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regular basis by various organizations.(1) Particular
reference should be made to those elements that are
indispensable to the physiological balance, a deficit of
which manifests itself in a state of deficiency (selenium,
iodine). Indeed, a preexisting deficiency alters distri-
bution and/or concentration in tissues, in the event of
an inflow of radioactive isotopes, thus increasing the
doses received by the retaining organs, as found in
populations deficient in stable iodine.As regards radio-
toxicology, international organizations such as
UNSCEAR and the ICRP regularly update their data
on the health effects of the various sources of radio-
activity, focusing on the effects of irradiation, and the
physical–chemical properties of the radionuclide,which
determine which organs and cells are affected by conta-
mination.
Intrinsically,every radioactive element is characterized
by its half-life,specific activity (expressed in Bq/g),and
emission characteristics (type, and energy). Its beha-
vior in the environment depends on physical–chem-
ical properties, which determine its ability to undergo
diffusion:chemical class, isotopic distribution and pre-
sence of analogs,oxidation–reduction potential of the
medium… Diffusion further depends on the charac-
teristics of transport carriers. Intake by humans is the
outcome of all of these properties together, making
each radionuclide more or less accessible, directly (in

The production of nuclear power is inescapably
bound up with the handling,and disposal,of radio-

active elements, liable to have detrimental effects on
humans,and their environment.As regards effects on,
or risks for, health, the issues, related to the long half-
life of some radionuclides,concern the extent to which
they are innocuous, with respect to the environment,
and future generations.
The answer involves the one principle: the measures
deployed for waste conditioning and management
have the purpose of restricting, and delaying, for the
time required for their radioactivity to disappear,
the dispersion of radionuclides in the biosphere.
Operational feedback on management of this type of
waste, and computations of doses and concentrations
corresponding to the various management modes being
considered, do indeed show that intake of radionucli-
des by humans,or human irradiation,would only occur
at low concentrations,and small doses,undistinguish-
able from those due to natural radioactivity.

Radionuclides and biological effects

Investigations on the biological effects of ionizing radia-
tions, indeed, are not directly linked with the issue of
radioactive waste. Radionuclides, yielding as they do,
through decay,one or more daughter nuclides (daugh-
ter product chains), involve, through their interaction
with biological matter, three types of outcomes: irra-
diation,which varies according to the type and energy
of the emitted radiation; concomitant transmutation
into one or more elements,of a different chemical and
radioactive nature; finally, the effects related to the
chemical properties of the given radionuclide and its
daughter products. For all radionuclides, these effects
are approached in a global fashion, by way of investi-
gations on their metabolism and dosimetry, appa-
rently leaving in the dark more specific aspects, rela-
ting to transmutation or chemical toxicity, which are
not specifically addressed in this context. The latter
issue, for radionuclides and their daughter products,
relates to that arising for other chemical elements,
metals in particular: toxicity levels,and exposure limits,
for workers and the population, are published on a

Radioactive waste: 
what health effects, or risks?
The whole issue of nuclear waste, as seen by public opinion, is grounded in the fear 
of detrimental effects on human health, and the environment. Two major questions sum up 
this uncertainty: have all risks been properly identified, including those concerning effects that
might arise several thousand years from now? Do radiation protection regulations, according to
current recommendations, really make it possible to vouchsafe real protection over timespans
of many millennia? The answers to these queries are in the affirmative, even though some
biological mechanisms do still require to be more precisely detailed.
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Section of an experimental
spent fuel storage well, 
in the Galatée gallery,
constructed at CEA’s
Marcoule Center,
to investigate the behavior 
of the components of a
subsurface long-term waste
storage facility. 
For this storage option, 
as for the other options
investigated, the ultimate
goal remains that of 
delaying any dispersion 
of radionuclides into 
the biosphere, for the time
required for their radioactivity
effectively to disappear.

(1) The WHO (World Health Organization), and two US federal
agencies, EPA (Environmental Protection Agency) and NIOSH
(National Institute for Occupational Safety and Health).



radionuclide main physical biological half-life gut distribution in body
emission half-life (time after which one half of the element transfer target organ(s)

(years) is eliminated by the biological pathway) factor f1

36Cl beta 3.105 10 days 1 uniform

79Se beta 1.1.106 triexponential elimination, with half-lives 0.8 fairly uniform
of 3 (10%), 30 (40%), and 200 (50%) days liver, kidneys

94Nb beta, gamma 2.104 biexponential elimination, with half-lives < 0.01 lungs, skeleton,
of 6 (50%) and 200 (50%) days liver

0.5 day in the thyroid fairly uniform 
99Tc beta 2.1.105 75% of the technetium retained in the thyroid 0.5 thyroid, salivary 

is eliminated, with a biological half-life glands, gastrointestinal 
of 1.6 days tract (GIT)

129I beta 1.57.107 80 days in the thyroid 1 thyroid

135Cs beta, gamma 2.3.106 biexponential elimination, 1 fairly uniformwith half-lives of 2 and 110 days
238U alpha, gamma 4.47.109 100 days 0.02 skeleton, kidneys

239Pu alpha 24,130 10 years in the liver, up to several 5.10-4 liver, skeleton,
tens of years in the skeleton gonads
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Radioactive waste management research

doses are avoided through implementation of radia-
tion protection standards. Risk rises with the dose for
non-specific random effects such as cancers and here-
ditary consequences.In the area of waste management,
implementation of the recommended limits (less than
1 millisievert per year) focuses risk studies on the onset
of random effects for low doses. Two aspects must be
taken on board: that of risks in general for low doses,
and the relevance of the dose calculation,enabling risk
assessment.

The issue of low doses

Cancers, just as hereditary effects, are not specifically
induced, subsequent to irradiation. The spontaneous
frequency is high enough to make it virtually impos-
sible, below a dose of 100–500 mSv, to identify the
excess risk due to radiation. For low doses, risk is cal-
culated by linear-no-threshold extrapolation, from
data obtained at higher doses. In humans, no excess of
radiation-induced hereditary effects are found, even
in exposed populations showing an excess of cancers.
The risk of hereditary effects, estimated at less than
one fifth of the carcinogenic risk, is obtained from indi-
rect data. The extrapolation is wholly based on epide-
miological, or experimental, carcinogenesis studies,
most of the findings from which, for low doses, are
consistent with various types of extrapolation (linear-
no-threshold, linear quadratic, or quadratic…). The
risk level computed from linear-no-threshold extra-
polation is deemed to correspond to a prudent posi-
tion, with no underestimation of effects. This would
appear to be evidenced by recent findings in cell and
molecular biology, at lower doses (less than 10 mGy
or so), suggesting an elimination, rather than conser-
vation,of mutated cells.Likewise,epidemiological stu-
dies, of which there have been many over the past few
years, on populations dwelling in high-natural-radio-
activity areas, as, on the other hand, investigations of
the risk of bone cancer in women bluecollar workers
chronically exposed to radium 226,suggest a lower risk
in the event of chronic exposure at low dose rates.
However, contrary to external irradiations, for which
numerous data allow the risk level to be identified,
according to the characteristics of the irradiation, and
of the irradiated tissue, the quantification of risk, sub-
sequent to internal contamination, yields less certain
estimates. The findings from epidemiological surveys
on workers and populations from military–industrial

air, or water) or through the food chain. As a rule, the
elements that are most mobile in the biosphere are also
those for which the rate of absorption in the digestive
tract (gut transfer factor f1) (2) is highest (chlorine,
iodine, technetium…), whereas those elements that
are considered to be poorly mobile in the biosphere
exhibit a low gut transfer factor (plutonium,niobium).
The biological outcomes,and the specific character, in
terms of pathology, of an internal contamination are
linked to the target organs for the isotope involved.
Simply, these are the entrance paths – the lungs and
digestive tract – and the various organs in which the
isotope is retained, depending on its chemical pro-
perties: a fairly uniform distribution throughout the
organism (chlorine, tritium),or concentration in one
or more organs (the thyroid for iodine, the liver and
skeleton for plutonium…).Inside the organism,radio-
nuclides exhibit a behavior similar to that of the cor-
responding stable isotopes (iodine, carbon…), or of
elements deemed to be chemical analogs (strontium
and cesium, for instance). Internal irradiation persists
until the radionuclides are eliminated, through the
combined effects of radioactive decay, and biological
turnover.Further to these findings, the possible disper-
sion of radionuclides from nuclear waste packages
would result in human exposure,mainly through inges-
tion; inhalation, as external irradiation, being seen as
a lower-level risk (see Table).

Radiation-induced health effects

The specific character of the health effects of radio-
nuclides manifests itself, on the one hand, according
to the organs and tissues in which they are retained,
and, on the other, depending on the characteristics of
the radiation emitted. For alpha emitters, irradiation
occurs in situ in the cells incorporating the isotope.For
beta emitters, and even more so in the case of gamma
emitters, ionizations could occur at a distance from
the radionuclide,since the higher the radiation energy,
the longer the track will be.A second factor is the dose
rate, which, for an equivalent incorporated activity,
will be all the lower, the longer the physical half-life.
Once these characteristics are taken into account,effects
are of the same kind as those induced through exter-
nal irradiation. The deterministic effects from highTable. 

Main biokinetic
characteristics for

some long-lived
radionuclides.

(2) The value of f1 stands for the fraction of the ingested
substance that is directly absorbed and passes into body fluids.
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late noncancer effects, in particular vascular or pulmo-
nary effects, may occur in random fashion, affecting a
fraction of the exposed groups (10%). More directly
related to internal contamination, unconfirmed fin-
dings have noted a relationship between chronic expo-
sure to cesium 137 in the child and increased symp-
toms indicating cardiovascular alterations.These studies
raise the issue of a possible risk of noncancer effects
for low doses. However, the survey of epidemiological
studies carried out by UNSCEAR does not appear to
corroborate such findings,effects occurring for cumu-
lative doses of several hundred millisieverts.
Does chronic exposure over many generations permit
an accumulation of DNA lesions, liable to manifest
itself, in some tens of generations, through delayed
hereditary effects? Recent molecular biology findings
indicate preferential induction,by irradiation,of reces-
sive-type mutations, which are only expressed if the
other allele of the same gene is mutated likewise. It is
thus conceivable that such mutations might be trans-
mitted over several generations without being expres-
sed,accumulating in the genetic inheritance,thus contri-
buting to what the ICRP calls the genetic burden of a
population.Experimental methods did not allow,until
recently, directly addressing this issue. However, stu-
dies of populations dwelling for tens of generations in
high-natural-radioactivity areas show no visible increase
in hereditary disorders that might be ascribed to irra-
diation. A few isolated findings suggest the existence
of biological markers indicating an accumulation of
lesions,assumed to be radiation-induced,however with
no associated pathological effect.Such chronically expo-
sed populations provide a particularly favorable model
for investigation, for the analysis of the accumulation,
selection,and counterselection of recessive mutations,
which contribute, in any event, whatever their origin
might be, to evolution. More widely, investigations on
the delayed effects of ionizing radiations, both soma-
tic and hereditary, indicate that protection against the
risk of cancer also ensures, for low doses and concen-
trations,protection against other types of delayed effects.
For the exposure levels considered, understanding of
the biological mechanisms involved, together with the
analysis of response specificity at low doses or concen-
trations, must be expanded, on the basis of molecular
and cell biology, if it is desired that, not content with
arbitrary extrapolations, there be an ability to compare
the mechanisms, and consequences, of chronic expo-
sure to various environmental agents.
More mundanely, as regards waste conditioning, sto-
rage, or disposal, environmental radioactivity moni-
toring,complemented by impact studies providing esti-
mates, according to the population’s way of life, of
maximum expected doses, provide the best indicators
with respect to evolution in terms of exposure,and risk.
In the absence of any alteration in radioactivity (air,
water, plants…), no further measure need be contem-
plated. In the event of an alteration, remedial actions
would have to be adjusted, depending on migration
times from the waste package, in order ultimately to
preclude any increased exposure for the populations.

> Annabelle Comte and Anne Flüry-Herard*
Life Sciences Division

CEA Fontenay-aux-Roses Center
* Cabinet of the High Commissioner 

for Atomic Energy

sites in the former Soviet Union, as from studies of
molecular mechanisms in response to a radionuclide
intake, are expectantly awaited, in this respect.

The relationship between dose and risk

For the purposes of radiation protection, the ICRP
specifies, for each isotope, in the event of internal expo-
sure, the committed effective dose, corresponding to
the overall risk for the duration of the contamination,
according to the quantity incorporated, and intake
pathway. Dose coefficients give, after inhalation or
ingestion,the effective dose,expressed in sieverts (with
effective doses per unit intake [DPUIs] expressed in
sieverts per becquerel). Appropriate use of such dose
coefficients entails a good knowledge of the physi-
cal–chemical form of the isotopes, at the time of their
incorporation, since the overall risk evaluation provi-
des no direct information as to risk at the level of the
isotope’s target organs, or tissues. Additional criteria
are required, if an estimate is to be arrived at, as to the
risk incurred by the target organs of the radionuclide
and isotope. Since the organs at risk, and duration of
exposure, will vary, depending on the radionuclides
involved, health outcomes will be altogether different
for a plutonium isotope, having a biological half-life
of several tens of years,which is fixed in the lungs, liver,
or bones; for an iodine isotope, with a biological half-
life of 80 days, fixed in the thyroid; or for a carbon iso-
tope, with a biological half-life of 40 days, involving a
relatively uniform distribution. Some of the assump-
tions used to characterize the biological behavior of
an isotope,or to arrive at dosimetric parameters,should
be viewed with caution, whether it be chemical ana-
logy, transposition of data obtained on rodents, or the
extrapolation to minute concentrations of findings
from large amounts, in weight terms. Factors of highly
diverse kinds are not directly included in dose calcu-
lations,such as age-related sensitivity,or the maximum
amount, by weight, that may be absorbed for each ele-
ment of biological concern, this being a limiting fac-
tor for the effective dose. For radionuclides issuing
from waste,an estimate of dilution by natural elements
in the environment is an essential parameter, for the
evaluation of the corresponding dose, and possible
toxic effects. For many isotopes, data are available, to
complement the dose calculation by way of relevant
qualitative or quantitative criteria. For some classes of
radionuclides (lanthanides),or specific physical–chem-
ical forms, due consideration should be given to the
benefit of further targeted investigations.

What other effects should be monitored?

The measures implemented in radioactive waste mana-
gement reduce to a minimum the exposure undergone
by populations, with annual dose estimates, for each
radionuclide (well below 1 mSv) corresponding to
quantities, by weight, that entail a concomitant pro-
tection against their chemical toxicity. Does this level
of protection against the risk of cancer also vouchsafe
populations are protected against other types of effects,
that may be found for low doses? A number of points
of information may prove helpful in the debate.
Over the past few years, monitoring of atom-bomb
survivors has yielded findings suggesting that certain
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Gametogenesis
investigations, at CEA’s
Fontenay-aux-Roses
Center. One of the aims 
is to investigate the
transmission of
mutations by germ cells
exposed to a genotoxic
stress.
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According to the International Atomic
Energy Agency (IAEA), radioactive

waste may be defined as “any material for
which no use is foreseen and that contains
radionuclides at concentrations greater
than the values deemed admissible by the
competent authority in materials suitable
for use not subject to control.” French law
in turn introduces a further distinction,
valid for nuclear waste as for any other
waste, between waste and final, or “ulti-
mate,” waste (déchet ultime). Article L.
541-1 of the French Environmental Code
thus specifies that “may be deemed as
waste any residue from a process of pro-
duction, transformation or use, any sub-
stance, material, product, or, more gene-
rally, any movable property left derelict or
that its owner intends to leave derelict,”
further defining as ultimate “waste, be it
the outcome of waste treatment or not,
that is not amenable to further treatment
under prevailing technological and eco-
nomic conditions, in particular by extrac-
tion of the recoverable, usable part, or
mitigation of its polluting or hazardous
character.”
Internationally, experts from IAEA and the
Nuclear Energy Agency (NEA) – an OECD
organization – as those in the European
Commission find that long-lived waste pro-
duced in countries operating a nuclear
power program is stored securely nowa-
days, whilst acknowledging a final solu-
tion is required, for the long-term mana-
gement of such waste. They consider burial
in deep geological structures appears, pre-
sently, to be the safest way to achieve final
disposal of this type of waste.

What constitutes radioactive
waste? What are the volumes
currently involved?
Radioactive waste is classified into a num-
ber of categories, according to its level of
radioactivity, and the radioactive period,
or half-life, of the radionuclides it
contains. It is termed long-lived waste
when that period is greater than 30 years,
short-lived waste otherwise. The French
classification system involves the follo-
wing categories:
– very-low-level waste (VLLW); this
contains very small amounts of radionu-
clides, of the order of 10–100 Bq/g (bec-
querels per gram), which precludes consi-
dering it as conventional waste;
– short-lived low and intermediate level
waste (LILW-SL); radioactivity levels for
such waste lie as a rule in a range from

a few hundred to one million Bq/g, of
which less than 10,000 Bq/g is from long-
lived radionuclides. Its radioactivity beco-
mes comparable to natural radioactivity
in less than three hundred years.
Production of such waste stands at some
15,000 m3 per year in France;
– long-lived low-level waste (LLW-LL);
this category includes radium-bearing
waste from the extraction of rare earths
from radioactive ore, and graphite waste
from first-generation reactors;
– long-lived intermediate-level waste
(ILW-LL), this being highly disparate, whe-
ther in terms of origin or nature, with an
overall stock standing, in France, at
45,000 m3 at the end of 2004. This mainly
comes from spent fuel assemblies (clad-
ding hulls and end-caps), or from opera-
tion and maintenance of installations; this
includes, in particular, waste conditioned
during spent fuel reprocessing operations
(as from 2002, this type of waste is com-
pacted, amounting to some 200 m3

annually), technological waste from the
operation or routine maintenance of pro-
duction or fuel-processing plants, from
nuclear reactors or from research cen-
ters (some 230 m3 annually), along with
sludges from effluent treatment (less than
100 m3 annually). Most such waste gene-
rates little heat, however some waste of
this type is liable to release gases;
– high-level waste (HLW), containing fis-
sion products and minor actinides parti-
tioned during spent fuel reprocessing (see
Box B), and incorporated at high tempe-
rature into a glass matrix. Some 120 m3

of “nuclear glass” is thus cast every year.
This type of waste bears the major part
of radioactivity (over 95%), consequently
it is the seat of considerable heat release,
this remaining significant on a scale of
several centuries.
Overall, radioactive waste conditioned in
France amounts to less than 1 kg per year,
per capita. That kilogram consists, for
over 90%, of LILW-SL type waste, bearing
but 5% of total radioactivity; 9% of ILW-
LL waste, less than 1% HLW, and virtually
no LLW-LL waste.

What of the waste of tomorrow?
From 1991, ANDRA compiled, on a yearly
basis, a geographical inventory of waste
present on French territory. In 2001,
ANDRA was asked by government to aug-
ment this “National Inventory,” with the
threefold aim of characterizing extant
stocks (state of conditioning, processing

traceability), predicting future waste pro-
duction trends to 2020, and informing the
public (see An inventory projecting into the
future). ANDRA published this reference
National Inventory at the end of 2004. To
meet requirements for research in com-
pliance with the directions set out in the
French Act of 30 December 1991 (see
Radioactive waste management research:
an ongoing process of advances), ANDRA,
in collaboration with waste producers,
has drawn up a Dimensioning Inventory
Model (MID: Modèle d’inventaire de
dimensionnement), for the purposes of
arriving at estimates of the volume of
waste packages to be taken on board in
research along direction 2 (disposal). This
model, including as it does predictions as
to overall radioactive waste arisings from
the current reactor fleet, over their entire
lifespan, seeks to group waste types into
families, homogeneous in terms of cha-
racteristics, and to formulate the most
plausible hypotheses, with respect to
conditioning modes, to derive the volu-
mes to be taken on board for the purpo-
ses of the investigation. Finally, MID sets
out to provide detailed stocktaking, inten-
ded to cover waste in the broadest pos-
sible fashion. MID (not to be confused with
the National Inventory, which has the
remit to provide a detailed account of
actual waste currently present on French
territory) thus makes it possible to bring
down the variety of package families to a
limited number of representative objects,
and to specify the requisite margins of
error, to ensure the design and assess-
ment of disposal safety will be as robust
as feasible, with respect to possible future
variations in data.
To ensure consistency between investi-
gations carried out in accordance with
direction 2 and those along direction 3
(conditioning and long-term storage), CEA
adopted MID as input data. MID subsu-
mes waste packages into standard pac-
kage types, then computes the number
and volume of HLW and ILW-LL packa-
ges, according to a number of scenarios,
all based on the assumption that current
nuclear power plants will be operated for
40 years, their output plateauing at
400 TWhe per year.
Table 1 shows the numbers and volumes
for each standard package type, for the
scenario assuming a continuation of cur-
rent strategy, with respect to spent fuel
reprocessing: reprocessing of 79,200 UOX
fuel assemblies and storage of 5,400 MOX

What is radioactive waste?
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assemblies discharged from the current
PWR fleet, when operated over 40 years.

What forms does it come in?
Five types of generic packages (also found
in MID) may be considered:
• cementitious waste packages: ILW-LL
waste packages employing hydraulic-bin-
der based materials as a conditioning
matrix, or as an immobilizing grout, or yet
as a container constituent;
• bituminized sludge packages: LLW and
ILW-LL waste packages, in which bitumen
is used as confinement matrix for low- and
intermediate-level residues from treat-
ment of a variety of liquid effluents (fuel
processing, research centers, etc.);
• standard compacted waste packages
(CSD-C: colis standard de déchets compac-
tés): ILW-LL packages obtained through
compaction conditioning of structural waste
from fuel assemblies, and technological
waste from the La Hague workshops;
• standard vitrified waste packages
(CSD-V: colis standard de déchets vitrifiés):

HLW packages, obtained mainly through
vitrification of highly active solutions from
spent fuel reprocessing;
• spent fuel packages: packages consis-
ting in nuclear fuel assemblies discharged
from reactors; these are not considered to
be waste in France.
The only long-lived waste packages to be
generated in any significant amounts by
current electricity production (see Box B)
are vitrified waste packages and standard
compacted waste packages, the other types
of packages having, for the most part,
already been produced, and bearing but a
small part of total radioactivity.

What is happening to this waste at
present? What is to be done in the
long term?
The goal of long-term radioactive waste
management is to protect humankind and
its environment from the effects of the
materials comprised in this waste, most
importantly from radiological hazards. Any
release or dissemination of radioactive

materials must thus be precluded, through
the lasting isolation of such waste from the
environment. This management is guided
by the following principles: to produce as
little waste as practicable; limit its hazar-
dous character as far as feasible; take into
account the specific characters of each
category of waste; and opt for measures
that will minimize the burden (monitoring,
maintenance) for future generations.
As for all nuclear activities subject to control
by the French Nuclear Safety Authority
(Autorité de sûreté nucléaire), fundamental
safety regulations (RFSs: règles fonda-
mentales de sûreté) have been drawn up
with respect to radioactive waste mana-
gement: sorting, volume reduction, pac-
kage confinement potential, manufactu-
ring method, radionuclide concentration.
RFS III-2.f, in particular, specifies the condi-
tions to be met for the design of, and
demonstration of safety for an underground
repository, and thus provides a basic guide
for disposal investigations. Industrial solu-
tions (see Industrial solutions for all low-
level waste) are currently available for nigh
on 85% (by volume) of waste, i.e. VLLW and
LILW-SL waste. A solution for LLW-LL
waste is the subject of ongoing investiga-
tion by ANDRA, at the behest of waste pro-
ducers. ILW-LL and HLW waste, contai-
ning radionuclides having very long
half-lives (in some cases, greater than
several hundred thousand years) are cur-
rently held in storage installations coming
under the control of the Nuclear Safety
Authority. What is to become of this waste
in the long term, beyond this storage phase,
is what the Act of 30 December 1991
addresses (see Table 2).
For all of these waste types, the French
Nuclear Safety Authority is drawing up a
National Radioactive Waste Management
Plan, specifying, for each type, a manage-
ment pathway.

MID standard package types Symbols Producers Categories Number Volume (m3)

Vitrified waste packages CO — C2 Cogema* HLW 42,470 7,410

Activated metal waste packages B1 EDF ILW-LL 2,560 470

Bituminized sludge packages B2 CEA, Cogema* ILW-LL 105,010 36,060

Cemented technological waste packages B3 CEA, Cogema* ILW-LL 32,940 27,260

Cemented hull and end-cap packages B4 Cogema* ILW-LL 1,520 2,730

Compacted structural and technological waste packages B5 Cogema* ILW-LL 39,900 7,300

Containerized loose structural and technological B6 Cogema* ILW-LL 10,810 4,580
waste packages

Total B 192,740 78,400
Total overall 235,210 85,810

Short-lived Long-lived
Half-life < 30 years Half-life > 30 years

for the main elements

Very-low-level Morvilliers dedicated disposal facility (open since 2003)
waste (VLLW) Capacity: 650,000 m3

Low-level waste Dedicated disposal facility under
(LLW) investigation for radium-bearing 

waste (volume: 100,000 m3)
Aube Center and graphite waste

(open since 1992) (volume: 14,000 m3)
Intermediate-level Capacity: 1 million m3

waste (ILW) MID volume estimate: 78,000 m3

High-level waste MID volume estimate: 7,400 m3

(HLW)

Table 1. 
Amounts (number, and volume) of waste packages, as predicted in France for 40 years’ operation of the current fleet of reactors, according to ANDRA’s
Dimensioning Inventory Model (MID).

Table 2. 
Long-term management modes, as currently operated, or planned, in France, by
radioactive waste category. The orange area highlights those categories targeted by
investigations covered by the Act of 30 December 1991.

(1) According to the Dimensioning Inventory Model (MID)

* renamed Areva NC in 2006

(next)
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Most high-level (high-activity) radio-
active waste (HLW) originates, in

France, in the irradiation, inside nuclear
power reactors, of fuel made up from
enriched uranium oxide (UOX) pellets, or
also, in part, from mixed uranium and
plutonium oxide (MOX). Some 1,200 ton-
nes of spent fuel is discharged annually
from the fleet of 58 pressurized-water
reactors (PWRs) operated by EDF, sup-
plying over 400 TWh per year, i.e. more
than three quarters of French national
power consumption.
The fuel’s composition alters, during its
irradiation inside the reactor. Shortly after
discharge, fuel elements contain, on ave-
rage,(1) some 95% residual uranium, 1%
plutonium and other transuranic ele-
ments – up to 0.1% – and 4% of products
yielded by fission. The latter exhibit very
significant radioactivity levels – to the
extent this necessitates management
safety measures requiring major indus-
trial resources – of some 1017 Bq per tonne
of initial uranium (tiU) (see Figure 1).
The uranium found in spent fuel exhibits
a makeup that is obviously different from
that of the initial fuel. The greater the
irradiation, the higher the consumption
of fissile nuclei, and consequently the
greater the extent by which the uranium
will have been depleted of the fissile iso-
tope 235 (235U). Irradiation conditions
usually prevailing in reactors in the French
fleet, with an average fuel residence time
inside the reactor of some 4 years, for a

burnup rate close to 50 GWd/t, result in
bringing down final 235U content to a value
quite close to that of natural uranium
(less than 1%), entailing an energy poten-
tial very close to the latter’s. Indeed, even
though this uranium remains slightly
richer in the fissile isotope than natural
uranium, for which 235U content stands
at 0.7%, the presence should also be
noted, in smaller, though significant,
amounts, of other isotopes having adverse
effects in neutronic or radiological terms
(232U, 236U), that had not figured in the
initial fuel (see Table 1).

The plutonium present in spent fuel is
yielded by successive neutron capture
and decay processes. Part of the Pu is
dissipated through fission: thus about
one third of the energy generated is yiel-
ded by “in situ recycling” of this element.
These processes further bring about the
formation of heavy nuclei, involving, whe-
ther directly themselves, or through their
daughter products, long radioactive half-
lives. These are the elements of the acti-
nide family, this including, essentially,
plutonium (from 238Pu to 242Pu, the odd-
numbered isotopes generated in part
undergoing fission themselves during
irradiation), but equally neptunium (Np),
americium (Am), and curium (Cm), known
as minor actinides (MAs), owing to the

Waste from the nuclear power cycle

(1) These figures should be taken as indicative values. They allow orders of magnitude to be
pinpointed for enriched-uranium oxide fuel, taken from the main current French nuclear power
pathway; they do depend, however, on a number of parameters, such as initial fuel composition and
irradiation conditions, particularly irradiation time.

Figure 1.
The main elements found in spent nuclear fuel.

element isotope half-life
(years) isotope quantity isotope quantity isotope quantity isotope quantity

content (g/tiU) content (g/tiU) content (g/tiU) content (g/tihm)
(%) (%) (%) (%)

234 246,000 0.02 222 0.02 206 0.02 229 0.02 112

235 7.04·108 1.05 10,300 0.74 6,870 0.62 5,870 0.13 1,070
U

236 2.34·107 0.43 4,224 0.54 4,950 0.66 6,240 0.05 255

238 4.47·109 98.4 941,000 98.7 929,000 98.7 911,000 99.8 886,000

238 87.7 1.8 166 2.9 334 4.5 590 3.9 2,390

239 24,100 58.3 5,680 52.1 5,900 48.9 6,360 37.7 23,100

Pu 240 6,560 22.7 2,214 24,3 2,760 24.5 3,180 32 19,600

241 14.4 12.2 1,187 12.9 1,460 12.6 1,640 14.5 8,920

242 3.75·105 5.0 490 7.8 884 9.5 1,230 11.9 7,300

UOX 33 GWd/tiU UOX 45 GWd/tiU UOX 60 GWd/tiU MOX 45 GWd/tihm
(E 235U: 3.5%) (E 235U: 3.7%) (E 235U: 4.5%) (Ei Pu: 8.65%)

Table 1.
Major actinide inventory for spent UOX and MOX fuel after 3 years’ cooling, for a variety of enrichment and burnup rates. Burnup rate and quantity are
expressed per tonne of initial uranium (tiU) for UOX, per tonne of initial heavy metal (tihm) for MOX.
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B (next)
lesser abundance of these elements, com-
pared with that of U and Pu, the latter being
termed major actinides.
Activation processes affecting nuclei of non-
radioactive elements mainly involve struc-
tural materials, i.e. the materials of the
tubes, grids, plates and end-fittings that
ensure the mechanical strength of nuclear
fuel. These materials lead, in particular,
to formation of carbon 14 (14C), with a half-
life of 5,730 years, in amounts that are
however very low, much less than one gram
per tonne of initial uranium (g/tiU) in usual
conditions.
It is the products yielded by fission of the
initial uranium 235, but equally of the Pu
generated (isotopes 239 and 241), known
as fission products (FPs), that are the
essential source of the radioactivity of
spent fuel, shortly after discharge. Over
300 radionuclides – two thirds of which
however will be dissipated through radio-
active decay in a few years, after irradia-
tion – have been identified. These radio-
nuclides are distributed over some
40 elements in the periodic table, from
germanium (32Ge) to dysprosium (66Dy),
with a presence of tritium from fission, i.e.
from the fission into three fragments (ter-
nary fission) of 235U. They are thus cha-
racterized by great diversity: diverse radio-
active properties, involving as they do some
highly radioactive nuclides having very

short lifespans, and conversely others
having radioactive half-lives counted in
millions of years; and diverse chemical
properties, as is apparent from the ana-
lysis, for the “reference” fuels used in
PWRs in the French fleet, of the break-
down of FPs generated, by families in the
periodic table (see Table 2). These FPs,
along with the actinides generated, are,
for the most part, present in the form of
oxides included in the initial uranium oxide,
which remains by far the majority consti-
tuent. Among some notable exceptions
may be noted iodine (I), present in the form
of cesium iodide, rare gases, such as kryp-
ton (Kr) and xenon (Xe), or certain noble
metals, including ruthenium (Ru), rho-
dium (Rh), and palladium (Pd), which may
form metallic inclusions within the oxide
matrix.
Pu is recycled nowadays in the form of
MOX fuel, used in part of the fleet (some
20 reactors currently). Residual U may in
turn be re-enriched (and recycled as a sub-
stitute for mined uranium). Recycling
intensity depends on market prices for
natural uranium, the recent upturn in
which should result in raising the current
recycling rate (about one third being recy-
cled at present).
Such U and Pu recycling is the foundation
for the reprocessing strategy currently
implemented in France, for the major part
of spent fuel (some two thirds currently).

For the 500 kg or so of U initially contai-
ned in every fuel element, and after par-
titioning of 475 kg of residual U and about
5 kg Pu, this “ultimate” waste amounts
to less than 20 kg of FPs, and less than
500 grams MAs. This waste management
pathway (otherwise know as the closed
cycle), consisting as it does in reproces-
sing spent fuel now, to partition recove-
rable materials and ultimate waste, dif-
fers from strategies whereby spent fuel
is conserved as-is, whether this be due to
a wait-and-see policy (pending a decision
on a long-term management mode), or to
a so-called open cycle policy, whereby
spent fuel is considered to be waste, and
designated for conditioning into contai-
ners, and disposal as-is.
In the nuclear power cycle, as it is imple-
mented in France, waste is subdivided into
two categories, according to its origin.
Waste directly obtained from spent fuel is
further subdivided into minor actinides
and fission products, on the one hand, and
structural waste, comprising hulls (seg-
ments of the cladding tubes that had held
the fuel for PWRs) and end-caps (fittings
forming the end-pieces of the fuel assem-
blies for these same PWRs), on the other
hand. The process used for spent fuel
reprocessing, to extract U and Pu, also
generates technological waste (operatio-
nal waste, such as spare parts, protec-
tion gloves…) and liquid effluents.

UOX 33 GWd/tiU UOX 45 GWd/tiU UOX 60 GWd/tiU MOX 45 GWd/tihm
family (E 235U: 3.5%) (E 235U: 3.7%) (E 235U: 4.5%) (Ei Pu: 8.65%)

quantity (kg/tiU) quantity (kg/tiU) quantity (kg/tiU) quantity (kg/tihm)

rare gases 
(Kr, Xe) 5.6 7.7 10.3 7

alkali metals
(Cs, Rb) 3 4 5.2 4.5

alkaline-earth
metals (Sr, Ba) 2.4 3.3 4.5 2.6

Y and 
lanthanides 10.2 13.8 18.3 12.4

zirconium 3.6 4.8 6.3 3.3

chalcogens
(Se, Te) 0.5 0.7 1 0.8

molybdenum 3.3 4.5 6 4.1

halogens (I, Br) 0.2 0.3 0.4 0.4

technetium 0.8 1.1 1.4 1.1

Ru, Rh, Pd 3.9 5.7 7.7 8.3

miscellaneous:
Ag, Cd, Sn, Sb… 0.1 0.2 0.3 0.6

Table 2.
Breakdown by chemical family of fission products in spent UOX and MOX fuel, after 3 years’ cooling,
for a variety of enrichment and burnup rates.

After discharge, spent fuel is stored 
in cooling pools, to allow its radioactivity 
to come down significantly. 
Shown here is a storage pool at Areva’s 
spent fuel reprocessing plant 
at La Hague.
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Raw, solid or liquid radioactive waste
undergoes, after characterization

(determination of its chemical and radio-
logical makeup, and of its physical–che-
mical properties), conditioning, a term
covering all the operations consisting in
bringing this waste (or spent fuel assem-
blies) to a form suitable for its transport,
storage, and disposal (see Box D). The
aim is to put radioactive waste into a
solid, physically and chemically stable
form, and ensure effective, lasting confi-
nement of the radionuclides it contains.
For that purpose, two complementary
operations are carried out. As a rule,
waste is immobilized by a material –
whether by encapsulation or homoge-
neous incorporation (liquid or powdered
waste, sludges), or encasing (solid waste)
– within a matrix, the nature of, and per-
formance specification for which depend
on waste type (cement for sludges, eva-
poration concentrates and incineration
ashes; bitumen for encapsulation of
sludges or evaporation concentrates
from liquid effluent treatment; or a
vitreous matrix, intimately binding the
nuclides to the glass network, for fis-
sion product or minor actinide solutions).
This matrix contributes to the confine-
ment function. The waste thus conditio-
ned is placed in an impervious contai-

ner (cylindrical or rectangular), consis-
ting in one or more canisters. The whole
– container and content – is termed a
package. Equally, waste may be com-
pacted and mechanically immobilized
within a canister, the whole forming a
package.
When in the state they come in as sup-
plied by industrial production, they are
known as primary packages, the pri-

mary container being the cement or
metal container into which the conditio-
ned waste is ultimately placed, to allow
handling. The container may act as initial
confinement barrier, allotment of func-
tions between matrix and container being
determined according to the nature of
the waste involved. Thus, the whole obtai-
ned by the grouping together, within one
container, of a number of primary 

Cross-section of an experimental storage borehole for a spent fuel container (the lower part of the
assembly may be seen, top right), in the Galatée gallery of CECER (Centre d’expertise sur le
conditionnement et l’entreposage des matières radioactives: Radioactive Materials Conditioning
and Storage Expertise Center), at CEA’s Marcoule Center, showing the nested canisters.
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ILW-LL packages may ensure confinement
of the radioactivity of this type of waste.
If a long-term storage stage is found to
be necessary, beyond the stage of indus-
trial storage on the premises of the pro-
ducers, primary waste packages must
be amenable to retrieval, as and when
required: durable primary containers
must then be available, in such condi-
tions, for all types of waste.
In such a case, for spent fuel assemblies
which might at some time be earmar-
ked for such long-term storage, or even
for disposal, it is not feasible to demons-
trate, on a timescale of centuries, the
integrity of the cladding holding the fuel,
forming the initial confinement barrier
during the in-reactor use stage. Securing
these assemblies in individual, imper-
vious cartridges is thus being conside-
red, this stainless-steel cartridge being
compatible with the various possible
future management stages: treatment,
return to storage, or disposal. Placing
these cartridges inside impervious
containers ensures a second confine-
ment barrier, as is the case for high-
level waste packages.
In storage or disposal conditions, the
waste packages will be subjected to a
variety of aggressive agents, both inter-
nal and external. First, radionuclide

radioactive decay persists inside the pac-
kage (self-irradiation process). Emission
of radiation is concomitant with heat
generation. For example, in confinement
glasses holding high-activity (high-level)
waste, the main sources of irradiation
originate in the alpha decay processes
from minor actinides, beta decay from
fission products, and gamma transitions.
Alpha decay, characterized by produc-
tion of a recoil nucleus, and emission of
a particle, which, at the end of its path,
yields a helium atom, causes the major
part of atom displacements. In particu-
lar, recoil nuclei, shedding considerable
energy as they do over a short distance,
result in atom displacement cascades,
thus breaking large numbers of chemi-
cal bonds. This is thus the main cause
of potential long-term damage. In such
conditions, matrices must exhibit ther-
mal stability, and irradiation-damage
resistance.
Stored waste packages will also be sub-
jected to the effects of water (leaching).
Container canisters may exhibit a deg-
ree of resistance to corrosion processes
(the overpacks contemplated for glas-
ses may thus delay by some 4,000 years
the arrival of water), and the confine-
ment matrices must be proven to exhi-
bit high chemical stability.

Between the containers and the ultimate
barrier provided, in a radioactive waste
deep disposal facility, by the geological
environment itself, there may further be
interposed, apart, possibly, from an over-
pack, other barriers, so-called engi-
neered barriers, for backfill and sealing
purposes. While these would be point-
less as backfill in clay formations, they
would have the capability, in other envi-
ronments (granite), of further retarding
any flow of radionuclides to the geo-
sphere, notwithstanding degradation of
the previously mentioned barriers.

C
EA

Technological demonstrators
of ILW-LL packages for

bituminized sludges.
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The object of nuclear waste storage
and disposal is to ensure the long-

term confinement of radioactivity, in
other words to contain radionuclides
within a definite space, segre-
gated from humankind and the
environment, as long as requi-
red, so that the possible return
to the biosphere of minute
amounts of radionuclides can
have no unacceptable health or
environmental impact.
According to the Joint Con-
vention on the Safety of Spent
Fuel Management and on the
Safety of Radioactive Waste
Management, signed on 5 Sep-
tember 1997, “storage” means
“the holding of spent fuel or of
radioactive waste in a facility that
provides for its containment,
with the intention of retrieval.”
This is thus, by definition, an
interim stage, amounting to a
delaying, or wait-and-see solu-
tion, even though this may be for
a very long time (from a few
decades to several hundred
years), whereas disposal may be
final.
Used from the outset of the nuclear
power age, industrial storage keeps
spent fuel awaiting reprocessing, and
conditioned high-level waste (HLW), or
long-lived intermediate-level waste

(ILW-LL) in conditions of safety, pen-
ding a long-term management mode
for such waste. Retrieval of stored pac-
kages is anticipated, after a period of
limited duration (i.e. after a matter of

years, or tens of years).
Long-term storage (LTS) may be
contemplated, in particular, in the event
of the deferred deployment of a dispo-
sal facility, or of reactors to carry out

recycling–transmutation, or simply to
turn to advantage the natural decay of
radioactivity (and hence the falling off
of heat release from high-level waste),
before putting the waste into geologi-

cal disposal. By “long term” is
meant a timespan of up to 300
years. Long-term storage may
take place in a surface or sub-
surface facility. In the former
case, the site may be protected,
for instance, by a reinforced-
concrete structure. In the latter
case, it will be located at a depth
of some tens of meters, and pro-
tected by a natural environment
(for instance, if buried in a hill-
side) and its host rock.
Whichever management stra-
tegy is chosen, it will be impe-
rative to protect the biosphere
from the residual ultimate waste.
The nature of the radioelements
the latter contains means a solu-
tion is required that has the abi-
lity to ensure their confinement
over several tens of thousand
years, in the case of long-lived
waste, or even longer. On such
timescales, social stability is a
major uncertainty that has to be

taken on board. Which is why disposal
in deep geological strata (typically, 500
m down) is seen as a reference solu-
tion, insofar as it inherently makes for
deployment of a more passive techni-
cal solution, with the ability to stand,
with no increased risk, an absence of
surveillance, thus mitigating a possible
loss of memory on the part of society.
The geological environment of such a
disposal facility thus forms a further,
essential barrier, which does not exist
in the storage case.
A disposal facility may be designed to
be reversible over a given period. The
concept of reversibility means the design
must guarantee the ability, for a variety
of reasons, to access the packages, or
even to take them out of the facility, over
a certain timespan, or to opt for the final
closure of the disposal facility. Such
reversibility may be envisaged as a suc-
cession of stages, each affording a
decreasing “level of reversibility.” To
simplify, each stage consists in carrying
out one further technical operation brin-
ging the facility closer to final closure,
making retrieval more difficult than at
the previous stage, according to well-
specified criteria.

From storage to disposal

ANDRA design for the disposal of standard vitrified waste packages in horizontal galleries,
showing in particular the packages’ various canisters, and some characteristics linked 
to potential reversibility of the disposal facility.

CEA design study for a common container for 
the long-term storage and disposal of long-lived, 
intermediate-level waste.
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0.57 m 
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disposal packages
lining

intercalary

excavated diameter: 0.7 m approx.

length: 40 m approx.
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Transmutation is the transformation
of one nucleus into another, through

a reaction induced by particles with which
it is bombarded. As applied to the treat-
ment of nuclear waste, this consists in
using that type of reaction to transform
long-lived radioactive isotopes into iso-
topes having a markedly shorter life, or
even into stable isotopes, in order to
reduce the long-term radiotoxic inven-
tory. In theory, the projectiles used may
be photons, protons, or neutrons.
In the first case, the aim is to obtain, by
bremsstrahlung,(1) through bombardment
of a target by a beam of electrons, pro-
vided by an accelerator, photons able to
bring about reactions of the (γ, xn) type.
Under the effects of the incoming gamma
radiation, x neutrons are expelled from
the nucleus. When applied to substan-
ces that are too rich in neutrons, and
hence unstable, such as certain fission
products (strontium 90, cesium 137…),
such reactions yield, as a rule, stable sub-
stances. However, owing to the very low
efficiency achieved, and the very high
electron current intensity required, this
path is not deemed to be viable.
In the second case, the proton–nucleus
interaction induces a complex reaction,
known as spallation, resulting in frag-
mentation of the nucleus, and the release

of a number of particles, including high-
energy neutrons. Transmutation by way
of direct interaction between protons is
uneconomic, since this would involve, in
order to overcome the Coulomb barrier,(2)

very-high-energy protons (1–2 GeV),
requiring a generating energy greater
than had been obtained from the process
that resulted in producing the waste. On
the other hand, indirect transmutation,
using very-high-energy neutrons (of
which around 30 may be yielded, depen-
ding on target nature and incoming proton
energy), makes it possible to achieve very
significantly improved performance. This
is the path forming the basis for the
design of so-called hybrid reactors, cou-
pling a subcritical core and a high-inten-
sity proton accelerator (see Box F, What
is an ADS?).
The third particle that may be used is thus
the neutron. Owing to its lack of electric
charge, this is by far the particle best sui-
ted to meet the desired criteria. It is “natu-
rally” available in large quantities inside
nuclear reactors, where it is used to trig-
ger fission reactions, thus yielding energy,
while constantly inducing, concurrently,
transmutations, most of them unsought.
The best recycling path for waste would
thus be to reinject it in the very installa-
tion, more or less, that had produced it…

When a neutron collides with a nucleus,
it may bounce off the nucleus, or pene-
trate it. In the latter case, the nucleus,
by absorbing the neutron, gains excess
energy, which it then releases in various
ways:
• by expelling particles (a neutron, e.g.),
while possibly releasing radiation;
• by solely emitting radiation; this is
known as a capture reaction, since the
neutron remains captive inside the
nucleus;
• by breaking up into two nuclei, of more
or less equal size, while releasing concur-
rently two or three neutrons; this is known
as a fission reaction, in which considera-
ble amounts of energy are released.
Transmutation of a radionuclide may be
achieved either through neutron capture
or by fission. Minor actinides, as elements
having large nuclei (heavy nuclei), may
undergo both fission and capture reac-
tions. By fission, they transform into
radionuclides that, in a majority of cases,
are short-lived, or even into stable nuclei.
The nuclei yielded by fission (known as
fission products), being smaller, are only
the seat of capture reactions, undergoing,
on average, 4 radioactive decays, with a
half-life not longer than a few years, as
a rule, before they reach a stable form.
Through capture, the same heavy nuclei
transform into other radionuclides, often
long-lived, which transform in turn
through natural decay, but equally
through capture and fission.

What is transmutation?

(1) From the German for “braking radiation.” High-energy photon radiation, yielded by accelerated
(or decelerated) particles (electrons) following a circular path, at the same time emitting braking
photons tangentially, those with the highest energies being emitted preferentially along the electron
beam axis.

(2) A force of repulsion, which resists the drawing together of same-sign electric charges.
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The probability, for a neutron, of causing
a capture or a fission reaction is evalua-
ted on the basis, respectively, of its cap-
ture cross-section and fission cross-sec-
tion. Such cross-sections depend on the
nature of the nucleus (they vary consi-
derably from one nucleus to the next, and,
even more markedly, from one isotope
to the next for the same nucleus) and
neutron energy.
For a neutron having an energy lower
than 1 eV (in the range of slow, or ther-
mal, neutrons), the capture cross-sec-

tion prevails; capture is about 100 times
more probable than fission. This remains
the case for energies in the 1 eV–1 MeV
range (i.e., that of epithermal neutrons,
where captures or fissions occur at defi-
nite energy levels). Beyond 1 MeV (fast
neutron range), fissions become more
probable than captures.
Two reactor pathways may be conside-
red, according to the neutron energy
range for which the majority of fission
reactions occur: thermal-neutron reac-
tors, and fast-neutron reactors. The ther-

mal neutron pathway is the technology
used by France for its power generation
equipment, with close to 60 pressurized-
water reactors. In a thermal-neutron
reactor, neutrons yielded by fission are
slowed down (moderated) through colli-
sions against light nuclei, making up
materials known as moderators. Due to
the moderator (common water, in the
case of pressurized-water reactors), neu-
tron velocity falls off, down to a few kilo-
meters per second, a value at which neu-
trons find themselves in thermal
equilibrium with the ambient environ-
ment. Since fission cross-sections for
235U and 239Pu, for fission induced by
thermal neutrons, are very large, a
concentration of a few per cent of these
fissile nuclei is sufficient to sustain the
cascade of fissions. The flux, in a ther-
mal-neutron reactor, is of the order of
1018 neutrons per square meter, per
second.
In a fast-neutron reactor, such as Phénix,
neutrons yielded by fission immediately
induce, without first being slowed down,
further fissions. There is no moderator in
this case. Since, for this energy range,
cross-sections are small, a fuel rich in
fissile radionuclides must be used (up to
20% uranium 235 or plutonium 239), if the
neutron multiplication factor is to be equal
to 1. The flux in a fast-neutron reactor is
ten times larger (of the order of 1019 neu-
trons per square meter, per second) than
for a thermal-neutron reactor.

Figure.
Simplified representation of the evolution chain of americium 241 in a thermal-neutron reactor
(shown in blue: radionuclides disappearing through fission). Through capture, 241Am transforms
into 242mAm, this disappearing predominantly through fission, and into 242Am, which mainly decays
(with a half-life of 16 hours) through beta decay into 242Cm. 242Cm transforms through alpha decay
into 238Pu, and through capture into 243Cm, which itself disappears predominantly through fission.
238Pu transforms through capture into 239Pu, which disappears predominantly through fission.
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An ADS (accelerator-driven system) is
a hybrid system, comprising a

nuclear reactor operating in subcritical
mode, i.e. a reactor unable by itself to sus-
tain a fission chain reaction, “driven” by
an external source, having the ability to
supply it with the required comple-
ment of neutrons.(1)

Inside the core of a nuclear reactor,
indeed, it is the fission energy from
heavy nuclei, such as uranium 235
or plutonium 239, that is released.
Uranium 235 yields, when under-
going fission, on average 2.5 neu-
trons, which can in turn induce a
further fission, if they collide with a
uranium 235 nucleus. It may thus
be seen that, once the initial fission
is initiated, a chain reaction may develop,
resulting, through a succession of fis-
sions, in a rise in the neutron population.
However, of the 2.5 neutrons yielded by
the initial fission, some are captured, thus
not giving rise to further fissions. The
number of fissions generated from one
initial fission is characterized by the effec-
tive multiplication factor keff, equal to the
ratio of the number of fission neutrons
generated, over the number of neutrons
disappearing. It is on the value of this coef-
ficient that the evolution of the neutron
population depends: if keff is markedly
higher than 1, the population increases
rapidly; if it is slightly higher than 1, neu-
tron multiplication sets in, but remains
under control; this is the state desired at
reactor startup; if keff is equal to 1, the
population remains stable; this is the state

for a reactor in normal operating condi-
tions; and, if keff is lower than 1, the neu-
tron population dwindles, and becomes
extinct, unless – as is the case for a hybrid
system – an external source provides a
neutron supply.

From the effective multiplication factor,
a reactor’s reactivity is defined by the ratio
(keff –1)/keff. The condition for stability is
then expressed by zero reactivity. To sta-
bilize a neutron population, it is sufficient
to act on the proportion of materials exhi-
biting a large neutron capture cross-sec-
tion (neutron absorber materials) inside
the reactor.
In an ADS, the source of extra neutrons
is fed with protons, generated with an
energy of about 100 keV, then injected
into an accelerator (linear accelerator or
cyclotron), which brings them to an energy
of around 1 GeV, and directs them to a
heavy-metal target (lead, lead–bismuth,
tungsten or tantalum). When irradiated
by the proton beam, this target yields,
through spallation reactions, an intense,
high-energy (1–20 MeV) neutron flux, one
single incoming neutron having the abi-
lity to generate up to 30 neutrons. The lat-

ter then go on to interact with the fuel of
the subcritical neutron multiplier
medium, yielding further neutrons (fis-
sion neutrons) (see Figure).
Most hybrid system projects use as a core
(of annular configuration, as a rule) fast-

neutron environments, since these
make it possible to achieve neu-
tron balances most favorable to
transmutation, an operation that
allows waste to be “burned,” but
which may equally be used to yield
further fissile nuclei. Such a sys-
tem may also be used for energy
generation, even though part of
this energy must be set aside to
power the proton accelerator, a
part that is all the higher, the more

subcritical the system is. Such a system
is safe in principle from most reactivity
accidents, its multiplication factor being
lower than 1, contrary to that of a reac-
tor operated in critical mode: the chain
reaction would come to a halt, if it was
not sustained by this supply of external
neutrons.
A major component in a hybrid reactor,
the window, positioned at the end of the
beam line, isolates the accelerator from
the target, and makes it possible to keep
the accelerator in a vacuum. Traversed
as it is by the proton beam, it is a sensi-
tive part of the system: its lifespan
depends on thermal and mechanical
stresses, and corrosion. Projects are moo-
ted, however, of windowless ADSs. In the
latter case, it is the confinement cons-
traints, and those of radioactive spalla-
tion product extraction, that must be taken
on board.

What is an ADS?

(1) On this topic, see Clefs CEA, No. 37, p. 14

Principle schematic of an ADS.
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The characteristics of the major part of the radioactive waste generated in France are determined by those of the French nuclear
power generation fleet, and of the spent fuel reprocessing plants, built in compliance with the principle of reprocessing such fuel, to
partition such materials as remain recoverable for energy purposes (uranium and plutonium), and waste (fission products and minor
actinides), not amenable to recycling in the current state of the art.
58 enriched-uranium pressurized-water reactors (PWRs) have been put on stream by French national utility EDF, from 1977
(Fessenheim) to 1999 (Civaux), forming a second generation of reactors, following the first generation, which mainly comprised 8 UNGG
(natural uranium, graphite, gas) reactors, now all closed down, and, in the case of the older reactors, in the course of decommis-
sioning. Some 20 of these PWRs carry out the industrial recycling of plutonium, included in MOX fuel, supplied since 1995 by the
Melox plant, at Marcoule (Gard département, Southern France).
EDF is contemplating the gradual replacement of the current PWRs by third-generation reactors, belonging to the selfsame pres-
surized-water reactor pathway, of the EPR (European Pressurized-Water Reactor) type, designed by Areva NP (formerly Framatome–ANP),
a division of the Areva Group. The very first EPR is being built in Finland, the first to be built in France being sited at Flamanville
(Manche département, Western France).
The major part of spent fuel from the French fleet currently undergoes reprocessing at the UP2-800(1) plant, which has been opera-
ted at La Hague (Manche département), since 1994, by Areva NC (formerly Cogema,) another member of the Areva Group (the UP3
plant, put on stream in 1990–92, for its part, carries out reprocessing of fuel from other countries). The waste vitrification workshops
at these plants, the outcome of development work initiated at Marcoule, give their name (R7T7) to the “nuclear” glass used for the
confinement of long-lived, high-level waste.
A fourth generation of reactors could emerge from 2040 (along with new reprocessing plants), a prototype being built by 2020. These
could be fast-neutron reactors (i.e. fast reactors [FRs]), either sodium-cooled (SFRs) or gas-cooled (GFRs). Following the closing
down of the Superphénix reactor, in 1998, only one FR is operated in France, the Phénix reactor, due to be closed down in 2009.

The industrial context 1

(1) A reengineering of the UP2-400 plant, which, after the UP1 plant, at Marcoule, had been intended to reprocess spent fuel from the UNGG pathway.
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