Soil-plant transfer

Soil-plant transfer is an important link in the
contamination of the human food chain by both
radioactive and non-radioactive pollutants. This
transfer is determined by many factors depending on
the nature of the pollutant load, the soil composition
and the physiology of plant species. In addition, these
factors are sometimes inter-linked. The soil-plant
transfer is often expressed by the transfer factor,
defined as the ratio of concentrations in the plant or
in a plant part, to those in the surrounding soil at
equilibrium. There are a great many different transfer
factors according to the pollutant, the soil, the plant
species, the plant cover, the season(!) and the time
elapsed since the pollution occurred. This simple
parameter can be used to compare different elements
or soil-plant systems, but provides no mechanistic
insight or prediction of bioavailability.

The nature of the pollutant deposition,
an important factor

The soil deposition of the pollutant, often uneven and
superficial, with a low vertical penetration, can for a
long time limit contact with roots and thereby root
uptake. Conversely, marked accumulation of an element
at the soil surface favours the contamination of the aerial
parts through spattered soil. The assimilation of the
element by leaf absorption is then possible — this
happened after the Chernobyl disaster — but the
consumption of the adherent soil is often a more
significant route of entry into the food chain. The
chemical and physical forms of the deposit are also
decisive. Only elements in solution are mobile and
interact instantly with soil components. The mobility
of particulate deposits depends on the kinetics of
dissolution, and so also on the properties of the soil, for
example the pH, water content and redox conditions.

Soil composition, a key variable

To alarge extent, the bioavailability of elements in the
soil is a function of their mobility and therefore the
ability of the soil to slow their movement in solution
by a tortuous flow path, and above all to immobilise
them by adsorption, reaction and precipitation. This
immobilisation is often expressed by the distribution
factor (Kd) defined as the ratio of solid phase con-
centration to solution concentration. The value of the
distribution factor depends on the nature of the ele-
ment and on the soil composition, in particular its
pH, redox conditions, the nature of mineral and organic
surfaces, and the concentration of homologous cations
that compete for adsorption (Figure p. 10). For exam-
ple, the distribution factor values measured for tech-
netium range from near zero dm?/kg, for pertechnetate
(TcO3) in soils in oxidising conditions, to several hun-
dred dm?/kg, in reducing conditions in soils rich in
organic matter. Likewise, the distribution factor values
for the radioactive isotopes of casium can fluctuate
from less than 100 dm?/kg for organic soils containing
little clay to more than 10° dm?/kg for clay-rich soils
with a predominance of illites®). Although a single dis-
tribution factor value is often measured for a given soil,
it is important to note that a strong spatial and tem-
poral variability of this factor is possible. In particular,
the rhizosphere, a soil zone influenced by the action of
roots and their associated microflora, differs from the
rest of the soil. There are steep gradients of redox poten-
tial, pH and concentration of nutrients and pollutants.
The result is a modification of exchange equilibria and
sometimes a rapid alteration of soil minerals.

(1) The faster the vegetation grows, the more of a deposit
is intaken.

(2) Mlite: a potassium clay mineral with a foliated structure.
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Sunflowers. The danger

of human contamination

by pollutants, irrespective

of whether or not they are
radioactive, derives partly from
their entry into the food chain.
The soil-plant transfer is an
essential link in this entry.
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From source to man

Figure.

The studies of transfer
of radionuclides from
the soil to plants take
into account the different
soil compartments.
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Plant physiology, the third essential
component

Lastly, the soil-plant transfer also depends on the plant
species. The density, architecture and vertical root dis-
tribution determine the probability of a pollutant
meeting a root. At the root-soil solution interface, pol-
lutants and nutrients are adsorbed and absorbed by
the roots. As with nutrition, the degree of mycorhiza-
tion(® influences the uptake of pollutants (Figure).
However, the conclusions concerning the effect of
mycorhizal infection on the contamination of host
plants are often conflicting, because the pollutants can
be stored in the hyphae®. Root efflux(®) limits the
accumulation on the roots and only a fraction of the
element taken up is bound to the edible parts of the

plant. All these processes depend on the plant species
and its physiological state (age, nutrition, etc.). Whether
the absorption is passive or active through specific
carriers, the pollutants are taken up by the same mech-
anisms as nutrients — present in large or in trace
amounts — that have similar properties. The compe-
tition among chemical species in biological mem-
branes depends on the plant species and also on its
physiological state and so on the number of active
membrane carriers.

Radionuclides: limited assimilation

In general, radionuclides are present in very low chem-
ical concentrations, and so are only weakly toxic, a
notable exception being uranium. Thus there is less
selection pressure favouring biological discrimination
for radionuclides than for toxic chemical pollutants.
The concentration of uranium in soils is insufficient
for plants to develop systems to limit its assimilation.
Recently molecular tools of plant physiology have
allowed close study of the mechanisms that determine
uptake and redistribution of pollutants in plants,
thereby offering a better understanding of the origin
of the variations in their bioavailability.

> Siobhan Staunton
National Agronomic Research Institute (Inra)
Montpellier (Hérault)

(3) Mycorhization: symbiotic association of a lower fungus
with the roots of a plant.

(4) Hypha: a filament that is an elementary constituent of the
mycelium (vegetative apparatus) of a fungus.

(5) Root efflux: excretory flow of materials from a plant
through its roots to the soil.
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N | and artificial radioactivity

Everything on the earth’s surface has
always been exposed to the action
of ionising radiation from natural sources.
Natural radiation, which accounts for
85.5% of total radioactivity (natural plus
artificial), is made up of 71% telluric radi-
ation and about 14.5% cosmic radiation.
The radionuclides formed by the
interaction of cosmic rays arriving from
stars, and especially the Sun, with
the nuclei of elements present in the
atmosphere (oxygen and nitrogen) are,
in decreasing order of dose (Box F, From
rays to dose) received by the population,
carbon-14, beryllium-7, sodium-22 and
tritium (hydrogen-3). The last two are
responsible for only very low doses.
Carbon-14, with a half life of 5,730 years,
is found in the human body. Its activity
per unit mass of carbon has varied over
time: it has diminished as carbon dioxide
emissions from the combustion of fossil
fuels have risen, then was increased by
atmospheric nuclear weapon tests.
Beryllium-7, with a half life of 53.6 days,
falls onto the leaf surfaces of plants
and enters the body by ingestion (Box B,
Human exposure routes). About 50 Bq
(becquerels) per person per year of
beryllium-7 are ingested.

The main or “primordial” radionuclides
are potassium-40, uranium-238 and
thorium-232. Along with their radioactive
decay products, these elements are
present in rocks and soil and are
therefore found in many building
materials. Their concentrations are
generally very low, but vary according to
the nature of the mineral. The gamma
radiation emitted by these radionuclides
forms the telluric radiation, which is
responsible for the external exposure
of the body. The primordial radionuclides
and many of their long-lived descendants

are also found in trace amounts in
drinking water and plants: this results
in an internal exposure by ingestion, plus
an additional low exposure by inhalation
of airborne suspended dust particles.
Potassium-40 is a beta and gamma
emitter with a half life of 1.2 thousand
million years, and has no radioactive
descendants. This radioactive isotope
makes up 0.0118% of all natural
potassium, and enters the body by
ingestion. The mass of natural potassium
in the human body is independent of the
quantity ingested.

Uranium-238 is an alpha emitter with
a half life of 4.47 thousand million
years. It has thirteen main alpha-,
beta- and gamma-emitting radioactive
descendants, including radon-222
(3.82 days) and uranium-234 (0.246 mil-
lion years). Uranium-238 and its two
descendants thorium-234 (24.1 days)
and protactinium-234m!") (1.18 min),
and uranium-234 are essentially incor-
porated by ingestion and are mainly
concentrated in the bones and kidneys.
Thorium-230, derived from uranium-
234, is an alpha emitter with a period
of 80,000 years. It is an osteotrope,
but enters the body mainly by the pul-
monary route (inhalation). Radium-226,
a descendant of thorium-230, is an
alpha emitter with a half life of
1,600 years. Itis also an osteotrope and
enters the body mainly via food. Another
osteotrope, lead-210 (22.3 years), is
incorporated by inhalation though
mostly by ingestion.

Thorium-232 is an alpha emitter with
a half life of 14.1 thousand million

(1) m for metastable. A nuclide is said
metastable when a transition delay exists
between the excited state of the atom and
the stable one.

years. It possesses ten main alpha-,
beta- and gamma-emitting radioactive
descendants including radon-220 (55 ).
Thorium-232 enters the body mainly
by inhalation. Radium-228, a direct
descendant of thorium-232, is a beta-
emitter with a half life of 5.75 years. It
enters the body mainly in food.

Radon, a gaseous radioactive descen-
dant of uranium-238 and thorium-232,
emanates from the soil and building
materials, and along with its short-Lived
alpha-emitting descendants constitutes
a source of internal exposure through
inhalation. Radon is the most abundant
source of natural radiation (about 40%
of total radioactivity).

The human body contains nearly 4,500 Bq
of potassium-40, 3,700 Bq of carbon-14
and 13 Bq of radium-226 essentially
imported in food.

Natural radiation is supplemented by an
anthropic component, resulting from the
medical applications of ionising radia-
tion and to a lesser extent from the
nuclear industry. It accounts for about
14.5% of the total radioactivity world-
wide, but much more in the developed
countries. In the medical field (more than
1 mSv/year on average in France), irra-
diation by external sources predo-
minates: radiodiagnosis (X-rays) and
radiotherapy, long based on caesium-
137 and cobalt-60 sources, but now more
and more often using linear accelera-
tors. Irradiation by internal routes (curie-
therapy with iridium-192) has more
specialised indications (cervical cancer,
for example). The metabolic and physico-
chemical properties of some twenty
radionuclides are put to use for medical
activities and in biological research. The
medical applications comprise radio-
diagnostics (scintigraphy and radio-




N (next]

immunology), and treatment, including
thyroid disorders using iodine-131,
radioimmunotherapy in certain blood
diseases (phosphorus-32) and the
treatment of bone metastasis with stron-
tium-89 or radiolabelled phosphonates
alongside other uses of radiopharma-
ceuticals. Among the most widely used
radionuclides are: technetium-99m
(half life 6.02 hours) and thallium-201
(half life 3.04 days)] (scintigraphy), iodine-
131 (half life 8.04 days) (treatment of
hyperthyroidism), iodine-125 (half life
60.14 days) (radioimmunology), cobalt-
60 (half life 5.27 years) (radiotherapy),
and iridium-192 (half life 73.82 days)
(curietherapy). The average contribution
of radiological examinations to total
radioactivity amounts to 14.2%.

The early atmospheric nuclear weapon
tests scattered fallout over the whole
of the earth’s surface and caused
the exposure of populations and the
contamination of the food chain by
a certain number of radionuclides,
most of which, given their short
radioactive half lives, have now vanished.
There remain caesium-137 (30 years),
strontium-90 (29.12 years), some
krypton-85 (10.4 years) and tritium
(12.35 years), and the isotopes of
plutonium (half lives 87.7 years to
24,100 years). Currently, the doses
corresponding to the fallout from
these tests are essentially attributable
to fission products (caesium-137) and
to carbon-14, rather than activation
products and plutonium.

In the Chernobyl accident (Ukraine),
which occurred in 1986, the total
radioactivity dispersed into the atmos-
phere was of the order of 12 milliard
milliard (10'8) becquerels over a period
of 10 days. Three categories of radionu-

clides were disseminated. The first con-
sisted of volatile fission products such
as iodine-131, iodine-133 (20.8 hours),
caesium-134 (2.06 years), caesium-137,
tellurium-132 (3.26 days). The second
was composed of solid fission products
and actinides released in much smaller
amounts, in particular the strontium
isotopes #Sr (half life 50.5 days) and
90Sr, the ruthenium isotopes '®*Ru
(half life 39.3 days) and "®Ru (half
life 368.2 days), and plutonium-239
(24,100 years). The third category was
rare gases which although they repre-
sented most of the activity released,
were rapidly diluted in the atmosphere.
They were mainly xenon-133 (5.24 days)
and krypton-85.

The contributions of the early atmos-
pheric nuclear weapon tests and the
Chernobyl accident to the total radio-
activity are roughly 0.2% (0.005 mSv) and
0.07% (0.002 mSv) respectively.

The whole of the nuclear-powered
electricity production cycle represents
only about 0.007% of total radioactivity.
Almost all the radionuclides remain
confined inside the nuclear reactors
and the fuel cycle plants. In a nuclear
reactor, the reactions that take place
inside the fuel yield transuranics.
Uranium-238, which is non-fissile,
can capture neutrons to give in particu-
lar plutonium isotopes 2*’Pu, 240Pu
(half life 6,560 years) and ?*'Pu (half
life 14.4 years), and americium-241
(432.7 years). The main fission products
generated by the fission of uranium-235
(704 million years) and plutonium-239
are iodine-131, caesium-134, caesium-
137, strontium-90 and selenium-79
(1.1 million years).

The main radionuclides present in
releases, which are performed in a

Classical scintigraphy performed at the
Frédéric-Joliot Hospital Service (SHFJ). The
gamma-ray camera is used for functional
imaging of an organ after administration,
usually by the intravenous route, of a
radioactive drug (radiopharmaceutical) to
the patient. The radionuclides used are
specific to the organ being studied: for
example, technetium-99m for the kidneys
and bones, thallium-201 for the myocardium.
The injected radiopharmaceutical emits
gamma photons, which are captured by

two planar detectors placed at 180° or 45°
according to the examination.

very strict regulatory framework are,
in liquid release, tritium, cobalt-58
(70.8 days), cobalt-60, iodine-131,
caesium-134, caesium-137 and silver-
110m (249.9 days). In gaseous releases
carbon-14 is the most abundant
radionuclide, emitted most often as
carbon dioxide. In all the reactors in the
world, the total production of radiocarbon
dioxide amounts to one tenth of the
annual production formed naturally by
cosmic radiation.

In addition, certain radionuclides
related to the nuclear industry exhibit
chemical toxicity (Box D, Radiological
and chemical toxicity).
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Bl Human exposure routes

H uman exposure, i.e., the effect on
the body of a chemical, physical
or radiological agent (irrespective of
whether there is actual contact), can
be external or internal. In the case of
ionising radiation, exposure results in
an energy input to all or part of the body.
There can be direct externalirradiation
when the subject is in the path of
radiation emitted by a radioactive
source located outside the body. The
person can be irradiated directly or after
reflection off nearby surfaces.

Theirradiation can be acute or chronic.
The term contamination is used to
designate the deposition of matter (here
radioactive) on structures, surfaces,
objects or, as here, a living organism.
Radiological contamination, attributable
to the presence of radionuclides, can
occur by the external route from the

receptor medium (air, water]) and
vector media (soils, sediments, plant
cover, materials) by contact with skin
and hair (cutaneous contamination),
or by the internal route when the
radionuclides are intaken, by inhalation
(gas, particles) from the atmosphere,
by ingestion, mainly from foods and
beverages (water, milk), or by pen-
etration (injury, burns or diffusion
through the skin). The term intoxication
is used when the toxicity in question is
essentially chemical.

In the case of internal contamination,
the dose delivered to the body over time
(called the committed dose) is calcu-
lated for 50 years in adults, and until
age 70 years in children. The para-
meters taken into account for the cal-
culation are: the nature and the intaken
quantity of the radionuclide (RN]), its

chemical form, its effective half lifel)
in the body (combination of physical and
biological half lives), the type of radi-
ation, the mode of exposure (inhalation,
ingestion, injury, transcutaneous), the
distribution in the body (deposition in
target organs or even distribution), the
radiosensitivity of the tissues and the
age of the contaminated subject.

Lastly, the radiotoxicity is the toxicity
due to the ionising radiation emitted by
the inhaled or ingested radionuclide.
The misleading variable called potential
radiotoxicity is a radiotoxic inventory
that is difficult to evaluate and made
imprecise by many uncertainties.

(1) The effective half life (Te) is
calculated from the physical half life (Tp)
and the biological half life (Tb)
byl/Te=1/Tp+1/Tb.
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IH From rays to dose

Radioactivity is a process by which
certain naturally-occurring or
artificial nuclides (in particular those
created by fission, the splitting of a
heavy nucleus into two smaller ones)
undergo spontaneous decay, with a
release of energy, generally resulting
in the formation of new nuclides.
Termed radionuclides for this reason,
they are unstable owing to the number
of nucleons they contain (protons and
neutrons) or their energy state. This
decay process is accompanied by
the emission of one or more types of
radiation, ionising or non-ionising,
and (or) particles. lonising radiation
is electromagnetic or corpuscular
radiation that has sufficient energy to
ionise certain atoms of the matter in
its path by stripping electrons from
them. This process can be direct (the
case with alpha particles) or indirect
(gamma rays and neutrons).

Alpha radiation, consisting of helium-4
nuclei (two protons and two neutrons),
has low penetrating power and is
stopped by a sheet of paper or the
outermost layers of the skin. Its path
in biological tissues is no longer than
a few tens of micrometres. This
radiation is therefore strongly ionising,
i.e., it easily strips electrons from the
atoms in the matter it travels through,
because the particles shed all their
energy over a short distance. For
this reason, the hazard due to

radionuclides that are alpha emitters
is internal exposure.

Beta radiation, made up of electrons
(beta minus radioactivity) or positrons
(beta plus radioactivity), has moderate
penetrating power. The particles
emitted by beta emitters are stopped
by a few metres of air, aluminium foil,
or a few millimetres of biological
tissue. They can therefore penetrate
the outer layers of the skin.

Gamma radiation composed of high
energy photons, which are weakly
ionising but have high penetrating
power (more than the X-ray photons
used in radiodiagnosis), can travel
through hundreds of meters of air.
Thick shielding of concrete or lead is
necessary to protect persons.

The interaction of neutron radiation
israndom, and so it is stopped only by
a considerable thickness of concrete,
water or paraffin wax. As it is electri-
cally neutral, a neutron is stopped in
air by the nuclei of light elements, the
mass of which is close to that of the
neutron.

e The quantity of energy delivered by
radiation is the dose, which is evalu-
ated in different ways, according to
whether it takes into account the quan-
tity of energy absorbed, its rate of deliv-
ery, or its biological effects.

e The absorbed dose is the quantity
of energy absorbed at a point per
unit mass of matter (inert or living),

according to the definition of the
International Commission on Radiation
Units and Measurements (ICRU). It is
expressed in grays (Gy): 1 gray is equal
toanabsorbed energy of 1 joule per kilo-
gramme of matter. The organ absorbed
dose is obtained by averaging the doses
absorbed at different points according
to the definition of the International
Commission on Radiological Protection
(ICRP).

e The dose rate, dose divided by time,
measures the intensity of the irradiation
(energy absorbed by the matter per unit
mass and per unit time). The legal unit
is the gray per second (Gy/s), but the
gray per minute (Gy/min) is commonly
used. Also, radiation has a higher
relative biological effectiveness (RBE)
if the effects produced by the same
dose are greater or when the dose
necessary to produce a given effect
is lower.

e The dose equivalent is equal to the
dose absorbed in a tissue or organ
multiplied by a weighting factor, which
differs according to the nature of the
radiation energy, and which ranges from
1 to 20. Alpha radiation is considered
to be 20 times more harmful than
gamma radiation in terms of its
biological efficiency in producing random
(or stochastic) effects. The equivalent
dose is expressed in sieverts (Sv).

e The effective dose is a quantity
introduced to try to evaluate harm
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I (next)

Technicians operating remote handling equipment on a line at the Atalante facility at CEA Marcoule. The shielding of the lines stops radiation.
The operators wear personal dosimeters to monitor the efficacy of the protection.

in terms of whole-body stochastic
effects. It is the sum of equivalent doses
received by the different organs and
tissues of an individual, weighted by
a factor specific to each of them
(weighting factors) according to its
specific sensitivity. It makes it possible
to sum doses from different sources,
and both external and internal
radiation. For internal exposure
situations (inhalation, ingestion), the
effective dose is calculated on the
basis of the number of becquerels

incorporated of a given radionuclide
(DPUI, dose per unit intake). It is
expressed in sieverts (Sv).

* The committed dose, as a result of
internal exposure, is the cumulated
dose received in fifty years (for workers
and adults) or until age 70 (for those
aged below 20) after the year of
incorporation of the radionuclide,
unless it has disappeared by physical
shedding or biological elimination.

e The collective dose is the dose
received by a population, defined

as the product of the number of
individuals (e.g., those working in a
nuclear plant, where it is a useful
parameter in the optimisation and
application of the ALARA system] and
the average equivalent or effective
dose received by that population, or as
the sum of the individual effective
doses received. It is expressed in man-
sieverts (man.Sv). It should be used
only for groups that are relatively
homogeneous as regards the nature
of their exposure.

Foulon/CEA
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B Radiological and chemical toxicity

he chemical toxics linked to the

nuclear industry include uranium
(U), cobalt (Co), boron (B), used for its
neutron-absorbing properties in the
heat-exchange fluids of nuclear power
plants, beryllium (Be), used to slow
neutrons, and cadmium (Cd), used to
capture them. Boron is essential for the
growth of plants. Cadmium, like lead
(Pb), produces toxic effects on the central
nervous system. When the toxicity of an
element can be both radiological and
chemical, for example that of plutonium
(Pu), uranium, neptunium, technetium
or cobalt, it is necessary whenever
possible to determine what toxic
effects are radiological, what are
chemical, and what can be either
radiological or chemical (see Limits of
the comparison between radiological and
chemical hazards).
For radioactive elements with long
physical half lives, the chemical tox-
icity is a much greater hazard than the
radiological toxicity, as exemplified by
rubidium (Rb) and natural uranium.

Thus the chemical toxicity of uranium,
which is more important than its radio-
logical toxicity, has led the French regu-
lators to set the ingested and inhaled
mass limits for uranium in chemical
compounds at 150 mg and 2.5 mg per
day respectively, regardless of the iso-
topic composition of the element.

Certain metals or metalloids that are
non-toxic at low concentrations can
become toxic at high concentrations or
in their radioactive form. This is the
case for cobalt, which can be genotoxic,
selenium (Se) (naturally incorporated
in proteins or RNA), technetium (Tc)
and iodine (I).

Two-dimensional gel electrophoresis image analysis carried out in the course of nuclear
toxicology work at CEA Marcoule Centre in the Rhone Valley.

Cyrille Dupont/CEA
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