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Artistic composite view of sectioned standard compacted waste packages, 
as produced on an industrial basis by Areva NC (Cogema).
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An ongoing process 
of advances 
Research work, seeking the best solutions for the
long-term management of long-lived, high-level
radioactive waste is part and parcel of a process 
of staged advances, based, from the outset of the use
of nuclear power, in France, on two principles:
optimum use of energy-rich materials, and the safe
conditioning of ultimate waste.

management of the radioactive waste it generates (see
Box A, What is radioactive waste? p. 16), consisting
in partitioning and recycling materials recoverable for
energy purposes, while reducing, conditioning, and
consigning to disposal ultimate waste (see Chapter I,
The groundwork of current solutions, p. 13).
Short-lived, low-level waste (about 15,000 m3/year)
is managed by ANDRA, and kept in surface disposal
at the Aube Center (and previously at the Manche
Center,which has ceased taking in packages since1994).
Nowadays, after completing spent fuel reprocessing
operations at La Hague (Manche département,Western
France), all waste is conditioned. Over 95% of total
radioactivity  is concentrated in long-lived,high-level
waste, which is incorporated into a glass matrix
(see Box B,Waste from the nuclear power cycle,p.20).
Such waste is stored in purpose-built facilities.
Reprocessing operations, carried out on an industrial
basis in France, make it possible, on the one hand, to
achieve a reduction in waste radiotoxic inventory,
compared to the no-reprocessing option (open cycle),
by extracting, and recycling, plutonium, an energy-
rich material, and, on the other, by conditioning long-
lived waste in safe, durable fashion, in a very small
volume.

What has been the outcome 
of the research effort since 1991?

Under the aegis of the Act of 30 December 1991 (see
Box 2), the French government charged CEA with
conducting investigations in accordance with direc-
tion 1 (partitioning and transmutation; see Box E,
What is transmutation? p.90),and direction 3 (condi-
tioning; see Box C, What stands between waste and
the environment? p. 28; and storage; see Box D, From
storage to disposal, p. 50), while entrusting ANDRA
with direction 2 (geological disposal). These investi-
gations have been carried out in highly sustained fas-
hion from 1992, drawing on major collaborations in
France,as on the European and world scenes (see Box3).
Reports setting out the results achieved by this research
effort were presented (on 30 June 2005, for the CEA
part) to the Minister for Industry,and the Minister for
Research (see Chapter II, New designs: the package at
the core of investigations,p.79).These reports were sub-
sequently updated, at the end of 2005.

Direction 1: partitioning and transmutation

Investigations on partitioning and transmutation seek
to achieve separation of the more radiotoxic long-lived
elements present in waste (mainly minor actinides,
which currently are vitrified, along with fission pro-
ducts),going on to transmute them,by recycling them
in nuclear reactors, to transform them into non-radio-
active elements, or elements having a shorter half-life
(see Chapter III,Advances for tomorrow and after,p.79).

Production of nuclear-generated electric power, in
France, is supported by a mature, high-perfor-

mance industrial resource,constructed,and constantly
improved,from 1975 on,comprising reactors and cycle
plants (see Box 1), industrial materials and waste sto-
rage facilities, and surface disposal facilities. This
production goes hand in hand, through a policy fos-
tering ongoing advances, with optimization of the
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that reactor, was redeployed. A substantial redesign
and rejigging effort, for the scheduled irradiations,was
successfully completed in 2002, to enable the intro-
duction of irradiation experiments into the Phénix
reactor.Post-irradiation inspections of compounds for
transmutation were initiated with two new experi-
ments, MATINA 1A (investigation of matrices) and
METAPHIX (transmutation of minor actinides into
metal fuel), which were taken out of this reactor in
2004,with the other irradiations following,up to 2009.
On the basis of the numerous findings from irradia-
tions already obtained,the technical feasibility of trans-
mutation of americium and neptunium has been esta-
blished, for oxide fuels in sodium-cooled fast reactors.
The next stage for advances concerning transmutation
of minor actinides is associated to a new generation of
industrial instruments,emerging around 2040,fourth-
generation fast reactors, along with new cycle plants,
allowing the recycling and transmutation of all heavy
nuclei, or dedicated burner reactors, whether critical
or subcritical, along with their cycle (see Box F, What
is an ADS? p. 103).
These new instruments will have to meet criteria rela-
ting to resource savings, waste minimization, control

The characteristics of the major part of the radioactive waste generated in France are determined by those of the French nuclear
power generation fleet, and of the spent fuel reprocessing plants, built in compliance with the principle of reprocessing such fuel, to
partition such materials as remain recoverable for energy purposes (uranium and plutonium), and waste (fission products and minor
actinides), not amenable to recycling in the current state of the art.
58 enriched-uranium pressurized-water reactors (PWRs) have been put on stream by French national utility EDF, from 1977
(Fessenheim) to 1999 (Civaux), forming a second generation of reactors, following the first generation, which mainly comprised 8 UNGG
(natural uranium, graphite, gas) reactors, now all closed down, and, in the case of the older reactors, in the course of decommis-
sioning. Some 20 of these PWRs carry out the industrial recycling of plutonium, included in MOX fuel, supplied since 1995 by the
Melox plant, at Marcoule (Gard département, Southern France).
EDF is contemplating the gradual replacement of the current PWRs by third-generation reactors, belonging to the selfsame pres-
surized-water reactor pathway, of the EPR (European Pressurized-Water Reactor) type, designed by Areva NP (formerly Framatome–ANP),
a division of the Areva Group. The very first EPR is being built in Finland, the first to be built in France being sited at Flamanville
(Manche département, Western France).
The major part of spent fuel from the French fleet currently undergoes reprocessing at the UP2-800(1) plant, which has been opera-
ted at La Hague (Manche département), since 1994, by Areva NC (formerly Cogema,) another member of the Areva Group (the UP3
plant, put on stream in 1990–92, for its part, carries out reprocessing of fuel from other countries). The waste vitrification workshops
at these plants, the outcome of development work initiated at Marcoule, give their name (R7T7) to the “nuclear” glass used for the
confinement of long-lived, high-level waste.
A fourth generation of reactors could emerge from 2040 (along with new reprocessing plants), a prototype being built by 2020. These
could be fast-neutron reactors (i.e. fast reactors [FRs]), either sodium-cooled (SFRs) or gas-cooled (GFRs). Following the closing
down of the Superphénix reactor, in 1998, only one FR is operated in France, the Phénix reactor, due to be closed down in 2009.

The industrial context 1
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The Atalante facility, 
at CEA’s Marcoule Center
(Gard département, 
Southern France), where 
the demonstration of
feasibility was carried out,
using actual solutions yielded 
by dissolution of spent fuel,
for enhanced separation 
of actinides.

(1) A reengineering of the UP2-400 plant, which, after the UP1 plant, at Marcoule, had been intended to reprocess spent fuel from the UNGG pathway.

Enhanced separation
A whole new chemistry of separation had to be deve-
loped (related, nonetheless, to aqueous-solution pro-
cesses such as the Purex process),with the design,syn-
thesis, and testing, on representative radioactive
solutions, of some one hundred new, highly selective
molecules. Investigations ultimately made it possible
to select the three molecules used in the process cho-
sen for enhanced separation.Its feasibility was demons-
trated in the laboratory, in CEA’s Atalante facility, at
Marcoule, at first on actual solutions yielded by dis-
solution of a few hundred grams of spent fuel, with a
highly satisfactory performance: the recovery of at least
99% of minor actinides. This is a major outcome for
this research effort.
That feasibility was confirmed by the successful set-
ting up of continuous processes,using a solution contai-
ning some 15 kg of spent fuel.For neptunium,the trial,
carried out in April 2005, corroborated the findings
obtained previously. For the minor actinides ameri-
cium and curium,the confirmation came in November
and December of the same year.

Transmutation
Once plutonium and uranium are recycled, partitio-
ning of minor actinides, and their subsequent trans-
mutation,would allow a further reduction in ultimate
waste radiotoxic inventory (dividing, by a factor ran-
ging from 10 to 100, according to the nuclei involved,
the radiotoxicity at 500 years for new vitrified waste,
compared to that of current waste). This new stage, as
regards advances relating to ultimate waste, may not
be achieved by means of the thermal-neutron reac-
tors in the current fleet, but requires deployment of a
novel, fast-neutron nuclear system.
Indeed,the best conditions for transmutation are obtai-
ned with a fast neutron spectrum. In 1998, after the
decision to close down the Superphénix reactor was
taken, the experimental demonstration program rela-
ting to transmutation, which had been set in train in



In 1990, controversies on the issue of radioactive waste led the French govern-
ment to decide a moratorium on the quest for a geological disposal site, and
to draw up a Bill to set the framework for research work on the long-term
management of long-lived, high-level radioactive waste. Passed on
30 December 1991, the Act, No. 91-1381, commonly known as the “Bataille
Act,” from the name of the author of the accompanying parliamentary report,
was incorporated in 2000 into the French Environmental Code (article L. 542).
Accompanied as it was by a 15-year moratorium on any decision as to the
long-term future of such waste, the Act outlined a research program, to be
carried out over that period, specifying that Parliament would be presen-
ted, in 2006, with a general evaluation report on the investigations thus pro-
vided for, to be conducted along three directions:
• to seek solutions enabling the partitioning and transmutation of long-
lived radioactive elements present in this waste;
• to investigate the possibilities of reversible, or irreversible, disposal in
deep geological formations, in particular through construction of under-
ground laboratories;
• to investigate processes for the conditioning, and long-term storage, in
surface or subsurface locations, of long-lived, high-level radioactive waste
(an extension to cover the subsurface case was called for by the govern-
ment, in 1998).
Steering investigations in accordance with directions 1 and 3 was entrus-
ted to CEA by the government, and for direction 2 to ANDRA.
These investigations, accounting for budget appropriations of some 2.6 billion
euros, from 1992 to 2005 (including some €1.6 billion for the directions stee-
red by CEA), were carried out in highly sustained fashion from 1992, dra-
wing on major collaborations in France, as on the European and world sce-
nes (see Box 3).
They have been monitored, on a regular basis, by the Parliamentary Office
for the Assessment of Scientific and Technological Options (Office parle-
mentaire d’évaluation des choix scientifiques et technologiques) and the
government, coordination being carried out through the Committee for the
Monitoring of Research on the Cycle Back-End (Comité de suivi des recher-
ches sur l’aval du cycle), set up by the French Ministry for Research. Research
work has been constantly audited by the National Review Board (Commission
nationale d’évaluation), provided for in the Act.

The Act of 1991
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of proliferation risks,and cycle economic balance.The
choice of a transmutation system, leading to the cons-
truction of a demonstrator and setting up of the asso-
ciated recycling process, could occur by 2015.
The outcomes achieved in 2006 show that waste (vitri-
fied waste, or long-lived, intermediate-level waste
[ILW-LL]) already produced, or currently being pro-
duced, is to stand as ultimate waste, the prospects ope-
ned up by separation–transmutation concerning future
waste, from 2040 on.
A variety of solutions for the long-term management
of radioactive waste were thought up in the past, and
subsequently abandoned.Left standing,nowadays,are
the solution of well-controlled disposal, in deep, sta-
ble geological formations,and that of long-term sto-
rage of waste in surface or subsurface facilities, extra-
polated from current industrial storage practice (see
Chapter II).

Direction 2: geological disposal

Disposal in deep geological strata presents a number
of advantages, namely: the existence of a geological
barrier, isolating packages from the biosphere; high
chemical stability of the water present,making for good
control of waste package corrosion; and a lesser risk of
human intrusion, lightening the duty of surveillance.
Research carried out by ANDRA warrants the conclu-

sion that such a solution is feasible, and could be
deployed on an industrial basis by 2025.

Direction 3: conditioning and storage

The R&D effort covers two aspects: conditioning, this
being concerned with the fabrication, and understan-
ding, of packages (development of radioactive mate-
rials conditioning processes, of containers, package
characterization, and investigation of package long-
term behavior); and storage,this being concerned with
the specification,and qualification,of designs for long-
term storage facilities, whether surface or subsurface.

Conditioning
Development work carried out in the area of waste
treatment and conditioning sought, on the one hand,
to achieve improvements (volume reduction…) in
some of the current processes, taking on board, in par-
ticular, the evolution in waste composition, and, on
the other hand, to ensure availability of qualified pro-
cesses, that might be used for older, legacy waste.
Concurrently, in order to explore all potential future
avenues, specific conditioning processes for elements
amenable to partitioning, in accordance with direc-
tion 1, are being developed at the laboratory level, in
the event of such elements proving not to be trans-
mutable. All the work on development, and evalua-
tion, of these processes, as regards technological, and
subsequently industrial, feasibility, still remains to be
done.
In this area, the outcomes achieved, and their indus-
trial deployment, have resulted, overall, in dividing,
by a factor of at least 6, the volume of solid waste,
and by a factor 10 the activity of liquid effluents,
since the La Hague reprocessing plant came on stream.
Such remarkable, ongoing advances on the part of
research organizations, and manufacturers, sustai-
ned over the 15 years covered by the Act of 30
December 1991 (see Figure, p. 7), now makes it pos-
sible to have safe, high-performance conditionings
accommodated in industrial storage facilities, this
being a medium-term solution, though not a long-
term management solution.

Package characterization and control
Investigations carried out at CEA, in collaboration, in
particular,with Areva/Cogema and ANDRA,have allo-
wed development of highly comprehensive methods,
and systems, for the characterization and control of
packages. These methods have been qualified with
actual packages, in particular in the CHICADE faci-
lity, at Cadarache.

Investigation of package long-term behavior
The purpose of conditioning being to ensure durable
confinement, through all stages in package manage-
ment, there is the requisite to ascertain the scientific
and technical elements enabling prediction of long-
term package behavior, and confirming that the asso-
ciated functions will be ensured,particularly handling,
retrieval, and confinement. Investigations carried out
over the past few years have made it possible to set out
the foundations of a veritable science of long-term
behavior. The high durability of glasses (their dissolu-
tion will extend over several hundred thousand years,



In compliance with direction 1, as provided for by the Act of 1991,
CEA has developed a major partnership with the French CNRS,
taking the form of the setting up of coordinated research groups
(GDRs: groupements de recherche), under the aegis of CNRS’s
Program on the Nuclear Power Cycle Back-End (PACE:
Programme sur l’aval du cycle électronucléaire). These groups,
bringing together many partners, including manufacturers from
the nuclear power sector, include PRACTIS, subsequently PARIS,
working on separation (with EDF and ANDRA); GEDEON, subse-
quently GEDEPEON, on transmutation and associated scenarios
(also with EDF, Framatome-ANP [now Areva NP] and ANDRA);
and NOMADE, on specific conditionings for partitioned elements,
and transmutation targets (with Areva NC [Cogema] and EDF).
In the context of investigations in accordance with directions
2 and 3, ANDRA and CEA have been working in close collabora-
tion, to investigate package behavior in disposal conditions, and
to guarantee the most effective compatibility between the stra-
tegies being investigated, of long-term-enabled storage, and
disposal, for waste packages.
To ensure coordination of the work carried out along the various
directions, and enable the required scientific and technical inter-
change, topical technical committees were set up, under the aegis
of the strategic partnership agreement between ANDRA and CEA.
For the same reason, industrialists, mainly EDF and Areva (NC
and NP divisions), traditional partners for CEA, under the provi-
sions of existing research agreements, also proved to be major
players. They made it possible to bring to investigations the bene-

fit of their know-how, particularly with regard to primary waste
package management, and operational feedback with respect to
existing storage facilities.
On the international scene, collaborations have been set up, on
the one hand, with Japan (JAERI, JNC), which is pursuing closely
related goals, and, on the other, with Russian institutes, on par-
titioning, and transmutation experiments (in the BOR-60 fast-
neutron reactor, in particular). Investigations on transmutation
benefited from experimental collaborations around the HFR reac-
tor, at Petten (Netherlands). The Institute for Transuranium
Elements (ITU), Karlsruhe (Germany), contributed to investiga-
tions on actinides. More recent collaborations with the United
States (in particular with research laboratories run by DOE) are
concerned with partitioning and fuel irradiations, and, lately, with
cycles, in the context, in particular, of development work for future
nuclear systems.
Major collaborations were carried out under the aegis of the suc-
cessive European Framework Programs for Research and
Technological Development (FPs). The main topics addressed, in
this respect, were aqueous- or dry-path partitioning (EUROPART
Program, under the 6th Framework Program [FP6], devoted to
investigation of minor actinide partitioning, following from the
PARTNEW Program under FP5, and the NEWPART Program
under FP4), transmutation (including the EUROTRANS Program
under FP6, devoted to investigation of ADSs), and long-term waste
package behavior.

Partnerships in France and international collaborations 3

CLEFS CEA - No. 53 - WINTER 2005-2006 7

storage facilities. It has been shown these could last at
least one hundred years, provided the required autho-
rizations are forthcoming.
Investigations have also been concerned with storage
facilities designed from the outset for the long term,
whether in surface or subsurface locations, to accom-
modate spent fuel and long-lived, high- or interme-
diate-level waste packages. Investigations were carried
out on the basis of considering generic sites (i.e., not
related to any specific geographic location). Indeed,
for storage,as opposed to disposal,practically no radio-
element confinement function is required from the
geological environment.
Studies for two designs for long-term storage facilities,
one surface and one subsurface,have been carried out,
to accommodate spent fuel, vitrified waste, and ILW-
LL waste (preliminary studies, safety assessments, and
design definition studies by the end of 2005).A demons-

in disposal conditions!), in particular, has been esta-
blished.
For all package types, the ensemble of processes gover-
ning long-term behavior has been modeled,the models
being compared with experimental findings,and qua-
lified.They are used, in particular,by ANDRA,for ove-
rall investigations on operation and behavior over
extended timespans of disposal facilities.

Containers
A major effort was concerned with the development
and qualification of containers for disposal, or long-
term storage. Thus, common containers for the pur-
poses of long-term storage and disposal of long-lived,
intermediate-level waste (bituminized waste,and com-
pacted hull and end-cap waste) were developed, in
collaboration with ANDRA.
Although the strategy adopted in France does not consi-
der spent fuel to be waste,a “storage-compatible”dispo-
sal container for spent fuel has been the subject of stu-
dies, jointly carried out by CEA, EDF, and ANDRA.
Finally, containers for the long-term dry storage of
spent fuel, guaranteeing retrieval at a later date, have
been specified.
All the demonstrators for such containers have been
fabricated, and may be viewed at the Radioactive
Materials Conditioning and Storage Expertise Center
(CECER: Centre d’expertise sur le conditionnement et
l’entreposage des matières radioactives), set up at
Marcoule.

Long-term storage
Lifetime extension,and possible renovation,of indus-
trial storage facilities stand as one initial response to
the requirement for long-term storage. Durability
assessments have been carried out, for the more recent
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tration gallery, representative of subsurface storage
conditions, has been constructed at CECER, at
Marcoule.
These studies warrant the conclusion that long-term
storage is indeed feasible. This management solution,
however, does require monitoring, maintenance, and
the retrieval of packages, at the end of the storage per-
iod, burdens that will have to be shouldered by future
generations.
Taking into account extant, recent industrial storage
facilities, a requirement for storage facilities designed
from the outset for long-term operation,for high-level
and long-lived waste, would only emerge if the geolo-
gical disposal solution were not given the go-ahead. In
that case, selection of the storage site, and engineering
studies that still require to be carried out, should lead
to completion by 2015.

The international context

Storage is the prevailing industrial practice. To date,
no country has implemented a long-term manage-
ment policy for high-level nuclear waste. Sweden,
Finland and the United States are going for direct dispo-
sal of spent fuel in deep geological formations. The
United States, for their part, initiated, in 1999, deep
disposal of intermediate-level waste (see How are other
countries managing their nuclear waste? p. 75).
Rising energy demand,the necessary curbing of green-
house gas emissions, the growing scarcity of natural
oil resources – a form of fossil energy – are factors that
could lead to increased reliance on nuclear power,over
the course of the 21st century. This trend is already
manifest, in particular, in a number of countries such
as Finland, China, and, to a certain extent, the United
States.

What are the stages to come after 2006?

CEA is taking part, and presenting its results, in the
currently ongoing national debate being staged in
France on radioactive waste management. The
Visiatome visitor center, opened at Marcoule in 2005,
contributes to information of the public on radioac-
tive waste and nuclear power.
CEA published,at the end of 2005, the final reports on
the research effort it has steered, contributing to pro-
viding the technical elements that will enable the deci-
sions to be taken in 2006,regarding management modes
for long-lived waste.
The time constants associated to evolution of the exis-
ting industrial resource are extremely long (typically,

30 years to design and build a new reactor, 25 years for
a separation plant).However,as has been the case since
the outset of nuclear power, as in all areas of techno-
logy, advances will go on supporting industrial deve-
lopments, through a succession of stages over time that
will enable industrial, and political, choices, for the
major milestones to come.
These stages could be based, in research terms, on the
following developments:
● with a view to support industrial deployment of faci-
lities, the carrying through of investigations on retrie-
val and conditioning of older, legacy waste, and waste
volume reduction, in particular for waste from decom-
missioning;
● development of highly comprehensive methods,and
systems,for waste package characterization and control,
allowing existing inventories to be more precisely detai-
led;
● the specification of long-term management path-
ways for all types of waste;
● studies for, and construction of, a geological dispo-
sal facility for ultimate waste;
● the specification of ultimate waste packages directed
to disposal, with regard to disposal facility specifica-
tions,and investigation on long-term behavior of such
packages in a disposal environment;
● demonstration of the industrial feasibility (by 2025)
of actinide separation,and transmutation in a fast reac-
tor;
● initial deployment of the future industrial system
(reactor and cycle plants, by 2040), allowing, in the
longer term, an evolution of ultimate waste.
This policy, of staged advances, is part and parcel of a
broader drive for the sustainable development of nuclear
energy, based on optimum use of energy-rich mate-
rials. The reprocessing of spent fuel stands as the cor-
nerstone of this strategy.
France has resolutely advanced along this path, from
the outset of the nuclear power age, with the develop-
ment, and demonstration, of industrial technologies
for the back-end of the cycle (reprocessing, recycling,
high-performance conditioning of ultimate waste),
securing the status of clear world leader in this area.
Taking on board the decisions to be taken in 2006,CEA
will continue, in its various fields of expertise, to carry
out the required research effort, drawing on the sup-
port of players on the French scene, and further pro-
moting international collaborations.

> Charles Courtois
Nuclear Energy Division

Program Director, Waste Management Research
CEA Saclay Center
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des matières
radioactives), 
at Marcoule.
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According to the International Atomic
Energy Agency (IAEA), radioactive

waste may be defined as “any material for
which no use is foreseen and that contains
radionuclides at concentrations greater
than the values deemed admissible by the
competent authority in materials suitable
for use not subject to control.” French law
in turn introduces a further distinction,
valid for nuclear waste as for any other
waste, between waste and final, or “ulti-
mate,” waste (déchet ultime). Article L.
541-1 of the French Environmental Code
thus specifies that “may be deemed as
waste any residue from a process of pro-
duction, transformation or use, any sub-
stance, material, product, or, more gene-
rally, any movable property left derelict or
that its owner intends to leave derelict,”
further defining as ultimate “waste, be it
the outcome of waste treatment or not,
that is not amenable to further treatment
under prevailing technological and eco-
nomic conditions, in particular by extrac-
tion of the recoverable, usable part, or
mitigation of its polluting or hazardous
character.”
Internationally, experts from IAEA and the
Nuclear Energy Agency (NEA) – an OECD
organization – as those in the European
Commission find that long-lived waste pro-
duced in countries operating a nuclear
power program is stored securely nowa-
days, whilst acknowledging a final solu-
tion is required, for the long-term mana-
gement of such waste. They consider burial
in deep geological structures appears, pre-
sently, to be the safest way to achieve final
disposal of this type of waste.

What constitutes radioactive
waste? What are the volumes
currently involved?
Radioactive waste is classified into a num-
ber of categories, according to its level of
radioactivity, and the radioactive period,
or half-life, of the radionuclides it
contains. It is termed long-lived waste
when that period is greater than 30 years,
short-lived waste otherwise. The French
classification system involves the follo-
wing categories:
– very-low-level waste (VLLW); this
contains very small amounts of radionu-
clides, of the order of 10–100 Bq/g (bec-
querels per gram), which precludes consi-
dering it as conventional waste;
– short-lived low and intermediate level
waste (LILW-SL); radioactivity levels for
such waste lie as a rule in a range from

a few hundred to one million Bq/g, of
which less than 10,000 Bq/g is from long-
lived radionuclides. Its radioactivity beco-
mes comparable to natural radioactivity
in less than three hundred years.
Production of such waste stands at some
15,000 m3 per year in France;
– long-lived low-level waste (LLW-LL);
this category includes radium-bearing
waste from the extraction of rare earths
from radioactive ore, and graphite waste
from first-generation reactors;
– long-lived intermediate-level waste
(ILW-LL), this being highly disparate, whe-
ther in terms of origin or nature, with an
overall stock standing, in France, at
45,000 m3 at the end of 2004. This mainly
comes from spent fuel assemblies (clad-
ding hulls and end-caps), or from opera-
tion and maintenance of installations; this
includes, in particular, waste conditioned
during spent fuel reprocessing operations
(as from 2002, this type of waste is com-
pacted, amounting to some 200 m3

annually), technological waste from the
operation or routine maintenance of pro-
duction or fuel-processing plants, from
nuclear reactors or from research cen-
ters (some 230 m3 annually), along with
sludges from effluent treatment (less than
100 m3 annually). Most such waste gene-
rates little heat, however some waste of
this type is liable to release gases;
– high-level waste (HLW), containing fis-
sion products and minor actinides parti-
tioned during spent fuel reprocessing (see
Box B), and incorporated at high tempe-
rature into a glass matrix. Some 120 m3

of “nuclear glass” is thus cast every year.
This type of waste bears the major part
of radioactivity (over 95%), consequently
it is the seat of considerable heat release,
this remaining significant on a scale of
several centuries.
Overall, radioactive waste conditioned in
France amounts to less than 1 kg per year,
per capita. That kilogram consists, for
over 90%, of LILW-SL type waste, bearing
but 5% of total radioactivity; 9% of ILW-
LL waste, less than 1% HLW, and virtually
no LLW-LL waste.

What of the waste of tomorrow?
From 1991, ANDRA compiled, on a yearly
basis, a geographical inventory of waste
present on French territory. In 2001,
ANDRA was asked by government to aug-
ment this “National Inventory,” with the
threefold aim of characterizing extant
stocks (state of conditioning, processing

traceability), predicting future waste pro-
duction trends to 2020, and informing the
public (see An inventory projecting into the
future). ANDRA published this reference
National Inventory at the end of 2004. To
meet requirements for research in com-
pliance with the directions set out in the
French Act of 30 December 1991 (see
Radioactive waste management research:
an ongoing process of advances), ANDRA,
in collaboration with waste producers,
has drawn up a Dimensioning Inventory
Model (MID: Modèle d’inventaire de
dimensionnement), for the purposes of
arriving at estimates of the volume of
waste packages to be taken on board in
research along direction 2 (disposal). This
model, including as it does predictions as
to overall radioactive waste arisings from
the current reactor fleet, over their entire
lifespan, seeks to group waste types into
families, homogeneous in terms of cha-
racteristics, and to formulate the most
plausible hypotheses, with respect to
conditioning modes, to derive the volu-
mes to be taken on board for the purpo-
ses of the investigation. Finally, MID sets
out to provide detailed stocktaking, inten-
ded to cover waste in the broadest pos-
sible fashion. MID (not to be confused with
the National Inventory, which has the
remit to provide a detailed account of
actual waste currently present on French
territory) thus makes it possible to bring
down the variety of package families to a
limited number of representative objects,
and to specify the requisite margins of
error, to ensure the design and assess-
ment of disposal safety will be as robust
as feasible, with respect to possible future
variations in data.
To ensure consistency between investi-
gations carried out in accordance with
direction 2 and those along direction 3
(conditioning and long-term storage), CEA
adopted MID as input data. MID subsu-
mes waste packages into standard pac-
kage types, then computes the number
and volume of HLW and ILW-LL packa-
ges, according to a number of scenarios,
all based on the assumption that current
nuclear power plants will be operated for
40 years, their output plateauing at
400 TWhe per year.
Table 1 shows the numbers and volumes
for each standard package type, for the
scenario assuming a continuation of cur-
rent strategy, with respect to spent fuel
reprocessing: reprocessing of 79,200 UOX
fuel assemblies and storage of 5,400 MOX
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assemblies discharged from the current
PWR fleet, when operated over 40 years.

What forms does it come in?
Five types of generic packages (also found
in MID) may be considered:
• cementitious waste packages: ILW-LL
waste packages employing hydraulic-bin-
der based materials as a conditioning
matrix, or as an immobilizing grout, or yet
as a container constituent;
• bituminized sludge packages: LLW and
ILW-LL waste packages, in which bitumen
is used as confinement matrix for low- and
intermediate-level residues from treat-
ment of a variety of liquid effluents (fuel
processing, research centers, etc.);
• standard compacted waste packages
(CSD-C: colis standard de déchets compac-
tés): ILW-LL packages obtained through
compaction conditioning of structural waste
from fuel assemblies, and technological
waste from the La Hague workshops;
• standard vitrified waste packages
(CSD-V: colis standard de déchets vitrifiés):

HLW packages, obtained mainly through
vitrification of highly active solutions from
spent fuel reprocessing;
• spent fuel packages: packages consis-
ting in nuclear fuel assemblies discharged
from reactors; these are not considered to
be waste in France.
The only long-lived waste packages to be
generated in any significant amounts by
current electricity production (see Box B)
are vitrified waste packages and standard
compacted waste packages, the other types
of packages having, for the most part,
already been produced, and bearing but a
small part of total radioactivity.

What is happening to this waste at
present? What is to be done in the
long term?
The goal of long-term radioactive waste
management is to protect humankind and
its environment from the effects of the
materials comprised in this waste, most
importantly from radiological hazards. Any
release or dissemination of radioactive

materials must thus be precluded, through
the lasting isolation of such waste from the
environment. This management is guided
by the following principles: to produce as
little waste as practicable; limit its hazar-
dous character as far as feasible; take into
account the specific characters of each
category of waste; and opt for measures
that will minimize the burden (monitoring,
maintenance) for future generations.
As for all nuclear activities subject to control
by the French Nuclear Safety Authority
(Autorité de sûreté nucléaire), fundamental
safety regulations (RFSs: règles fonda-
mentales de sûreté) have been drawn up
with respect to radioactive waste mana-
gement: sorting, volume reduction, pac-
kage confinement potential, manufactu-
ring method, radionuclide concentration.
RFS III-2.f, in particular, specifies the condi-
tions to be met for the design of, and
demonstration of safety for an underground
repository, and thus provides a basic guide
for disposal investigations. Industrial solu-
tions (see Industrial solutions for all low-
level waste) are currently available for nigh
on 85% (by volume) of waste, i.e. VLLW and
LILW-SL waste. A solution for LLW-LL
waste is the subject of ongoing investiga-
tion by ANDRA, at the behest of waste pro-
ducers. ILW-LL and HLW waste, contai-
ning radionuclides having very long
half-lives (in some cases, greater than
several hundred thousand years) are cur-
rently held in storage installations coming
under the control of the Nuclear Safety
Authority. What is to become of this waste
in the long term, beyond this storage phase,
is what the Act of 30 December 1991
addresses (see Table 2).
For all of these waste types, the French
Nuclear Safety Authority is drawing up a
National Radioactive Waste Management
Plan, specifying, for each type, a manage-
ment pathway.

MID standard package types Symbols Producers Categories Number Volume (m3)

Vitrified waste packages CO — C2 Cogema* HLW 42,470 7,410

Activated metal waste packages B1 EDF ILW-LL 2,560 470

Bituminized sludge packages B2 CEA, Cogema* ILW-LL 105,010 36,060

Cemented technological waste packages B3 CEA, Cogema* ILW-LL 32,940 27,260

Cemented hull and end-cap packages B4 Cogema* ILW-LL 1,520 2,730

Compacted structural and technological waste packages B5 Cogema* ILW-LL 39,900 7,300

Containerized loose structural and technological B6 Cogema* ILW-LL 10,810 4,580
waste packages

Total B 192,740 78,400
Total overall 235,210 85,810

Short-lived Long-lived
Half-life < 30 years Half-life > 30 years

for the main elements

Very-low-level Morvilliers dedicated disposal facility (open since 2003)
waste (VLLW) Capacity: 650,000 m3

Low-level waste Dedicated disposal facility under
(LLW) investigation for radium-bearing 

waste (volume: 100,000 m3)
Aube Center and graphite waste

(open since 1992) (volume: 14,000 m3)
Intermediate-level Capacity: 1 million m3

waste (ILW) MID volume estimate: 78,000 m3

High-level waste MID volume estimate: 7,400 m3

(HLW)

Table 1. 
Amounts (number, and volume) of waste packages, as predicted in France for 40 years’ operation of the current fleet of reactors, according to ANDRA’s
Dimensioning Inventory Model (MID).

Table 2. 
Long-term management modes, as currently operated, or planned, in France, by
radioactive waste category. The orange area highlights those categories targeted by
investigations covered by the Act of 30 December 1991.

(1) According to the Dimensioning Inventory Model (MID)

* renamed Areva NC in 2006

(next)
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Most high-level (high-activity) radio-
active waste (HLW) originates, in

France, in the irradiation, inside nuclear
power reactors, of fuel made up from
enriched uranium oxide (UOX) pellets, or
also, in part, from mixed uranium and
plutonium oxide (MOX). Some 1,200 ton-
nes of spent fuel is discharged annually
from the fleet of 58 pressurized-water
reactors (PWRs) operated by EDF, sup-
plying over 400 TWh per year, i.e. more
than three quarters of French national
power consumption.
The fuel’s composition alters, during its
irradiation inside the reactor. Shortly after
discharge, fuel elements contain, on ave-
rage,(1) some 95% residual uranium, 1%
plutonium and other transuranic ele-
ments – up to 0.1% – and 4% of products
yielded by fission. The latter exhibit very
significant radioactivity levels – to the
extent this necessitates management
safety measures requiring major indus-
trial resources – of some 1017 Bq per tonne
of initial uranium (tiU) (see Figure 1).
The uranium found in spent fuel exhibits
a makeup that is obviously different from
that of the initial fuel. The greater the
irradiation, the higher the consumption
of fissile nuclei, and consequently the
greater the extent by which the uranium
will have been depleted of the fissile iso-
tope 235 (235U). Irradiation conditions
usually prevailing in reactors in the French
fleet, with an average fuel residence time
inside the reactor of some 4 years, for a

burnup rate close to 50 GWd/t, result in
bringing down final 235U content to a value
quite close to that of natural uranium
(less than 1%), entailing an energy poten-
tial very close to the latter’s. Indeed, even
though this uranium remains slightly
richer in the fissile isotope than natural
uranium, for which 235U content stands
at 0.7%, the presence should also be
noted, in smaller, though significant,
amounts, of other isotopes having adverse
effects in neutronic or radiological terms
(232U, 236U), that had not figured in the
initial fuel (see Table 1).

The plutonium present in spent fuel is
yielded by successive neutron capture
and decay processes. Part of the Pu is
dissipated through fission: thus about
one third of the energy generated is yiel-
ded by “in situ recycling” of this element.
These processes further bring about the
formation of heavy nuclei, involving, whe-
ther directly themselves, or through their
daughter products, long radioactive half-
lives. These are the elements of the acti-
nide family, this including, essentially,
plutonium (from 238Pu to 242Pu, the odd-
numbered isotopes generated in part
undergoing fission themselves during
irradiation), but equally neptunium (Np),
americium (Am), and curium (Cm), known
as minor actinides (MAs), owing to the

Waste from the nuclear power cycle

(1) These figures should be taken as indicative values. They allow orders of magnitude to be
pinpointed for enriched-uranium oxide fuel, taken from the main current French nuclear power
pathway; they do depend, however, on a number of parameters, such as initial fuel composition and
irradiation conditions, particularly irradiation time.

Figure 1.
The main elements found in spent nuclear fuel.

element isotope half-life
(years) isotope quantity isotope quantity isotope quantity isotope quantity

content (g/tiU) content (g/tiU) content (g/tiU) content (g/tihm)
(%) (%) (%) (%)

234 246,000 0.02 222 0.02 206 0.02 229 0.02 112

235 7.04·108 1.05 10,300 0.74 6,870 0.62 5,870 0.13 1,070
U

236 2.34·107 0.43 4,224 0.54 4,950 0.66 6,240 0.05 255

238 4.47·109 98.4 941,000 98.7 929,000 98.7 911,000 99.8 886,000

238 87.7 1.8 166 2.9 334 4.5 590 3.9 2,390

239 24,100 58.3 5,680 52.1 5,900 48.9 6,360 37.7 23,100

Pu 240 6,560 22.7 2,214 24,3 2,760 24.5 3,180 32 19,600

241 14.4 12.2 1,187 12.9 1,460 12.6 1,640 14.5 8,920

242 3.75·105 5.0 490 7.8 884 9.5 1,230 11.9 7,300

UOX 33 GWd/tiU UOX 45 GWd/tiU UOX 60 GWd/tiU MOX 45 GWd/tihm
(E 235U: 3.5%) (E 235U: 3.7%) (E 235U: 4.5%) (Ei Pu: 8.65%)

Table 1.
Major actinide inventory for spent UOX and MOX fuel after 3 years’ cooling, for a variety of enrichment and burnup rates. Burnup rate and quantity are
expressed per tonne of initial uranium (tiU) for UOX, per tonne of initial heavy metal (tihm) for MOX.
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lesser abundance of these elements, com-
pared with that of U and Pu, the latter being
termed major actinides.
Activation processes affecting nuclei of non-
radioactive elements mainly involve struc-
tural materials, i.e. the materials of the
tubes, grids, plates and end-fittings that
ensure the mechanical strength of nuclear
fuel. These materials lead, in particular,
to formation of carbon 14 (14C), with a half-
life of 5,730 years, in amounts that are
however very low, much less than one gram
per tonne of initial uranium (g/tiU) in usual
conditions.
It is the products yielded by fission of the
initial uranium 235, but equally of the Pu
generated (isotopes 239 and 241), known
as fission products (FPs), that are the
essential source of the radioactivity of
spent fuel, shortly after discharge. Over
300 radionuclides – two thirds of which
however will be dissipated through radio-
active decay in a few years, after irradia-
tion – have been identified. These radio-
nuclides are distributed over some
40 elements in the periodic table, from
germanium (32Ge) to dysprosium (66Dy),
with a presence of tritium from fission, i.e.
from the fission into three fragments (ter-
nary fission) of 235U. They are thus cha-
racterized by great diversity: diverse radio-
active properties, involving as they do some
highly radioactive nuclides having very

short lifespans, and conversely others
having radioactive half-lives counted in
millions of years; and diverse chemical
properties, as is apparent from the ana-
lysis, for the “reference” fuels used in
PWRs in the French fleet, of the break-
down of FPs generated, by families in the
periodic table (see Table 2). These FPs,
along with the actinides generated, are,
for the most part, present in the form of
oxides included in the initial uranium oxide,
which remains by far the majority consti-
tuent. Among some notable exceptions
may be noted iodine (I), present in the form
of cesium iodide, rare gases, such as kryp-
ton (Kr) and xenon (Xe), or certain noble
metals, including ruthenium (Ru), rho-
dium (Rh), and palladium (Pd), which may
form metallic inclusions within the oxide
matrix.
Pu is recycled nowadays in the form of
MOX fuel, used in part of the fleet (some
20 reactors currently). Residual U may in
turn be re-enriched (and recycled as a sub-
stitute for mined uranium). Recycling
intensity depends on market prices for
natural uranium, the recent upturn in
which should result in raising the current
recycling rate (about one third being recy-
cled at present).
Such U and Pu recycling is the foundation
for the reprocessing strategy currently
implemented in France, for the major part
of spent fuel (some two thirds currently).

For the 500 kg or so of U initially contai-
ned in every fuel element, and after par-
titioning of 475 kg of residual U and about
5 kg Pu, this “ultimate” waste amounts
to less than 20 kg of FPs, and less than
500 grams MAs. This waste management
pathway (otherwise know as the closed
cycle), consisting as it does in reproces-
sing spent fuel now, to partition recove-
rable materials and ultimate waste, dif-
fers from strategies whereby spent fuel
is conserved as-is, whether this be due to
a wait-and-see policy (pending a decision
on a long-term management mode), or to
a so-called open cycle policy, whereby
spent fuel is considered to be waste, and
designated for conditioning into contai-
ners, and disposal as-is.
In the nuclear power cycle, as it is imple-
mented in France, waste is subdivided into
two categories, according to its origin.
Waste directly obtained from spent fuel is
further subdivided into minor actinides
and fission products, on the one hand, and
structural waste, comprising hulls (seg-
ments of the cladding tubes that had held
the fuel for PWRs) and end-caps (fittings
forming the end-pieces of the fuel assem-
blies for these same PWRs), on the other
hand. The process used for spent fuel
reprocessing, to extract U and Pu, also
generates technological waste (operatio-
nal waste, such as spare parts, protec-
tion gloves…) and liquid effluents.

UOX 33 GWd/tiU UOX 45 GWd/tiU UOX 60 GWd/tiU MOX 45 GWd/tihm
family (E 235U: 3.5%) (E 235U: 3.7%) (E 235U: 4.5%) (Ei Pu: 8.65%)

quantity (kg/tiU) quantity (kg/tiU) quantity (kg/tiU) quantity (kg/tihm)

rare gases 
(Kr, Xe) 5.6 7.7 10.3 7

alkali metals
(Cs, Rb) 3 4 5.2 4.5

alkaline-earth
metals (Sr, Ba) 2.4 3.3 4.5 2.6

Y and 
lanthanides 10.2 13.8 18.3 12.4

zirconium 3.6 4.8 6.3 3.3

chalcogens
(Se, Te) 0.5 0.7 1 0.8

molybdenum 3.3 4.5 6 4.1

halogens (I, Br) 0.2 0.3 0.4 0.4

technetium 0.8 1.1 1.4 1.1

Ru, Rh, Pd 3.9 5.7 7.7 8.3

miscellaneous:
Ag, Cd, Sn, Sb… 0.1 0.2 0.3 0.6

Table 2.
Breakdown by chemical family of fission products in spent UOX and MOX fuel, after 3 years’ cooling,
for a variety of enrichment and burnup rates.

After discharge, spent fuel is stored 
in cooling pools, to allow its radioactivity 
to come down significantly. 
Shown here is a storage pool at Areva’s 
spent fuel reprocessing plant 
at La Hague.
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Raw, solid or liquid radioactive waste
undergoes, after characterization

(determination of its chemical and radio-
logical makeup, and of its physical–che-
mical properties), conditioning, a term
covering all the operations consisting in
bringing this waste (or spent fuel assem-
blies) to a form suitable for its transport,
storage, and disposal (see Box D). The
aim is to put radioactive waste into a
solid, physically and chemically stable
form, and ensure effective, lasting confi-
nement of the radionuclides it contains.
For that purpose, two complementary
operations are carried out. As a rule,
waste is immobilized by a material –
whether by encapsulation or homoge-
neous incorporation (liquid or powdered
waste, sludges), or encasing (solid waste)
– within a matrix, the nature of, and per-
formance specification for which depend
on waste type (cement for sludges, eva-
poration concentrates and incineration
ashes; bitumen for encapsulation of
sludges or evaporation concentrates
from liquid effluent treatment; or a
vitreous matrix, intimately binding the
nuclides to the glass network, for fis-
sion product or minor actinide solutions).
This matrix contributes to the confine-
ment function. The waste thus conditio-
ned is placed in an impervious contai-

ner (cylindrical or rectangular), consis-
ting in one or more canisters. The whole
– container and content – is termed a
package. Equally, waste may be com-
pacted and mechanically immobilized
within a canister, the whole forming a
package.
When in the state they come in as sup-
plied by industrial production, they are
known as primary packages, the pri-

mary container being the cement or
metal container into which the conditio-
ned waste is ultimately placed, to allow
handling. The container may act as initial
confinement barrier, allotment of func-
tions between matrix and container being
determined according to the nature of
the waste involved. Thus, the whole obtai-
ned by the grouping together, within one
container, of a number of primary 

Cross-section of an experimental storage borehole for a spent fuel container (the lower part of the
assembly may be seen, top right), in the Galatée gallery of CECER (Centre d’expertise sur le
conditionnement et l’entreposage des matières radioactives: Radioactive Materials Conditioning
and Storage Expertise Center), at CEA’s Marcoule Center, showing the nested canisters.
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ILW-LL packages may ensure confinement
of the radioactivity of this type of waste.
If a long-term storage stage is found to
be necessary, beyond the stage of indus-
trial storage on the premises of the pro-
ducers, primary waste packages must
be amenable to retrieval, as and when
required: durable primary containers
must then be available, in such condi-
tions, for all types of waste.
In such a case, for spent fuel assemblies
which might at some time be earmar-
ked for such long-term storage, or even
for disposal, it is not feasible to demons-
trate, on a timescale of centuries, the
integrity of the cladding holding the fuel,
forming the initial confinement barrier
during the in-reactor use stage. Securing
these assemblies in individual, imper-
vious cartridges is thus being conside-
red, this stainless-steel cartridge being
compatible with the various possible
future management stages: treatment,
return to storage, or disposal. Placing
these cartridges inside impervious
containers ensures a second confine-
ment barrier, as is the case for high-
level waste packages.
In storage or disposal conditions, the
waste packages will be subjected to a
variety of aggressive agents, both inter-
nal and external. First, radionuclide

radioactive decay persists inside the pac-
kage (self-irradiation process). Emission
of radiation is concomitant with heat
generation. For example, in confinement
glasses holding high-activity (high-level)
waste, the main sources of irradiation
originate in the alpha decay processes
from minor actinides, beta decay from
fission products, and gamma transitions.
Alpha decay, characterized by produc-
tion of a recoil nucleus, and emission of
a particle, which, at the end of its path,
yields a helium atom, causes the major
part of atom displacements. In particu-
lar, recoil nuclei, shedding considerable
energy as they do over a short distance,
result in atom displacement cascades,
thus breaking large numbers of chemi-
cal bonds. This is thus the main cause
of potential long-term damage. In such
conditions, matrices must exhibit ther-
mal stability, and irradiation-damage
resistance.
Stored waste packages will also be sub-
jected to the effects of water (leaching).
Container canisters may exhibit a deg-
ree of resistance to corrosion processes
(the overpacks contemplated for glas-
ses may thus delay by some 4,000 years
the arrival of water), and the confine-
ment matrices must be proven to exhi-
bit high chemical stability.

Between the containers and the ultimate
barrier provided, in a radioactive waste
deep disposal facility, by the geological
environment itself, there may further be
interposed, apart, possibly, from an over-
pack, other barriers, so-called engi-
neered barriers, for backfill and sealing
purposes. While these would be point-
less as backfill in clay formations, they
would have the capability, in other envi-
ronments (granite), of further retarding
any flow of radionuclides to the geo-
sphere, notwithstanding degradation of
the previously mentioned barriers.

C
EA

Technological demonstrators
of ILW-LL packages for

bituminized sludges.
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The object of nuclear waste storage
and disposal is to ensure the long-

term confinement of radioactivity, in
other words to contain radionuclides
within a definite space, segre-
gated from humankind and the
environment, as long as requi-
red, so that the possible return
to the biosphere of minute
amounts of radionuclides can
have no unacceptable health or
environmental impact.
According to the Joint Con-
vention on the Safety of Spent
Fuel Management and on the
Safety of Radioactive Waste
Management, signed on 5 Sep-
tember 1997, “storage” means
“the holding of spent fuel or of
radioactive waste in a facility that
provides for its containment,
with the intention of retrieval.”
This is thus, by definition, an
interim stage, amounting to a
delaying, or wait-and-see solu-
tion, even though this may be for
a very long time (from a few
decades to several hundred
years), whereas disposal may be
final.
Used from the outset of the nuclear
power age, industrial storage keeps
spent fuel awaiting reprocessing, and
conditioned high-level waste (HLW), or
long-lived intermediate-level waste

(ILW-LL) in conditions of safety, pen-
ding a long-term management mode
for such waste. Retrieval of stored pac-
kages is anticipated, after a period of
limited duration (i.e. after a matter of

years, or tens of years).
Long-term storage (LTS) may be
contemplated, in particular, in the event
of the deferred deployment of a dispo-
sal facility, or of reactors to carry out

recycling–transmutation, or simply to
turn to advantage the natural decay of
radioactivity (and hence the falling off
of heat release from high-level waste),
before putting the waste into geologi-

cal disposal. By “long term” is
meant a timespan of up to 300
years. Long-term storage may
take place in a surface or sub-
surface facility. In the former
case, the site may be protected,
for instance, by a reinforced-
concrete structure. In the latter
case, it will be located at a depth
of some tens of meters, and pro-
tected by a natural environment
(for instance, if buried in a hill-
side) and its host rock.
Whichever management stra-
tegy is chosen, it will be impe-
rative to protect the biosphere
from the residual ultimate waste.
The nature of the radioelements
the latter contains means a solu-
tion is required that has the abi-
lity to ensure their confinement
over several tens of thousand
years, in the case of long-lived
waste, or even longer. On such
timescales, social stability is a
major uncertainty that has to be

taken on board. Which is why disposal
in deep geological strata (typically, 500
m down) is seen as a reference solu-
tion, insofar as it inherently makes for
deployment of a more passive techni-
cal solution, with the ability to stand,
with no increased risk, an absence of
surveillance, thus mitigating a possible
loss of memory on the part of society.
The geological environment of such a
disposal facility thus forms a further,
essential barrier, which does not exist
in the storage case.
A disposal facility may be designed to
be reversible over a given period. The
concept of reversibility means the design
must guarantee the ability, for a variety
of reasons, to access the packages, or
even to take them out of the facility, over
a certain timespan, or to opt for the final
closure of the disposal facility. Such
reversibility may be envisaged as a suc-
cession of stages, each affording a
decreasing “level of reversibility.” To
simplify, each stage consists in carrying
out one further technical operation brin-
ging the facility closer to final closure,
making retrieval more difficult than at
the previous stage, according to well-
specified criteria.

From storage to disposal

ANDRA design for the disposal of standard vitrified waste packages in horizontal galleries,
showing in particular the packages’ various canisters, and some characteristics linked 
to potential reversibility of the disposal facility.

CEA design study for a common container for 
the long-term storage and disposal of long-lived, 
intermediate-level waste.
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disposal packages
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excavated diameter: 0.7 m approx.

length: 40 m approx.
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Transmutation is the transformation
of one nucleus into another, through

a reaction induced by particles with which
it is bombarded. As applied to the treat-
ment of nuclear waste, this consists in
using that type of reaction to transform
long-lived radioactive isotopes into iso-
topes having a markedly shorter life, or
even into stable isotopes, in order to
reduce the long-term radiotoxic inven-
tory. In theory, the projectiles used may
be photons, protons, or neutrons.
In the first case, the aim is to obtain, by
bremsstrahlung,(1) through bombardment
of a target by a beam of electrons, pro-
vided by an accelerator, photons able to
bring about reactions of the (γ, xn) type.
Under the effects of the incoming gamma
radiation, x neutrons are expelled from
the nucleus. When applied to substan-
ces that are too rich in neutrons, and
hence unstable, such as certain fission
products (strontium 90, cesium 137…),
such reactions yield, as a rule, stable sub-
stances. However, owing to the very low
efficiency achieved, and the very high
electron current intensity required, this
path is not deemed to be viable.
In the second case, the proton–nucleus
interaction induces a complex reaction,
known as spallation, resulting in frag-
mentation of the nucleus, and the release

of a number of particles, including high-
energy neutrons. Transmutation by way
of direct interaction between protons is
uneconomic, since this would involve, in
order to overcome the Coulomb barrier,(2)

very-high-energy protons (1–2 GeV),
requiring a generating energy greater
than had been obtained from the process
that resulted in producing the waste. On
the other hand, indirect transmutation,
using very-high-energy neutrons (of
which around 30 may be yielded, depen-
ding on target nature and incoming proton
energy), makes it possible to achieve very
significantly improved performance. This
is the path forming the basis for the
design of so-called hybrid reactors, cou-
pling a subcritical core and a high-inten-
sity proton accelerator (see Box F, What
is an ADS?).
The third particle that may be used is thus
the neutron. Owing to its lack of electric
charge, this is by far the particle best sui-
ted to meet the desired criteria. It is “natu-
rally” available in large quantities inside
nuclear reactors, where it is used to trig-
ger fission reactions, thus yielding energy,
while constantly inducing, concurrently,
transmutations, most of them unsought.
The best recycling path for waste would
thus be to reinject it in the very installa-
tion, more or less, that had produced it…

When a neutron collides with a nucleus,
it may bounce off the nucleus, or pene-
trate it. In the latter case, the nucleus,
by absorbing the neutron, gains excess
energy, which it then releases in various
ways:
• by expelling particles (a neutron, e.g.),
while possibly releasing radiation;
• by solely emitting radiation; this is
known as a capture reaction, since the
neutron remains captive inside the
nucleus;
• by breaking up into two nuclei, of more
or less equal size, while releasing concur-
rently two or three neutrons; this is known
as a fission reaction, in which considera-
ble amounts of energy are released.
Transmutation of a radionuclide may be
achieved either through neutron capture
or by fission. Minor actinides, as elements
having large nuclei (heavy nuclei), may
undergo both fission and capture reac-
tions. By fission, they transform into
radionuclides that, in a majority of cases,
are short-lived, or even into stable nuclei.
The nuclei yielded by fission (known as
fission products), being smaller, are only
the seat of capture reactions, undergoing,
on average, 4 radioactive decays, with a
half-life not longer than a few years, as
a rule, before they reach a stable form.
Through capture, the same heavy nuclei
transform into other radionuclides, often
long-lived, which transform in turn
through natural decay, but equally
through capture and fission.

What is transmutation?

(1) From the German for “braking radiation.” High-energy photon radiation, yielded by accelerated
(or decelerated) particles (electrons) following a circular path, at the same time emitting braking
photons tangentially, those with the highest energies being emitted preferentially along the electron
beam axis.

(2) A force of repulsion, which resists the drawing together of same-sign electric charges.
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The probability, for a neutron, of causing
a capture or a fission reaction is evalua-
ted on the basis, respectively, of its cap-
ture cross-section and fission cross-sec-
tion. Such cross-sections depend on the
nature of the nucleus (they vary consi-
derably from one nucleus to the next, and,
even more markedly, from one isotope
to the next for the same nucleus) and
neutron energy.
For a neutron having an energy lower
than 1 eV (in the range of slow, or ther-
mal, neutrons), the capture cross-sec-

tion prevails; capture is about 100 times
more probable than fission. This remains
the case for energies in the 1 eV–1 MeV
range (i.e., that of epithermal neutrons,
where captures or fissions occur at defi-
nite energy levels). Beyond 1 MeV (fast
neutron range), fissions become more
probable than captures.
Two reactor pathways may be conside-
red, according to the neutron energy
range for which the majority of fission
reactions occur: thermal-neutron reac-
tors, and fast-neutron reactors. The ther-

mal neutron pathway is the technology
used by France for its power generation
equipment, with close to 60 pressurized-
water reactors. In a thermal-neutron
reactor, neutrons yielded by fission are
slowed down (moderated) through colli-
sions against light nuclei, making up
materials known as moderators. Due to
the moderator (common water, in the
case of pressurized-water reactors), neu-
tron velocity falls off, down to a few kilo-
meters per second, a value at which neu-
trons find themselves in thermal
equilibrium with the ambient environ-
ment. Since fission cross-sections for
235U and 239Pu, for fission induced by
thermal neutrons, are very large, a
concentration of a few per cent of these
fissile nuclei is sufficient to sustain the
cascade of fissions. The flux, in a ther-
mal-neutron reactor, is of the order of
1018 neutrons per square meter, per
second.
In a fast-neutron reactor, such as Phénix,
neutrons yielded by fission immediately
induce, without first being slowed down,
further fissions. There is no moderator in
this case. Since, for this energy range,
cross-sections are small, a fuel rich in
fissile radionuclides must be used (up to
20% uranium 235 or plutonium 239), if the
neutron multiplication factor is to be equal
to 1. The flux in a fast-neutron reactor is
ten times larger (of the order of 1019 neu-
trons per square meter, per second) than
for a thermal-neutron reactor.

Figure.
Simplified representation of the evolution chain of americium 241 in a thermal-neutron reactor
(shown in blue: radionuclides disappearing through fission). Through capture, 241Am transforms
into 242mAm, this disappearing predominantly through fission, and into 242Am, which mainly decays
(with a half-life of 16 hours) through beta decay into 242Cm. 242Cm transforms through alpha decay
into 238Pu, and through capture into 243Cm, which itself disappears predominantly through fission.
238Pu transforms through capture into 239Pu, which disappears predominantly through fission.
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An ADS (accelerator-driven system) is
a hybrid system, comprising a

nuclear reactor operating in subcritical
mode, i.e. a reactor unable by itself to sus-
tain a fission chain reaction, “driven” by
an external source, having the ability to
supply it with the required comple-
ment of neutrons.(1)

Inside the core of a nuclear reactor,
indeed, it is the fission energy from
heavy nuclei, such as uranium 235
or plutonium 239, that is released.
Uranium 235 yields, when under-
going fission, on average 2.5 neu-
trons, which can in turn induce a
further fission, if they collide with a
uranium 235 nucleus. It may thus
be seen that, once the initial fission
is initiated, a chain reaction may develop,
resulting, through a succession of fis-
sions, in a rise in the neutron population.
However, of the 2.5 neutrons yielded by
the initial fission, some are captured, thus
not giving rise to further fissions. The
number of fissions generated from one
initial fission is characterized by the effec-
tive multiplication factor keff, equal to the
ratio of the number of fission neutrons
generated, over the number of neutrons
disappearing. It is on the value of this coef-
ficient that the evolution of the neutron
population depends: if keff is markedly
higher than 1, the population increases
rapidly; if it is slightly higher than 1, neu-
tron multiplication sets in, but remains
under control; this is the state desired at
reactor startup; if keff is equal to 1, the
population remains stable; this is the state

for a reactor in normal operating condi-
tions; and, if keff is lower than 1, the neu-
tron population dwindles, and becomes
extinct, unless – as is the case for a hybrid
system – an external source provides a
neutron supply.

From the effective multiplication factor,
a reactor’s reactivity is defined by the ratio
(keff –1)/keff. The condition for stability is
then expressed by zero reactivity. To sta-
bilize a neutron population, it is sufficient
to act on the proportion of materials exhi-
biting a large neutron capture cross-sec-
tion (neutron absorber materials) inside
the reactor.
In an ADS, the source of extra neutrons
is fed with protons, generated with an
energy of about 100 keV, then injected
into an accelerator (linear accelerator or
cyclotron), which brings them to an energy
of around 1 GeV, and directs them to a
heavy-metal target (lead, lead–bismuth,
tungsten or tantalum). When irradiated
by the proton beam, this target yields,
through spallation reactions, an intense,
high-energy (1–20 MeV) neutron flux, one
single incoming neutron having the abi-
lity to generate up to 30 neutrons. The lat-

ter then go on to interact with the fuel of
the subcritical neutron multiplier
medium, yielding further neutrons (fis-
sion neutrons) (see Figure).
Most hybrid system projects use as a core
(of annular configuration, as a rule) fast-

neutron environments, since these
make it possible to achieve neu-
tron balances most favorable to
transmutation, an operation that
allows waste to be “burned,” but
which may equally be used to yield
further fissile nuclei. Such a sys-
tem may also be used for energy
generation, even though part of
this energy must be set aside to
power the proton accelerator, a
part that is all the higher, the more

subcritical the system is. Such a system
is safe in principle from most reactivity
accidents, its multiplication factor being
lower than 1, contrary to that of a reac-
tor operated in critical mode: the chain
reaction would come to a halt, if it was
not sustained by this supply of external
neutrons.
A major component in a hybrid reactor,
the window, positioned at the end of the
beam line, isolates the accelerator from
the target, and makes it possible to keep
the accelerator in a vacuum. Traversed
as it is by the proton beam, it is a sensi-
tive part of the system: its lifespan
depends on thermal and mechanical
stresses, and corrosion. Projects are moo-
ted, however, of windowless ADSs. In the
latter case, it is the confinement cons-
traints, and those of radioactive spalla-
tion product extraction, that must be taken
on board.

What is an ADS?

(1) On this topic, see Clefs CEA, No. 37, p. 14

Principle schematic of an ADS.
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The characteristics of the major part of the radioactive waste generated in France are determined by those of the French nuclear
power generation fleet, and of the spent fuel reprocessing plants, built in compliance with the principle of reprocessing such fuel, to
partition such materials as remain recoverable for energy purposes (uranium and plutonium), and waste (fission products and minor
actinides), not amenable to recycling in the current state of the art.
58 enriched-uranium pressurized-water reactors (PWRs) have been put on stream by French national utility EDF, from 1977
(Fessenheim) to 1999 (Civaux), forming a second generation of reactors, following the first generation, which mainly comprised 8 UNGG
(natural uranium, graphite, gas) reactors, now all closed down, and, in the case of the older reactors, in the course of decommis-
sioning. Some 20 of these PWRs carry out the industrial recycling of plutonium, included in MOX fuel, supplied since 1995 by the
Melox plant, at Marcoule (Gard département, Southern France).
EDF is contemplating the gradual replacement of the current PWRs by third-generation reactors, belonging to the selfsame pres-
surized-water reactor pathway, of the EPR (European Pressurized-Water Reactor) type, designed by Areva NP (formerly Framatome–ANP),
a division of the Areva Group. The very first EPR is being built in Finland, the first to be built in France being sited at Flamanville
(Manche département, Western France).
The major part of spent fuel from the French fleet currently undergoes reprocessing at the UP2-800(1) plant, which has been opera-
ted at La Hague (Manche département), since 1994, by Areva NC (formerly Cogema,) another member of the Areva Group (the UP3
plant, put on stream in 1990–92, for its part, carries out reprocessing of fuel from other countries). The waste vitrification workshops
at these plants, the outcome of development work initiated at Marcoule, give their name (R7T7) to the “nuclear” glass used for the
confinement of long-lived, high-level waste.
A fourth generation of reactors could emerge from 2040 (along with new reprocessing plants), a prototype being built by 2020. These
could be fast-neutron reactors (i.e. fast reactors [FRs]), either sodium-cooled (SFRs) or gas-cooled (GFRs). Following the closing
down of the Superphénix reactor, in 1998, only one FR is operated in France, the Phénix reactor, due to be closed down in 2009.

The industrial context 1

(1) A reengineering of the UP2-400 plant, which, after the UP1 plant, at Marcoule, had been intended to reprocess spent fuel from the UNGG pathway.
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