we tried to apply
negative-weighted delta tracking to a k-eigenvalue problem. The physical Boltzmann equa-
tion to solve reads (see Section 2.3.2)

Ω̂ · ∇φ+ Σtφ = Sφ+
1

k
Fφ,

where k is the sought eigenvalue. The system we considered was a simple rod model (Be-
langer, Mancusi, and Zoia 2021).

Our first natural attempt was to attempt to solve the k-eigenvalue problems with a
slightly generalized version of power iteration. Specifically:

• Russian roulette needs to be adapted to neutrons with negative weight. We apply
roulette to neutrons using the magnitude of the weight, |w|; neutrons that survive
have their weight reset to sign(w) = w/|w|.

• The sampling and normalization of the fission source need to be adapted. The number
of fission neutrons generated at each collision site is taken to be

nf =

⌊
|w|νΣf

Σt

· 1

k
(g−1)
eff

+ ξ

⌋
,

where k(g−1)
eff is the estimate of the value of keff obtained at the previous generation,

and ξ is a random number from the U([0, 1[) distribution. This formula is commonly
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Figure 8.1: Weight of neutrons with positive (W+) and negative weight (W−), as a function
of the generation in power iteration. The total weight (Wtot = W++W−) and the net weight
(Wnext = W+ − W−) are also shown. The system is a rod populated with 106 neutrons.
Adapted from Belanger, Mancusi, and Zoia (2021), with permission.

used in industrial Monte Carlo codes (with positive weights), except for the fact that
w is usually written instead of |w|.

• Fission neutrons are generated with a weight of sign(w) (in Monte Carlo codes with-
out negative neutrons, they are given a weight of 1).

• Finally, at the end of the generation, the weights of all the fission neutrons are renor-
malized in such a way that their sum is equal to the initial source weight. Let the
positive weightW+ be

W+ =
∑
i

wiΘ(wi),

where Θ is the Heaviside function. Similarly, let the negative weightW− be

W− = −
∑
i

wiΘ(−wi).

Note that bothW+ andW− are positive. The net weight is given by

Wnet = W+ −W− =
∑
i

wi,

while the total weight is given by

Wtot = W+ −W− =
∑
i

|wi|.

The renormalization procedure ensures that the net weight is constant.
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Figure 8.1 shows the behavior of the amount of positive and negative weight present
in the fission source at the beginning of generation, as a function of the generation. The
negative weight starts at zero (no negative neutrons are present in the source), but it quickly
starts growing exponentially. Likewise, the positive weight starts at the initial value of 106
and grows exponentially. The net weight, which is the difference between the positive and
negative weights, stays constant; this is to be expected, because of the renormalization of the
fission source. However, the total weight grows exponentially. The result of renormalization
is that the number of neutrons to transport is proportional to the total weight, and so are the
computational cost and the memory footprint of each generation. Clearly, the simulation of
Fig. 8.1 is not sustainable.

8.2.2 The failure of power iteration
It is possible to model the power iteration with negative-weighted delta tracking as a pair of
coupled Boltzmann equations, which we write in integro-differential form:

Ω̂ · ∇φ+ + Σsmpφ+ = Sφ+ +
1

k
Fφ+ +∆(Σsmp − Σt)φ+ +∆(Σt − Σsmp)φ− (8.14a)

Ω̂ · ∇φ− + Σsmpφ− = Sφ− +
1

k
Fφ− +∆(Σsmp − Σt)φ− +∆(Σt − Σsmp)φ+. (8.14b)

Here Σsmp is the sampling cross section, φ+ and φ− respectively represent the fluxes of
positive and negative neutrons (in what follows, we will use “positive/negative neutrons”
as a shorthand for “neutrons with positive/negative weights”), the function ∆ is defined as

∆(x) = xΘ(x),

and Θ represents the Heaviside function. The “physical” flux is represented by the differ-
ence between the flux of positive and negative neutrons:

φ = φ+ − φ−.

By taking the difference of Eqs. (8.14a) and (8.14b) one obtains an equation for φ alone:

Ω̂ · ∇φ+ Σtφ = Sφ+
1

k
Fφ. (8.15)

This is the physical Boltzmann equation that we are trying to solve with Monte Carlo. How-
ever, consider now the sum of Eqs. (8.14a) and (8.14b), which yields

Ω̂ · ∇η + Σt,ηη = Sη +
1

k
F η. (8.16)

Here we have introduced η = φ+ + φ− and

Σt,ηη = Σsmp − |Σsmp − Σt|.

Equation (8.16) has the same form as the physical k-eigenvalue equation, Eq. (8.15), except
that Σt is replaced by Σt,η. It is easy to show that

Σt,η ≤ Σt.
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Therefore, the capture cross section associated with Eq. (8.16) is smaller than the physical
capture cross section:

Σc,η = Σt,η − Σs − Σf

≤ Σt − Σs − Σf

= Σc.

So, on physical grounds, we can conclude that the dominant eigenvalue of Eq. (8.16) is
higher than keff, which is the dominant eigenvalue of the physical equation. Since the
power iteration always converges to the dominant eigenvalue, the Monte Carlo simulation
of Eq. (8.16) will not converge to the physical eigenvalue.

What is the form of the eigenfunctions of Eq. (8.14)? It is easy to observe that Eq. (8.14)
is symmetric under the exchange between φ+ and φ−; therefore, any eigenpair φ± must be
either symmetric or antisymmetric under the exchange. Indeed, the antisymmetric eigen-
pairs (φ+ = −φ−) are given by φ± = ±φ, where φ is a solution of the physical Boltzmann
equation, Eq. (8.15). The symmetric eigenpairs (φ+ = φ−) are given by φ± = η, corre-
sponding to the solution of the “unphysical” Boltzmann equation, Eq. (8.16). Therefore,
the dominant unphysical eigenmode is represented by equal amounts of positive and nega-
tive weight.

8.2.3 Strategies for weight cancellation
This remark suggests that it should be possible to remove the unphysical eigenmodes by
combining and “cancelling” positive and negative neutrons. Clearly, two neutrons located
at the same phase-space pointP , with weights of equal magnitude but opposing signs, do not
contribute anything to the simulation on average, and can be safely eliminated. Applying
weight cancellation to transport problems, however, is difficult because neutrons practically
never occupy the very same point in phase space. In order to achieve cancellation, it is
necessary to devise a way to combine neutrons that are “close by” in phase space, in some
sense.

There are a fewways to achieve this goal. Arguably the simplest strategy is the following.
Consider the neutrons that comprise the fission source. We cluster them based on their
proximity, for example using a mesh superimposed on the geometry, or using the cells of the
Monte Carlo geometry as cancellation regions. We compute the net weight for each region,
and we assign it to all the neutrons within that region (Zhang et al. 2016). This is a form
of approximate regional weight cancellation; it achieves some form of cancellation “at
a distance”, but it is not an exact algorithm. The mesh discretization biases the evaluation
of the neutron weights. Making the mesh finer will help reduce the bias, but only up to
a certain point. First, note that the fission source contains neutrons with different energies
and directions; in principle, these dimensions should also be discretized. Second, for a given
number of neutrons in the fission source, the efficiency of approximate regional cancellation
decreases as the mesh becomes finer, because each region will contain fewer neutrons to
cancel.

It is interesting to ask whether there exist weight cancellation algorithms that do not in-
troduce any bias. One such algorithm was proposed by T. E. Booth and Gubernatis (2010).
It is also a form of regional cancellation, in that it discretizes the geometry in regions. The
central idea is to remove a fraction of weight from each neutron and “spread” it uniformly
over the region the neutron belongs to, as we will discuss in more detail below. Cancellation
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Figure 8.2: Schematic representation of the one-dimensional regional cancellation algo-
rithm by T. E. Booth and Gubernatis (2010). The yellow and lavender shadings respec-
tively represent the pointwise part and the uniform part of the fission density. Adapted from
Belanger, Mancusi, and Zoia (2021), with permission.

is achieved by combining the uniform weight portions of different neutrons and converting
the resulting net weight to new fission neutrons. The main limitation of Booth and Guber-
natis’ algorithm is that it is limited to very simple one-dimensional problems (a single-speed
rod model).

Let us assume that a neutron with energy E1 flies from r1 with direction Ω̂1 to r2, and
undergoes a collision there. Let R denote the cancellation region that r2 belongs to, and
assume for the moment that r1 does not belong to R. In the rod model, if r1 is outside R
and r2 is inside R, then all the points in R are reachable with a single flight starting at r1
with direction Ω̂1. Figure 8.2 illustrates this idea in the simple case of a uniform system.
The neutron starting at x1 enters the region R = [xR− , xR+ ] and undergoes a collision at
x2, but any point in R could have been sampled as the collision site. This is highlighted
by the fission density ζ(x|x1, Ω̂), which represents the expected number of fission neutrons
emitted after a flight from x1 to x2 and a collision at x2; note that the fission density does
not vanish anywhere in the region.

We follow T. E. Booth and Gubernatis (2010) here. The fission density is proportional
to the weight of the neutron, w. We decide to represent the latter as the sum of a pointwise
component located at x2 and a uniform component distributed over R. Somewhat surpris-
ingly, the relative weight of the two contributions is actually a free parameter of the model.
Specifically, if we denote our free parameter as β, then the amount of weight that is uni-
formly spread over R is given by

wu = w · β

ζ(x2|x1, Ω̂)
, (8.17)
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while the pointwise weight (located at x2) is given by

wp = w − wu = w · ζ(x2|x1, Ω̂)− β
ζ(x2|x1, Ω̂)

. (8.18)

Since we want to maximize the efficiency of cancellation, we want the value of β to be as
large as possible. The most natural choice it to take β equal to the minimum of ζ(x|x1, Ω̂)
over R:

β = min
x∈R

ζ(x|x1, Ω̂).

This corresponds to the choice made in Fig. 8.2. However, this is by no means the only
possible choice. By construction, weight is conserved for any value of β. For values of
β larger than zero but smaller than the minimum, the qualitative behavior is the same but,
for a given r1 and r2, one obtains a smaller uniform weight, which degrades the efficiency
of cancellation. For values of β larger than the minimum, there are positions in R where
wu > w, and therefore wp < 0. Thus, depending on the choice of β, the cancellation
algorithm can generate (additional) negative weight. This is not necessarily a problem, as
we will see below.

Booth and Gubernatis’ original formulation of the algorithm is essentially heuristic: the
unbiasedness of the algorithm is not rigorously proven; no criterion for the choice of the
free parameter β is given; finally, and perhaps most importantly, it is far from clear how
the rod-model algorithm can be generalized to more than one dimension and beyond one-
speed models, let alone to continuous energy. In particular, in two dimensions or higher, it
is not true anymore that any point of the cancellation region containing r2 is reachable with
a single flight from r1; the only reachable points are those on the half-line connecting r1 to
r2. Thus, the neutron weight cannot be trivially spread over the whole cancellation region.

8.2.4 Exact regional cancellation in three dimensions

Drawing inspiration from this seminal work, we developed an exact regional weight cancel-
lation algorithm for transport in three dimensions (but the principle of the algorithm easily
generalizes to any number of dimensions) and tomulti-group energy treatment (a further gen-
eralization to continuous energy is possible, but there are a few nettlesome details that need
to be addressed). The key insight to generalizing the algorithm to three-dimensional prob-
lems is twofold. First, we generalize cancellation regions to phase space; this means that in
general we also need to discretize the directions and the energy. Second, suppose a neutron
undergoes a collision atP0 = (r0, Ω̂0, E0), is emitted from the collision atP1 = (r1, Ω̂1, E1)
and undergoes a second collision at P2 = (r2, Ω̂2, E2), with r2 ∈ R (note also that r0 = r1,
Ω̂1 = Ω̂2 and E1 = E2). In three dimensions, the endpoints of all possible flights starting
from P1 do not cover the whole cancellation region; however, if one considers all possible
exit directions Ω̂1 for neutrons of energy E1 exiting the collisions at P0, it is possible that
the endpoints of all the possible flights do cover the cancellation region. This means that,
instead of considering the expected fission density in R due to a flight starting at P1, we
actually need to consider the expected fission density in R due to a collision happening at
P0. The idea is schematically illustrated in Fig. 8.3.

In three dimensions, the uniform and pointwise weights are still given by Eqs. (8.17)
and (8.18), but the fission density function ζ is conditioned to a collision happening at P0,
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Figure 8.3: Schematic representation of the three-dimensional exact regional cancellation
algorithm. Adapted from Belanger, Mancusi, and Zoia (2021), with permission.

instead of a flight starting at P1. In practice, for simulations based on negative-weighted
delta-tracking, the shape of the expected fission density is rather simple:

ζ(P2|P0, E1) = Σf (P2) exp (−Σm|r2 − r0|)
f(Ω̂1|r0, Ω̂0, E0 → E1)

|r2 − r0|2
,

where Ω̂1 = r2−r0
|r2−r0| , and the scattering kernel f(Ω̂1|r0, Ω̂0, E0 → E1) is the conditional

distribution for the direction Ω̂1 after the collision, given that the collision takes place at
r0 with incident direction Ω̂0, incident energy E0 and outgoing energy E1. Note that the
definition of the scattering kernel is a bit unusual because it is also conditioned to a given
outgoing energy. With this definition, the regional cancellation algorithm is rather simple.
When a particle undergoes a collision in R, its weight is split into a uniform part and a
point-wise part:

wu = w · β

ζ(P2|P0, E1)

wp = w − wu = w · ζ(P2|P0, E1)− β
ζ(P2|P0, E1)

,

which are fully analogous to Eqs. (8.17) and (8.18).
In Belanger, Mancusi, and Zoia (2021), we demonstrated the feasibility of three-dimen-

sional exact cancellation in a multi-group benchmark (E. E. Lewis et al. 2001). Our exact
regional cancellation algorithm was proved to successfully halt the growth of the number of
neutrons and their total weight, without introducing any bias in the resulting observables.
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8.2.5 Optimization of weight cancellation

In a subsequent paper (Belanger, Mancusi, and Zoia 2022a), we provided a clearer theoret-
ical framework to discuss all the questions related to exact regional cancellation. Booth-
Gubernatis regional cancellation can be modelled as a higher-order next-event estimator for
the fission density with the following form:

ϑR(P2|P0, R,Q) =
β

VRζ(P2|P0)
+

(
1− β

ζ(P2|P0)

)
δ(Q− P2); (8.19)

here Q is a generic point within the cancellation region R, β(P0) is a free parameter, VR
is the phase-space volume of R, and we have omitted the intermediate energy E1 from the
arguments of the expected fission density ζ , for the sake of conciseness. Equation (8.19)
is a next-next event estimator. In the paper, we actually discuss the possibility to use even
next-next-next-event estimators by considering the expected fission emission density instead
of the fission density. This choice may present some practical advantages, but it is not
mandatory.

Establishing a theoretical framework for exact regional cancellation gives several in-
sights. First, we have sufficient conditions under which the estimator ϑR is unbiased. Specif-
ically, Eq. (8.19) is unbiased if β is a function of P0 only. In other words, the choice of the
cancellation parameter is allowed to depend on the particle and on the phase-space coordi-
nates before the last collision, but it is not allowed to depend on the coordinates of the final
point.

Moreover, the shape of the estimator makes it possible to optimize the choice of the
cancellation parameter. Specifically, let us suppose that K particles undergo collisions at
points P0,k and land at points P2,k in cancellation region R (k = 1, . . . , K). Let wk,p and
wk,u respectively be the pointwise and uniform part of the weight of the k-th particle. The
total weight after cancellation (i.e. after combining the uniform parts of all the weights) is
given by

Γ1(P0,1, . . . , P0,K ;P2,1, . . . , P2,K) =
K∑
k=1

|wk,p|+ |
K∑
k=1

wk,u|

=
K∑
k=1

∣∣∣∣ζk − βkζk
wk

∣∣∣∣+
∣∣∣∣∣
K∑
k=1

βk
ζk
wk

∣∣∣∣∣ . (8.20)

Here βk is the value of the cancellation parameter and ζk = ζ(P2,k|P0,k) is the value of the
expected fission (emission) density for the k-th particle. Ideally, we would like to choose
the values of the βk parameters so that Γ1 is minimized. Note however that we cannot
simply minimize Eq. (8.20) with respect to βk, because the resulting optimal parameter
values would depend on P2,k, which is not allowed if we require an unbiased estimator.
Moreover, Γ1 is somewhat tricky to minimize analytically because it is not differentiable
with respect to βk.

For these reasons, we instead consider the squared weight after cancellation:

Γ2(P0,1, . . . , P0,K ;P2,1, . . . , P2,K) =
K∑
k=1

(
ζk − βk
ζk

wk

)2

+

(
K∑
k=1

βk
ζk
wk

)2

, (8.21)
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This quantity is differentiable with respect to βk, but it still depends on P2,k. We can elimi-
nate these coordinates by averaging over them according to their natural distribution, which
is

P(P2,1, . . . , P2,K |P0,1, . . . , P0,K) =

K∏
k=1

ζk

K∏
k=1

∫
R

ζk dP2,k

.

This yields the following function to minimize with respect to βk:

⟨Γ2⟩ (P0,1, . . . , P0,K) =

∫
R

Γ2(P0,1, . . . , P0,K ;P2,1, . . . , P2,K)
K∏
k=1

ζk dP2,k∫
R

K∏
k=1

ζk dP2,k

.

Straightforward calculations show that the minimum is given by

βk = ⟨ζk⟩ ck
(
1− S

wk

)
, (8.22)

where we have introduced the average fission density and average inverse of the fission
density for the k-th particle

⟨ζk⟩ =

∫
R

ζ(P0,k, P ) dP∫
R

dP
(8.23)

〈
ζ−1
k

〉
=

∫
R

ζ(P0,k, P )
−1 dP∫

R

dP
, (8.24)

as well as the following quantities

ck =
(
2 ⟨ζk⟩

〈
ζ−1
k

〉
− 1
)−1

S =

K∑
k=1

ckwk

1 +
K∑
k=1

ck

.

In order to use the optimal parameter values given by Eq. (8.22), it is necessary to
evaluate the average fission density and average inverse of the fission density, Eqs. (8.23)
and (8.24). For homogeneous cancellation regions of simple shapes and simple scattering
distribution laws (e.g. isotropic), it is conceivable that the integrals in Eqs. (8.23) and (8.24)
could be analytically evaluated. In general, however, the integrals need to be evaluated nu-
merically; note that an inaccurate evaluation will only affect the efficiency of cancellation,
but the method will remain unbiased.
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Figure 8.4: Amount of total weight in the modified C5G7 benchmark, as a function of
generation, for different cancellation methods, including no cancellation and approximate
cancellation. Adapted from Belanger, Mancusi, and Zoia (2022a), with permission.

In our paper, we used pseudo-random and quasi-random sequences to estimate the inte-
grals. Figure 8.4 shows the evolution of the amount of total weight in the modified C5G7
benchmark with negative-weighted delta tracking, as a function of generation, for differ-
ent cancellation methods. As discussed above, the total weight grows exponentially in the
calculation without weight cancellation. We can also choose βk to be the minimum of the
expected fission density for the k-th particle:

βk = min
P∈R

ζ(P0,k, P ).

This yields the yellow curve in Fig. 8.4. This is sufficient to suppress the exponential growth,
as promised. The optimal choice of the cancellation parameter, Eq. (8.22), yields the purple
curve. The saturation level of this calculation is lower than the yellow curve, which implies
that cancellation is indeed more efficient. This is remarkable because the optimal choice
sometimes must occasionally result in additional negative pointwise weight being gener-
ated at the fission site. In spite of this, the overall efficiency of cancellation is increased.
Finally, the green curve shows the result of using approximate regional cancellation à la
Zhang et al. (2016), as discussed in Section 8.2.3 above. One remarks that approximate can-
cellation is even more effective than the optimal exact cancellation algorithm in moderating
the increase in total particle weight. Of course, this comes at the price of introducing a bias
in the calculation, although we were admittedly unable to highlight the presence of the bias
in a complex calculation such as the C5G7 benchmark.
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9Conclusions and perspectives

I wish to conclude this manuscript by expressing my view for the future development of my
research career. I can see several productive research directions, which I will detail below.

9.1 Towardsmulti-physicsMonte Carlo simulations for re-
actor cores

I mentioned in Section 8.1 that zero-variance games can provide valuable guidance for the
development of efficient variance-reduction schemes. As explained in Chapter 7, the com-
putational cost of dynamicMonte Carlo calculations is still orders of magnitude too large for
widespread adoption of this technique, e.g. in safety calculations. It is useful in this context
to draw parallels with and inspiration from the recent developments in fixed-source, sta-
tionary calculations. About twenty-five years ago Wagner and Haghighat (1998) suggested
using a deterministic solver to calculate the adjoint flux for the detector, and use it as an
importance map for Monte Carlo calculations. This method, known as Consistent Adjoint-
Driven Importance Sampling (CADIS), was immediately shown to yield very promising
efficiency gains. It took a few years for the community to build software that simplified the
application of CADIS to existing Monte Carlo problems (Mosher et al. 2013); once this ob-
stacle was removed, CADIS quickly superseded all previous variance-reduction techniques
in industrial applications (Munk and Slaybaugh 2019).

It is likely that dynamic Monte Carlo calculations will tread along a similar path. As
of today, we know the rules of the optimal kinetic Monte Carlo game; we also know how
to write deterministic solvers for the time-dependent adjoint Boltzmann equation. We need
to put the pieces together and democratize the use of time-dependent CADIS-based Monte
Carlo in kinetic simulations. Eventually, the physical feedback mechanisms will also have
to be factored in the calculation of the importance map, in order to maximize the efficiency
of dynamic simulations.

Are zero-variance games the final say in matters of variance reduction? Vigilant Read-
ers may have noticed that zero-variance games suffer from an(other) important conceptual
limitation: in a given calculation, only one estimator can be optimized at a time. Indeed,
the zero-variance game depends not only on the observable that we optimize for, but even
more specifically on the estimator that we select (Eq. (8.5)). Estimators other than the zero-
variance one, in general, have a finite variance. This is true even in stationary conditions. In
coupled dynamic calculations for reactor physics, the Monte Carlo particle transport code is
used as a solver for e.g. power deposition (for the case of a couplingwith thermal-hydraulics)
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or reaction rates (for depletion). The outputs are generally discretized in space (on a mesh
or on a set of volumes), and sometimes in energy. Clearly, the typical use case is far from
concerning a single observable.

In practice, one can still use zero-variance games to guide the construction of efficient
Monte Carlo simulations. Taking inspiration again from stationary calculations, there exist
generalizations of the CADIS method that tackle the problem of “distributing” the CADIS
acceleration over several observables. In one such method, called Forward-Weighted CA-
DIS (FW-CADIS, Peplow et al. 2007), the objective is to obtain roughly the same variance
for the estimation of a neutron flux in all cells of a mesh covering the simulation domain
(Munk and Slaybaugh 2019). This is done by taking the adjoint source to be inversely
proportional to the (direct) neutron flux, which is estimated in a preliminary deterministic
calculation1. A similar approach is likely to work in kinetic and dynamic calculations, too.

9.2 Extending weight cancellation

In Section 8.2 I discussed our recent advances on the development of weight cancellation
techniques. These methods stemmed out of the need to control the growth of particle pop-
ulation in criticality simulations involving negative-weighted delta tracking. In a few very
recent publications (Belanger, Mancusi, Rouchon, et al. 2023; Belanger, Mancusi, and Zoia
2022b), we showed that weight cancellation can yield enormous gains in the efficiency of
simulations for power reactor noise (R. Sanchez 2015; Yamamoto 2013). It is my feeling
that we are only beginning to understand the potential of these techniques.

On the one hand, regionalized weight cancellation techniques are still primitive. The ef-
ficiency of cancellation depends on the choice of the mesh. In Belanger, Mancusi, and Zoia
(2021), we heuristically found that there is an optimum size for the cells of the cancellation
mesh; however, the optimal size depends non-linearly on the net weight circulating in the
system. This makes it somewhat difficult to build an optimal or nearly optimal mesh with-
out a preliminary empirical study. Moreover, in its current implementation, regionalized
cancellation is restricted to happen at fission events, which are a very limited subset of the
events that occur in the lifetime of a neutron. I cannot see any reason why the formalism
of regionalized cancellation cannot be applied to any type of collision. Cancelling particle
weights at every collision step would largely increase the efficiency of exact regional can-
cellation, and possibly bring it to levels of efficiency comparable to those of approximate
regional cancellation (Zhang et al. 2016). Finally, other weight cancellation techniques need
to be explored. For example, in the context of fermion Monte Carlo, Arnow et al. (1982)
proposed to perform pairwise cancellation of particle weights by considering transitions
to common intermediate states. This algorithm is applicable to neutron transport, too, but
a naïve implementation has the disadvantage of scaling quadratically with the number of
particles present in the system (T. E. Booth 2003). The quadratic cost can be avoided by
limiting cancellation to particles that are sufficiently close together. In short, I am confident
that there are still large improvements to bring to the methodology of cancellation.

On the other hand, there are many applications of viable weight cancellation techniques.
As mentioned above, the first one that we have explored is the simulation of power reactor
noise. The noise transport problem is a fixed-source problem that is characterized by the

1As far as I am aware, there are only heuristic explanations for the fact that FW-CADIS yields uniform variance
(and indeed, the theory may very well indicate that the expected variance is not exactly uniform).
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fact that the source term and some of the cross sections involved are complex. This in turn
implies that the solutions are complex. In Monte Carlo, complex solutions require the use
of particles with complex weights. The real and imaginary part of the particle weights do
not have a fixed sign; particles with both signs are present in the simulation. Hence, weight
cancellation is beneficial to the efficiency of noise simulations, because it makes it possible
to combine particle weights of opposite sign, thereby reducing the total amount of weight
to transport; this reduces the computational cost and the variance of the calculation at the
same time (Belanger, Mancusi, Rouchon, et al. 2023).

Another application of cancellation is the calculation of higher-order eigenmodes (be-
yond the fundamental state) of the Boltzmann k-eigenvalue equation. This is actually one
of the original motivations for the development of cancellation techniques (T. E. Booth and
Gubernatis 2010; Zhang et al. 2016). Higher-order eigenfunctions do not have a fixed sign,
contrary to the fundamental mode. Thus, the Monte Carlo simulation of higher eigenmodes
requires the use of particles with positive and negative weights. As for noise, weight cancel-
lation can boost the efficiency of the simulation. In some algorithms, cancellation is actually
required for the algorithm to converge to the correct solution (T. E. Booth and Gubernatis
2010).

More broadly, I expect weight cancellation to be generally useful in all situations where
particle weights can take opposite signs. This is the case of other problems in transport the-
ory, such as the search for critical buckling (Yamamoto 2012). Even more generally, weight
cancellation is actually useful in all situations where the distribution of particle weights is
liable to have a large dispersion. ForMonte Carlo simulations with positive particle weights,
the dispersion of the weight distribution is typically controlled using Russian roulette and
splitting. However, it is not always straightforward to provide a good value for the reference
weight, i.e. the weight that particles are assigned after roulette or splitting. This happens for
example in variance-reduction calculations using modified flight and collision kernels. In
contrast, weight cancellation does not require the definition of a reference weight. The
typical particle weight after cancellation is dynamically determined by the weights of the
incoming particles.

Finally, it should be possible to generalize weight cancellation to other types of Monte
Carlo simulations, beyond particle transport. One possibility that comes to my mind in
particular is its use in Monte Carlo simulations of Lévy flights (Lévy 1954; Mandelbrot
1982), which are commonly used inmodels across the fields of biology, ecology, geophysics,
and other. Lévy flights are characterized by the fact that the flight distances follow a power
law; this should be contrasted with the exponential flights that are characteristic of neutron
transport. For exponential flights, the mean free path gives the order of magnitude of the size
of the cells of the optimal cancellation mesh. Lévy flights do not have a typical length scale
(they are actually scale-invariant); since the flight lengths have a heavy-tailed distribution, I
expect regional cancellationmethods to be less sensitive to the coarseness of the cancellation
mesh, compared to exponential flights.

9.3 Fluctuations, feedbacks and stochastic processes

In the zero-power regime, i.e. at low reactor power, where relatively few neutrons circulate in
the core, the Boltzmann equation is not a goodmodel for the prediction of the behavior of the
neutron population. More accurately, the Boltzmann equation describes the mean value of
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the neutron population in phase space, but in the zero-power regime the relative fluctuations
in the population size are comparable to the mean values. The theory of stochastic processes
provides the tools to reason about the statistical behavior of the neutron population (Pál and
Pázsit 2006; M. M. R. Williams 1974).

In Monte Carlo simulations for nuclear reactor cores, the number of particles is always
far smaller than the number of particles present in the real core, by several orders of mag-
nitude2. A reactor core containing a number of neutrons of the order of a Monte Carlo
calculation would be operating close to the zero-power regime. In this sense, Monte Carlo
calculation always effectively operate in the zero-power regime, even when simulating a
reactor at full power, in the sense that the relative fluctuations are rarely negligible. This
is particularly important in the presence of physical feedback mechanisms, such as thermal-
hydraulics or depletion. Indeed, feedback mechanisms act on the neutron population, but
their intensity depends on the size of the population itself; thus, the system with feedback
is non-linear. The physics is further complicated by the fact that feedbacks mostly act on
the neutron population, but variations of the latter are somewhat ballasted by the presence
of precursors, which introduce other characteristic time scales.

In non-linear conditions, random fluctuations in the population have another unwanted
consequence: they introduce a statistical bias in the population mean; this follows from
Jensen’s inequality (Rudin 2013). The bias is small if fluctuations are small; therefore,
the bias will typically be unmeasurable in a real reactor at full power, and the reactor will
operate very close to the “deterministic” point. In contrast, in a Monte Carlo calculation,
the bias is much larger and may become observable under suitable conditions. This is an
intrinsic limitation of the application of the Monte Carlo method to the treatment of non-
linear feedback mechanisms.

In an industrial calculation with non-linear feedbacks, it is definitely desirable to quan-
tify the bias and keep it under control. One way to approach this problem is to use stochastic
processes to model fluctuations in Monte Carlo codes. The aim of this approach is to be pre-
dictive about the fluctuations and biases expected inMonte Carlo calculations, and use these
tools to formulate recommendations for their use. The first step towards this goal is the char-
acterization of fluctuations and correlations in static and dynamic calculations, which is one
of the recent endeavors that I have undertaken with one of my Ph.D. students (Bonnet et
al. 2022). Further steps involve the extension of the formalism to accommodate physical
feedback effects, and the formulation of suitable criteria to at least detect the presence of a
sizeable bias.

2In a typical commercial PWR at full power, the total number of neutrons that circulate at any given time is of
the order of 1015.
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