
Current waste conditioning processes have demonstrated their effectiveness on an industrial
scale. Major advances have nonetheless been achieved, with the development of processes
having broader applications, and the ability to achieve further waste volume reductions yet.
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New designs: the package at the core of investigations

Waste conditioning operations consist in treating
that waste to bring it to an ultimate form that is

suitable for its future management. The final waste
package ensures the conditioning of waste in a stable,
strong, monolithic form, with mechanical properties
meeting the requirements of handling, transport, sto-
rage, and disposal (see Box C, What stands between
waste and the environment?).
A number of conditioning processes and matrices
are being investigated by CEA, and used on an indus-
trial scale in France, but equally around the world.
These include cementation for sludges, evaporator
concentrates, ashes from incineration, ion-exchange
resins…; bituminization, in particular for the encap-
sulation of sludges and evaporator concentrates from
the treatment of liquid effluents; and vitrification,
for the confinement of fission product (FP) solu-
tions.

Cementation, a long-established 
and widespread process

Cementation is the oldest, and most widespread,
conditioning process in France, and in other coun-
tries, for low- and intermediate-level waste (LILW)
generated by nuclear power plants, spent fuel repro-

cessing facilities, and research centers. Cements,
indeed, combine a number of favorable factors: avai-
lability, low cost, simplicity of use, high mechanical
strength, and, in most cases, stability over time.
Furthermore, the high internal pH of cement sys-
tems allows to precipitate and thus confine many
radionuclides.
Cementation is used to immobilize bulky solid waste
items, and to encapsulate liquid and wet solid waste,
such as evaporator concentrates, chemical co-preci-
pitation sludges produced by liquid effluent treatment
stations, ion-exchange resins used for pool water fil-
tration,powdered waste yielded by the reprocessing of
spent fuel from the UNGG pathway (see Box 1 in
Radioactive waste management research: an ongoing
process of advances)…
Cementation is generally carried out close to the
waste producing site, either by in-container mixing,
or through continuous processes. In the former pro-
cess, cement, waste and additives are separately fed
into the container, mixed in order to obtain a homo-
geneous mixture, then left to stand until set. The
container is then capped, sealed, tested, and, if requi-
red, decontaminated, before it is transported to a sto-
rage facility. With the second method, the cement,
waste, and additives are dosed separately, and fed
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into a mixer. The mixture thus obtained is then pou-
red into the container. Once full, the container is sea-
led, decontaminated, and transported to the storage
facility (see Figure 1).
Research work on encapsulation matrices is carried
out, for the most part, in collaboration with waste pro-
ducers, with a view to increase waste incorporation
rate, and improve confinement performance of the
cementitious materials, bearing in mind two factors:
the significant increase in waste volume, after condi-
tioning (as a rule, this is multiplied by a factor close
to 2), and possible interactions between waste consti-
tuents and cement phases,which may perturb cement
hydration, and thus impair the durability of the mate-
rials obtained.
To remedy such drawbacks,new cement formulations
of the sulfoaluminate type, exhibiting better compa-
tibility with certain types of waste than conventional
calcium silicate cements, have been investigated.
Sulfoaluminate cements are obtained in two steps, first
calcination, at 1,300–1,350 °C, of limestone, bauxite,
gypsum,and possibly recoverable industrial waste (fly
ash, blast-furnace slag…), then intergrinding with
gypsum. Through hydration, they mostly lead to for-
mation of ettringite (3CaO.Al2O3.3CaSO4.32H2O)
and/or hydrated calcium monosulfoaluminate
(3CaO.Al2O3.CaSO4.12H2O),and in smaller amounts,
hydrated calcium silicates and aluminates.
Waste from the treatment of liquid effluents gene-
rally exhibits a complex chemistry, and may contain
high concentrations of borates (B(OH)4

– ions) and
sulfates (SO4

2 – ions). Encapsulation of such waste in
common calcium silicate cement results in major
difficulties. Indeed, the borates inhibit binder set-
ting, and sulfates may cause swelling and cracking
of the hardened material, owing to delayed forma-
tion of ettringite. It is thus often necessary to carry
out pretreatment of the waste so as to restrict its fur-
ther interaction with the cement. The complexity of
the process is increased, as well as the volume of waste
requiring conditioning owing to the addition of pre-
treatment reactants.
Non-expansive sulfoaluminate cements could offer
an interesting alternative since they form at early age
significant amounts of ettringite and/or calcium
monosulfoaluminate, these having the ability to incor-

Figure 1.
Schematic of the ion-exchange resin cementation unit. After settling, the resins are
transferred to the batch mixer, and mixed with cement. The encapsulated waste 
is then discharged into the container through a gate located under the mixer.

porate waste sulfates and borates into their struc-
ture. Laboratory trials, carried out with a sulfoalu-
minate cement as partial substitute for common
cement and a synthetic waste, consisting in chemi-
cal co-precipitation sludge mixed with an evapora-
tor concentrate, with respective sulfate and boron
concentrations of 16 g/L and 5.5 g/L, have led to
significant advances. The borates do not inhibit bin-
der setting, the waste may be cemented with no prior
treatment, and waste incorporation rate can be mul-
tiplied by a factor 1.8 (i.e. 56 wt%). Further, 90% of
the sulfates and boron from the waste remain trap-
ped in the solid fraction, as evidenced by a leaching
test carried out at ambient temperature on ground
encapsulated waste, thus demonstrating their satis-
factory participation in binder hydration reactions.
Use of this type of cement as a substitute for com-
mon cements does not require alteration of existing
cementation facilities. This path will thus be further
explored, to improve formulation of the materials,
extend their application domain, and evaluate long-
term behavior of the encapsulated waste. These
cements could, in particular, offer interesting pro-
spects for the conditioning of heavy metals.

Bituminization, a proven process

Bituminization, widely used in France, for in-line
conditioning of chemical co-precipitation sludges,
yielded by effluent insolubilization treatment, or of
evaporator concentrates, resulting from heat treat-
ment of effluents, is a proven process, benefiting from
considerable feedback. This consists in mixing, in
hot conditions, waste, in the form of sludge, with
bitumen. The mixture obtained is dehydrated, and
poured into a container, in which it is cooled.Bitumen
encapsulation ensures at the same time dehydration
of the waste, its homogeneous dispersion, and immo-
bilization of radionuclides within the matrix. This
process was developed in France as early as the 1960s.
Industrial deployment of the process in line was
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achieved at Marcoule in 1966, in the effluent treat-
ment station, and in 1989 at La Hague, in the STE3
facility (see Figure 2).
The bitumen matrix is manufactured through dis-
tillation of crude oil.Two types of bitumen,essentially,
are employed:pure,or direct-distillation,bitumens,yiel-
ded by refining crude oil, and oxidized, or blown, bitu-
mens, obtained through oxidation, in an air-blowing
process, of heavy oils, or petroleum refining residues.
To date,tens of thousands of bitumen drums have been
produced, mainly at Marcoule and La Hague, for the
bituminization of chemical co-precipitation sludges,
using a direct-distillation bitumen.
In the context of an effluent management policy see-
king to minimize the number, and diversity, of waste

packages produced, bituminization, now-
adays, is restricted to sodium effluents (i.e.,
containing sodium [Na]),and miscellaneous
laboratory effluents, incompatible with vitri-
fication or cementation.
Other specific applications of bituminiza-
tion, drawing on the industrial experience
gained, are being deployed. Thus, opera-
tion, between 1966 and 1989, of the first
effluent treatment station at La Hague, the
STE2 facility, generated some 9,300 m3 of
sludges, stored in silos,while awaiting condi-
tioning. Bearing in mind the chemical simi-
larities between sludges treated in the STE2
and STE3 facilities, the positive feedback
from operation of STE3, and the proven
confinement qualities of bitumen, bitumi-

nization is currently being considered for the condi-
tioning of this legacy waste (see Nuclear waste mana-
gement and processing: between legacy and anticipa-
tion).
A major R&D effort has thus been initiated,to demons-
trate mastery of process safety,and optimize the amounts
of activity that may be incorporated in packages, to
reduce the number of packages to be produced. The
first goal resulted in development of a robust proce-
dure,making it possible to preclude any risk of an inci-
dent during package fabrication and cooling. Indeed,
the presence of oxidizer and reducer compounds may
lead,during drum cooling, to initiation of exothermic
reactions within the encapsulated waste. The main
compounds that are reactants at encapsulation tem-
peratures, cobalt salts and nitrates, have been identi-
fied, and reaction kinetics ascertained. Concurrently,
drum cooling was modeled, using penalizing values
as input data, to achieve an “envelope” simulation of
the maximum temperature reached inside the drum.
These investigations have made it possible to guaran-
tee, in all cases,a safe domain of operation for the pro-
cess.
Due to the effects of alpha, beta, and gamma radia-
tion, bitumen undergoes transformations, taking the
form of alterations in the hydrocarbon molecules,
concomitant with release of radiolysis gases, mainly
hydrogen, which may cause swelling of the encap-
sulant. The quantity of hydrogen formed depends
on the activity held by the encapsulant. Empirical
investigations have highlighted a significant fall in
hydrogen production in the presence of cobalt salts.
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Figure 2.
Schematic of Areva’s bituminization encapsulation unit at La Hague. This facility comprises a preparation and sludge feed unit, a surfactant
tank, a bitumen production and supply installation, a Werner extruder (shown here), a pouring station, a drum filling station, and fume and
distillate treatment equipment.
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After a stage of ascertaining the mechanism, and
empirically determining the trapping capacity of
cobalt salts, the optimization of, and control of condi-
tions for, fabrication of encapsulants doped with
cobalt salts was successfully achieved, on various sca-
les (laboratory, semi-industrial, industrial). This veri-
fied trapping process could thus be taken on board,
for the determination of maximum allowable acti-
vity for bituminized sludge packages. This has allo-
wed a reduction by a factor of about 3 of the num-
ber of drums to be produced.
Taken together, these findings form the support for the
experimental campaign of bituminization of STE2
sludges, initiated at the end of 2005 by Areva.

Vitrification, a mature process

From the late 1950s, it was found indispensable to
condition high-level waste (HLW) yielded by spent
fuel reprocessing operations. Indeed, such FP solu-
tions, while they only account for a limited volume,
bear 96% of the radioactivity. Quite swiftly, the glass
matrix won acceptance for the conditioning of such
waste, both in France and in other countries (United
States,Russia,the United Kingdom,Germany,Japan…).
Indeed,glass confines radionuclides,not through encap-
sulation, but by the setting up of chemical bonds with
the oxide constituents forming the glass’s amorphous
structure.
An initial industrial vitrification line was thus put on
stream at Marcoule in 1978 (AVM: Atelier de vitrifi-
cation de Marcoule – Marcoule Vitrification plant), for
the conditioning of FP solutions yielded by the repro-
cessing of spent fuel from UNGG reactors. Six other
lines are in operation at present, in the R7 and T7 faci-
lities at La Hague, starting in 1989 and 1992 respecti-
vely, for the vitrication of FPs from pressurized-water
reactors.These facilities allow vitrification of FP solu-
tions yielded by current spent fuel reprocessing acti-
vities, and stand as a world industrial reference.
The continuous vitrification process, currently ope-
rated on an industrial basis, comprises two distinct
steps. A step of calcination of liquid FP solutions, at
around 400 °C, is followed by a melting step at around
1,100 °C, in an induction-heated metal crucible, in
which the vitrification additive (glass frit) and cal-
cined FP solution (calcine) are mixed, prior to pou-
ring into a metal container. The glass thus fabrica-
ted holds between 12 wt% and 18 wt% HLW waste
(see Figure 3).
Over 15 years, operation on an industrial basis of
these facilities has brought a unique operational feed-
back, demonstrating the maturity of the French vitri-
fication process. Materials and processes, however,
needs must go on being adjusted to meet require-
ments, such as optimization of the number of glass
packages, with regard to the changing characteris-
tics of the fuel being reprocessed (high burnup rates,
accompanied by rising alpha-emitter content in glas-
ses), confinement of FP solutions yielded by the
reprocessing of legacy fuel, and treatment of inter-
mediate-level waste (ILW-LL)… (see Industrial solu-
tions for long-lived, high- and intermediate-level waste).
To meet such requirements, experiments with doped
glasses are being carried out, and new glass formu-
lations, optimized for the nature of the waste to be

conditioned, together with new vitrification tech-
nologies, allowing access to higher melting tempe-
ratures, are being developed.

Direct-induction cold-crucible furnace
technology
Compared with the current process, the cold-crucible
melting technology brings major benefits. First of all,
cooling the melting furnace allows a thin layer of soli-
dified glass to form, protecting the crucible and pre-
cluding corrosion from the molten glass.Second,hea-
ting by direct induction within the molten glass bath
allows higher fabrication temperatures to be achieved,
thus enabling design of novel, higher-performance
waste-confinement matrices (see Box).
Thus, a glass ceramic matrix, which may be fabrica-
ted at 1,250 °C,having the ability to hold up to 13 wt%,
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Figure 3.
Current two-step vitrification
process.
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The technological test platform set up in 2001 by CEA and Areva, to demonstrate 
the feasibility of the advanced cold crucible technology (CFA: creuset froid avancé).

cold crucible (diameter: 1.1 m) pouring glass station gas treatment equipment.321
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of molybdenum oxide (MoO3), and 4 wt% phospho-
rus oxide (P2O5), was developed for the conditio-
ning of UMo solutions, yielded by the reprocessing
of UNGG fuel, consisting in uranium metal, alloyed
with molybdenum. Likewise, glass formulations of
the rare-earth borosilicate type, lending themselves
to fabrication at 1,250 °C, and exhibiting the ability
to contain up to 22 wt% of waste, are being investi-
gated for high-burnup fuel. Concurrently, demons-
trations of glass formulation feasibility, and of mas-
tery of the cold-crucible melting process have been
carried out, for the treatment of HLW effluents in
disposal at the Hanford (United States), Guangyuan
(China), Aldermaston (United Kingdom), and
Saluggia (Italy) sites. A tripartite working group,
bringing together Cogema, SGN and CEA, has spe-
cified the main technological design options for a
pilot cold crucible suited to a high-activity-level
nuclear environment. A replica of the model to be
installed at La Hague, by 2010, on a vitrification line,
to replace existing technology, will soon be functio-
ning in the R&D halls at Marcoule.
The next stage in the evolution of the vitrification pro-
cess consists in eliminating the calcination step, with
the direct feeding of the FP solution to the glass bath.
This will contribute to minimization of secondary
waste, and greater ease of maintenance inside a shiel-
ded cell. To ensure evaporation, drying, calcination
and melting directly within the furnace, its diameter
must be increased. A new large-diameter cold-cruci-
ble furnace design is being developed, and a test plat-
form, including an Advanced Cold Crucible (CFA:
Creuset froid avancé) of 1.1 m diameter was put in ser-
vice in 2001. The increased furnace surface means a
higher capacity, and thus the ability to treat, in condi-
tions compatible with industrial operation, ILW-LL
waste, taking up a larger volume as it does than FP
solutions.

Incineration–vitrification processes
The advantages of vitrification may be extended to
other types of waste, in particular incinerable waste,
by combining burning the waste and the subsequent
vitrification of the ashes into one single process.
Incineration–vitrification processes consist,on the one
hand, in burning the incinerable materials over a mol-
ten glass bath, and, on the other, in incorporating the

Cold crucible, developed for Areva industrial applications, 
at La Hague.
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Direct-induction melting consists in placing the glass that is to be heated
inside an alternating electromagnetic field, generated by an inductor. This
field causes induced currents, which dissipate energy by the Joule effect
inside the material, resulting in its melting. With direct induction, the point
is to heat the material to be melted, directly, without heating the crucible.
The latter, on the contrary, is cooled by water circulation, and sectorized,
to ensure relative transparency to the electromagnetic field.
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oxidized ashes into the glass bath, thus ensuring dura-
ble confinement of the radionuclides initially held in
the material.
The SHIVA process (Système hybride d’incinéra-
tion–vitrification avancé – Advanced Hybrid Inci-
neration–Vitrification System), consisting in a cold
crucible fitted with a plasma torch above the glass bath,
has been developed (see Figure 4). The oxygen plasma
allows better materials incineration, in particular the
oxidation of metal constituents that may occur in the
waste, this subsequently enhancing the reactivity of the
ashes with the vitrification additive. Combination of
the two heating modes (plasma torch, and cold cruci-
ble) thus allows separate management of the incine-
ration and vitrification functions, within one reactor,
and brings flexibility of operation.
This process could be used for the incineration–vitri-
fication of technological waste, such as heavily loa-
ded ion-exchange resins, plastics and cellulose, or
concentrated solutions bearing salts compatible with
a glass formulation.

Conditionings for the entire range of waste
types

Since the 1960s, processes have been developed for
waste conditioning in a number of matrices, and
have been successfully deployed on an industrial
scale. Over the past decade, investigations on impro-
vements to existing conditioning modes have resul-
ted in the development of processes to cater for all
types of waste, while optimizing the volume of waste
produced.
Thus, new cement formulations, allowing manage-
ment of waste incompatible with current cements,
have been specified. The adaptation of the bitumi-
nization process for the conditioning of legacy slud-
ges, at La Hague, makes it possible to contemplate
the retrieval, on an industrial basis, of these sludges.
A cold-crucible melting furnace for high-level solu-
tions is to be installed, around 2010, on a vitrifica-
tion line of the R7 facility, at La Hague. This process
allows the fabrication of new glass formulations,
whether it be for the retrieval of legacy waste, or for
future waste. A compact incineration–vitrification
process has been developed, and a pilot is in place at
Marcoule.
These investigations are carried out in constant col-
laboration with waste producers, Areva in particu-
lar, to provide support for the changes in plants, and
in the nature of the waste to be conditioned.

> Catherine Fillet, Céline Cau Dit Coumes,
Christophe Joussot-Dubien and Roger Boën

Nuclear Energy Division
CEA Valrhô-Marcoule Center

The SHIVA advanced hybrid incineration–vitrification system was developed for the treatment
of an even wider range of waste.
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Figure 4.
In the SHIVA process, association of a cold crucible and a plasma torch positioned above 
the glass bath allows separate management of the incineration and vitrification functions 
in one reactor.
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According to the International Atomic
Energy Agency (IAEA), radioactive

waste may be defined as “any material for
which no use is foreseen and that contains
radionuclides at concentrations greater
than the values deemed admissible by the
competent authority in materials suitable
for use not subject to control.” French law
in turn introduces a further distinction,
valid for nuclear waste as for any other
waste, between waste and final, or “ulti-
mate,” waste (déchet ultime). Article L.
541-1 of the French Environmental Code
thus specifies that “may be deemed as
waste any residue from a process of pro-
duction, transformation or use, any sub-
stance, material, product, or, more gene-
rally, any movable property left derelict or
that its owner intends to leave derelict,”
further defining as ultimate “waste, be it
the outcome of waste treatment or not,
that is not amenable to further treatment
under prevailing technological and eco-
nomic conditions, in particular by extrac-
tion of the recoverable, usable part, or
mitigation of its polluting or hazardous
character.”
Internationally, experts from IAEA and the
Nuclear Energy Agency (NEA) – an OECD
organization – as those in the European
Commission find that long-lived waste pro-
duced in countries operating a nuclear
power program is stored securely nowa-
days, whilst acknowledging a final solu-
tion is required, for the long-term mana-
gement of such waste. They consider burial
in deep geological structures appears, pre-
sently, to be the safest way to achieve final
disposal of this type of waste.

What constitutes radioactive
waste? What are the volumes
currently involved?
Radioactive waste is classified into a num-
ber of categories, according to its level of
radioactivity, and the radioactive period,
or half-life, of the radionuclides it
contains. It is termed long-lived waste
when that period is greater than 30 years,
short-lived waste otherwise. The French
classification system involves the follo-
wing categories:
– very-low-level waste (VLLW); this
contains very small amounts of radionu-
clides, of the order of 10–100 Bq/g (bec-
querels per gram), which precludes consi-
dering it as conventional waste;
– short-lived low and intermediate level
waste (LILW-SL); radioactivity levels for
such waste lie as a rule in a range from

a few hundred to one million Bq/g, of
which less than 10,000 Bq/g is from long-
lived radionuclides. Its radioactivity beco-
mes comparable to natural radioactivity
in less than three hundred years.
Production of such waste stands at some
15,000 m3 per year in France;
– long-lived low-level waste (LLW-LL);
this category includes radium-bearing
waste from the extraction of rare earths
from radioactive ore, and graphite waste
from first-generation reactors;
– long-lived intermediate-level waste
(ILW-LL), this being highly disparate, whe-
ther in terms of origin or nature, with an
overall stock standing, in France, at
45,000 m3 at the end of 2004. This mainly
comes from spent fuel assemblies (clad-
ding hulls and end-caps), or from opera-
tion and maintenance of installations; this
includes, in particular, waste conditioned
during spent fuel reprocessing operations
(as from 2002, this type of waste is com-
pacted, amounting to some 200 m3

annually), technological waste from the
operation or routine maintenance of pro-
duction or fuel-processing plants, from
nuclear reactors or from research cen-
ters (some 230 m3 annually), along with
sludges from effluent treatment (less than
100 m3 annually). Most such waste gene-
rates little heat, however some waste of
this type is liable to release gases;
– high-level waste (HLW), containing fis-
sion products and minor actinides parti-
tioned during spent fuel reprocessing (see
Box B), and incorporated at high tempe-
rature into a glass matrix. Some 120 m3

of “nuclear glass” is thus cast every year.
This type of waste bears the major part
of radioactivity (over 95%), consequently
it is the seat of considerable heat release,
this remaining significant on a scale of
several centuries.
Overall, radioactive waste conditioned in
France amounts to less than 1 kg per year,
per capita. That kilogram consists, for
over 90%, of LILW-SL type waste, bearing
but 5% of total radioactivity; 9% of ILW-
LL waste, less than 1% HLW, and virtually
no LLW-LL waste.

What of the waste of tomorrow?
From 1991, ANDRA compiled, on a yearly
basis, a geographical inventory of waste
present on French territory. In 2001,
ANDRA was asked by government to aug-
ment this “National Inventory,” with the
threefold aim of characterizing extant
stocks (state of conditioning, processing

traceability), predicting future waste pro-
duction trends to 2020, and informing the
public (see An inventory projecting into the
future). ANDRA published this reference
National Inventory at the end of 2004. To
meet requirements for research in com-
pliance with the directions set out in the
French Act of 30 December 1991 (see
Radioactive waste management research:
an ongoing process of advances), ANDRA,
in collaboration with waste producers,
has drawn up a Dimensioning Inventory
Model (MID: Modèle d’inventaire de
dimensionnement), for the purposes of
arriving at estimates of the volume of
waste packages to be taken on board in
research along direction 2 (disposal). This
model, including as it does predictions as
to overall radioactive waste arisings from
the current reactor fleet, over their entire
lifespan, seeks to group waste types into
families, homogeneous in terms of cha-
racteristics, and to formulate the most
plausible hypotheses, with respect to
conditioning modes, to derive the volu-
mes to be taken on board for the purpo-
ses of the investigation. Finally, MID sets
out to provide detailed stocktaking, inten-
ded to cover waste in the broadest pos-
sible fashion. MID (not to be confused with
the National Inventory, which has the
remit to provide a detailed account of
actual waste currently present on French
territory) thus makes it possible to bring
down the variety of package families to a
limited number of representative objects,
and to specify the requisite margins of
error, to ensure the design and assess-
ment of disposal safety will be as robust
as feasible, with respect to possible future
variations in data.
To ensure consistency between investi-
gations carried out in accordance with
direction 2 and those along direction 3
(conditioning and long-term storage), CEA
adopted MID as input data. MID subsu-
mes waste packages into standard pac-
kage types, then computes the number
and volume of HLW and ILW-LL packa-
ges, according to a number of scenarios,
all based on the assumption that current
nuclear power plants will be operated for
40 years, their output plateauing at
400 TWhe per year.
Table 1 shows the numbers and volumes
for each standard package type, for the
scenario assuming a continuation of cur-
rent strategy, with respect to spent fuel
reprocessing: reprocessing of 79,200 UOX
fuel assemblies and storage of 5,400 MOX

What is radioactive waste?
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assemblies discharged from the current
PWR fleet, when operated over 40 years.

What forms does it come in?
Five types of generic packages (also found
in MID) may be considered:
• cementitious waste packages: ILW-LL
waste packages employing hydraulic-bin-
der based materials as a conditioning
matrix, or as an immobilizing grout, or yet
as a container constituent;
• bituminized sludge packages: LLW and
ILW-LL waste packages, in which bitumen
is used as confinement matrix for low- and
intermediate-level residues from treat-
ment of a variety of liquid effluents (fuel
processing, research centers, etc.);
• standard compacted waste packages
(CSD-C: colis standard de déchets compac-
tés): ILW-LL packages obtained through
compaction conditioning of structural waste
from fuel assemblies, and technological
waste from the La Hague workshops;
• standard vitrified waste packages
(CSD-V: colis standard de déchets vitrifiés):

HLW packages, obtained mainly through
vitrification of highly active solutions from
spent fuel reprocessing;
• spent fuel packages: packages consis-
ting in nuclear fuel assemblies discharged
from reactors; these are not considered to
be waste in France.
The only long-lived waste packages to be
generated in any significant amounts by
current electricity production (see Box B)
are vitrified waste packages and standard
compacted waste packages, the other types
of packages having, for the most part,
already been produced, and bearing but a
small part of total radioactivity.

What is happening to this waste at
present? What is to be done in the
long term?
The goal of long-term radioactive waste
management is to protect humankind and
its environment from the effects of the
materials comprised in this waste, most
importantly from radiological hazards. Any
release or dissemination of radioactive

materials must thus be precluded, through
the lasting isolation of such waste from the
environment. This management is guided
by the following principles: to produce as
little waste as practicable; limit its hazar-
dous character as far as feasible; take into
account the specific characters of each
category of waste; and opt for measures
that will minimize the burden (monitoring,
maintenance) for future generations.
As for all nuclear activities subject to control
by the French Nuclear Safety Authority
(Autorité de sûreté nucléaire), fundamental
safety regulations (RFSs: règles fonda-
mentales de sûreté) have been drawn up
with respect to radioactive waste mana-
gement: sorting, volume reduction, pac-
kage confinement potential, manufactu-
ring method, radionuclide concentration.
RFS III-2.f, in particular, specifies the condi-
tions to be met for the design of, and
demonstration of safety for an underground
repository, and thus provides a basic guide
for disposal investigations. Industrial solu-
tions (see Industrial solutions for all low-
level waste) are currently available for nigh
on 85% (by volume) of waste, i.e. VLLW and
LILW-SL waste. A solution for LLW-LL
waste is the subject of ongoing investiga-
tion by ANDRA, at the behest of waste pro-
ducers. ILW-LL and HLW waste, contai-
ning radionuclides having very long
half-lives (in some cases, greater than
several hundred thousand years) are cur-
rently held in storage installations coming
under the control of the Nuclear Safety
Authority. What is to become of this waste
in the long term, beyond this storage phase,
is what the Act of 30 December 1991
addresses (see Table 2).
For all of these waste types, the French
Nuclear Safety Authority is drawing up a
National Radioactive Waste Management
Plan, specifying, for each type, a manage-
ment pathway.

MID standard package types Symbols Producers Categories Number Volume (m3)

Vitrified waste packages CO — C2 Cogema* HLW 42,470 7,410

Activated metal waste packages B1 EDF ILW-LL 2,560 470

Bituminized sludge packages B2 CEA, Cogema* ILW-LL 105,010 36,060

Cemented technological waste packages B3 CEA, Cogema* ILW-LL 32,940 27,260

Cemented hull and end-cap packages B4 Cogema* ILW-LL 1,520 2,730

Compacted structural and technological waste packages B5 Cogema* ILW-LL 39,900 7,300

Containerized loose structural and technological B6 Cogema* ILW-LL 10,810 4,580
waste packages

Total B 192,740 78,400
Total overall 235,210 85,810

Short-lived Long-lived
Half-life < 30 years Half-life > 30 years

for the main elements

Very-low-level Morvilliers dedicated disposal facility (open since 2003)
waste (VLLW) Capacity: 650,000 m3

Low-level waste Dedicated disposal facility under
(LLW) investigation for radium-bearing 

waste (volume: 100,000 m3)
Aube Center and graphite waste

(open since 1992) (volume: 14,000 m3)
Intermediate-level Capacity: 1 million m3

waste (ILW) MID volume estimate: 78,000 m3

High-level waste MID volume estimate: 7,400 m3

(HLW)

Table 1. 
Amounts (number, and volume) of waste packages, as predicted in France for 40 years’ operation of the current fleet of reactors, according to ANDRA’s
Dimensioning Inventory Model (MID).

Table 2. 
Long-term management modes, as currently operated, or planned, in France, by
radioactive waste category. The orange area highlights those categories targeted by
investigations covered by the Act of 30 December 1991.

(1) According to the Dimensioning Inventory Model (MID)

* renamed Areva NC in 2006

(next)
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Most high-level (high-activity) radio-
active waste (HLW) originates, in

France, in the irradiation, inside nuclear
power reactors, of fuel made up from
enriched uranium oxide (UOX) pellets, or
also, in part, from mixed uranium and
plutonium oxide (MOX). Some 1,200 ton-
nes of spent fuel is discharged annually
from the fleet of 58 pressurized-water
reactors (PWRs) operated by EDF, sup-
plying over 400 TWh per year, i.e. more
than three quarters of French national
power consumption.
The fuel’s composition alters, during its
irradiation inside the reactor. Shortly after
discharge, fuel elements contain, on ave-
rage,(1) some 95% residual uranium, 1%
plutonium and other transuranic ele-
ments – up to 0.1% – and 4% of products
yielded by fission. The latter exhibit very
significant radioactivity levels – to the
extent this necessitates management
safety measures requiring major indus-
trial resources – of some 1017 Bq per tonne
of initial uranium (tiU) (see Figure 1).
The uranium found in spent fuel exhibits
a makeup that is obviously different from
that of the initial fuel. The greater the
irradiation, the higher the consumption
of fissile nuclei, and consequently the
greater the extent by which the uranium
will have been depleted of the fissile iso-
tope 235 (235U). Irradiation conditions
usually prevailing in reactors in the French
fleet, with an average fuel residence time
inside the reactor of some 4 years, for a

burnup rate close to 50 GWd/t, result in
bringing down final 235U content to a value
quite close to that of natural uranium
(less than 1%), entailing an energy poten-
tial very close to the latter’s. Indeed, even
though this uranium remains slightly
richer in the fissile isotope than natural
uranium, for which 235U content stands
at 0.7%, the presence should also be
noted, in smaller, though significant,
amounts, of other isotopes having adverse
effects in neutronic or radiological terms
(232U, 236U), that had not figured in the
initial fuel (see Table 1).

The plutonium present in spent fuel is
yielded by successive neutron capture
and decay processes. Part of the Pu is
dissipated through fission: thus about
one third of the energy generated is yiel-
ded by “in situ recycling” of this element.
These processes further bring about the
formation of heavy nuclei, involving, whe-
ther directly themselves, or through their
daughter products, long radioactive half-
lives. These are the elements of the acti-
nide family, this including, essentially,
plutonium (from 238Pu to 242Pu, the odd-
numbered isotopes generated in part
undergoing fission themselves during
irradiation), but equally neptunium (Np),
americium (Am), and curium (Cm), known
as minor actinides (MAs), owing to the

Waste from the nuclear power cycle

(1) These figures should be taken as indicative values. They allow orders of magnitude to be
pinpointed for enriched-uranium oxide fuel, taken from the main current French nuclear power
pathway; they do depend, however, on a number of parameters, such as initial fuel composition and
irradiation conditions, particularly irradiation time.

Figure 1.
The main elements found in spent nuclear fuel.

element isotope half-life
(years) isotope quantity isotope quantity isotope quantity isotope quantity

content (g/tiU) content (g/tiU) content (g/tiU) content (g/tihm)
(%) (%) (%) (%)

234 246,000 0.02 222 0.02 206 0.02 229 0.02 112

235 7.04·108 1.05 10,300 0.74 6,870 0.62 5,870 0.13 1,070
U

236 2.34·107 0.43 4,224 0.54 4,950 0.66 6,240 0.05 255

238 4.47·109 98.4 941,000 98.7 929,000 98.7 911,000 99.8 886,000

238 87.7 1.8 166 2.9 334 4.5 590 3.9 2,390

239 24,100 58.3 5,680 52.1 5,900 48.9 6,360 37.7 23,100

Pu 240 6,560 22.7 2,214 24,3 2,760 24.5 3,180 32 19,600

241 14.4 12.2 1,187 12.9 1,460 12.6 1,640 14.5 8,920

242 3.75·105 5.0 490 7.8 884 9.5 1,230 11.9 7,300

UOX 33 GWd/tiU UOX 45 GWd/tiU UOX 60 GWd/tiU MOX 45 GWd/tihm
(E 235U: 3.5%) (E 235U: 3.7%) (E 235U: 4.5%) (Ei Pu: 8.65%)

Table 1.
Major actinide inventory for spent UOX and MOX fuel after 3 years’ cooling, for a variety of enrichment and burnup rates. Burnup rate and quantity are
expressed per tonne of initial uranium (tiU) for UOX, per tonne of initial heavy metal (tihm) for MOX.
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lesser abundance of these elements, com-
pared with that of U and Pu, the latter being
termed major actinides.
Activation processes affecting nuclei of non-
radioactive elements mainly involve struc-
tural materials, i.e. the materials of the
tubes, grids, plates and end-fittings that
ensure the mechanical strength of nuclear
fuel. These materials lead, in particular,
to formation of carbon 14 (14C), with a half-
life of 5,730 years, in amounts that are
however very low, much less than one gram
per tonne of initial uranium (g/tiU) in usual
conditions.
It is the products yielded by fission of the
initial uranium 235, but equally of the Pu
generated (isotopes 239 and 241), known
as fission products (FPs), that are the
essential source of the radioactivity of
spent fuel, shortly after discharge. Over
300 radionuclides – two thirds of which
however will be dissipated through radio-
active decay in a few years, after irradia-
tion – have been identified. These radio-
nuclides are distributed over some
40 elements in the periodic table, from
germanium (32Ge) to dysprosium (66Dy),
with a presence of tritium from fission, i.e.
from the fission into three fragments (ter-
nary fission) of 235U. They are thus cha-
racterized by great diversity: diverse radio-
active properties, involving as they do some
highly radioactive nuclides having very

short lifespans, and conversely others
having radioactive half-lives counted in
millions of years; and diverse chemical
properties, as is apparent from the ana-
lysis, for the “reference” fuels used in
PWRs in the French fleet, of the break-
down of FPs generated, by families in the
periodic table (see Table 2). These FPs,
along with the actinides generated, are,
for the most part, present in the form of
oxides included in the initial uranium oxide,
which remains by far the majority consti-
tuent. Among some notable exceptions
may be noted iodine (I), present in the form
of cesium iodide, rare gases, such as kryp-
ton (Kr) and xenon (Xe), or certain noble
metals, including ruthenium (Ru), rho-
dium (Rh), and palladium (Pd), which may
form metallic inclusions within the oxide
matrix.
Pu is recycled nowadays in the form of
MOX fuel, used in part of the fleet (some
20 reactors currently). Residual U may in
turn be re-enriched (and recycled as a sub-
stitute for mined uranium). Recycling
intensity depends on market prices for
natural uranium, the recent upturn in
which should result in raising the current
recycling rate (about one third being recy-
cled at present).
Such U and Pu recycling is the foundation
for the reprocessing strategy currently
implemented in France, for the major part
of spent fuel (some two thirds currently).

For the 500 kg or so of U initially contai-
ned in every fuel element, and after par-
titioning of 475 kg of residual U and about
5 kg Pu, this “ultimate” waste amounts
to less than 20 kg of FPs, and less than
500 grams MAs. This waste management
pathway (otherwise know as the closed
cycle), consisting as it does in reproces-
sing spent fuel now, to partition recove-
rable materials and ultimate waste, dif-
fers from strategies whereby spent fuel
is conserved as-is, whether this be due to
a wait-and-see policy (pending a decision
on a long-term management mode), or to
a so-called open cycle policy, whereby
spent fuel is considered to be waste, and
designated for conditioning into contai-
ners, and disposal as-is.
In the nuclear power cycle, as it is imple-
mented in France, waste is subdivided into
two categories, according to its origin.
Waste directly obtained from spent fuel is
further subdivided into minor actinides
and fission products, on the one hand, and
structural waste, comprising hulls (seg-
ments of the cladding tubes that had held
the fuel for PWRs) and end-caps (fittings
forming the end-pieces of the fuel assem-
blies for these same PWRs), on the other
hand. The process used for spent fuel
reprocessing, to extract U and Pu, also
generates technological waste (operatio-
nal waste, such as spare parts, protec-
tion gloves…) and liquid effluents.

UOX 33 GWd/tiU UOX 45 GWd/tiU UOX 60 GWd/tiU MOX 45 GWd/tihm
family (E 235U: 3.5%) (E 235U: 3.7%) (E 235U: 4.5%) (Ei Pu: 8.65%)

quantity (kg/tiU) quantity (kg/tiU) quantity (kg/tiU) quantity (kg/tihm)

rare gases 
(Kr, Xe) 5.6 7.7 10.3 7

alkali metals
(Cs, Rb) 3 4 5.2 4.5

alkaline-earth
metals (Sr, Ba) 2.4 3.3 4.5 2.6

Y and 
lanthanides 10.2 13.8 18.3 12.4

zirconium 3.6 4.8 6.3 3.3

chalcogens
(Se, Te) 0.5 0.7 1 0.8

molybdenum 3.3 4.5 6 4.1

halogens (I, Br) 0.2 0.3 0.4 0.4

technetium 0.8 1.1 1.4 1.1

Ru, Rh, Pd 3.9 5.7 7.7 8.3

miscellaneous:
Ag, Cd, Sn, Sb… 0.1 0.2 0.3 0.6

Table 2.
Breakdown by chemical family of fission products in spent UOX and MOX fuel, after 3 years’ cooling,
for a variety of enrichment and burnup rates.

After discharge, spent fuel is stored 
in cooling pools, to allow its radioactivity 
to come down significantly. 
Shown here is a storage pool at Areva’s 
spent fuel reprocessing plant 
at La Hague.
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Raw, solid or liquid radioactive waste
undergoes, after characterization

(determination of its chemical and radio-
logical makeup, and of its physical–che-
mical properties), conditioning, a term
covering all the operations consisting in
bringing this waste (or spent fuel assem-
blies) to a form suitable for its transport,
storage, and disposal (see Box D). The
aim is to put radioactive waste into a
solid, physically and chemically stable
form, and ensure effective, lasting confi-
nement of the radionuclides it contains.
For that purpose, two complementary
operations are carried out. As a rule,
waste is immobilized by a material –
whether by encapsulation or homoge-
neous incorporation (liquid or powdered
waste, sludges), or encasing (solid waste)
– within a matrix, the nature of, and per-
formance specification for which depend
on waste type (cement for sludges, eva-
poration concentrates and incineration
ashes; bitumen for encapsulation of
sludges or evaporation concentrates
from liquid effluent treatment; or a
vitreous matrix, intimately binding the
nuclides to the glass network, for fis-
sion product or minor actinide solutions).
This matrix contributes to the confine-
ment function. The waste thus conditio-
ned is placed in an impervious contai-

ner (cylindrical or rectangular), consis-
ting in one or more canisters. The whole
– container and content – is termed a
package. Equally, waste may be com-
pacted and mechanically immobilized
within a canister, the whole forming a
package.
When in the state they come in as sup-
plied by industrial production, they are
known as primary packages, the pri-

mary container being the cement or
metal container into which the conditio-
ned waste is ultimately placed, to allow
handling. The container may act as initial
confinement barrier, allotment of func-
tions between matrix and container being
determined according to the nature of
the waste involved. Thus, the whole obtai-
ned by the grouping together, within one
container, of a number of primary 

Cross-section of an experimental storage borehole for a spent fuel container (the lower part of the
assembly may be seen, top right), in the Galatée gallery of CECER (Centre d’expertise sur le
conditionnement et l’entreposage des matières radioactives: Radioactive Materials Conditioning
and Storage Expertise Center), at CEA’s Marcoule Center, showing the nested canisters.
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ILW-LL packages may ensure confinement
of the radioactivity of this type of waste.
If a long-term storage stage is found to
be necessary, beyond the stage of indus-
trial storage on the premises of the pro-
ducers, primary waste packages must
be amenable to retrieval, as and when
required: durable primary containers
must then be available, in such condi-
tions, for all types of waste.
In such a case, for spent fuel assemblies
which might at some time be earmar-
ked for such long-term storage, or even
for disposal, it is not feasible to demons-
trate, on a timescale of centuries, the
integrity of the cladding holding the fuel,
forming the initial confinement barrier
during the in-reactor use stage. Securing
these assemblies in individual, imper-
vious cartridges is thus being conside-
red, this stainless-steel cartridge being
compatible with the various possible
future management stages: treatment,
return to storage, or disposal. Placing
these cartridges inside impervious
containers ensures a second confine-
ment barrier, as is the case for high-
level waste packages.
In storage or disposal conditions, the
waste packages will be subjected to a
variety of aggressive agents, both inter-
nal and external. First, radionuclide

radioactive decay persists inside the pac-
kage (self-irradiation process). Emission
of radiation is concomitant with heat
generation. For example, in confinement
glasses holding high-activity (high-level)
waste, the main sources of irradiation
originate in the alpha decay processes
from minor actinides, beta decay from
fission products, and gamma transitions.
Alpha decay, characterized by produc-
tion of a recoil nucleus, and emission of
a particle, which, at the end of its path,
yields a helium atom, causes the major
part of atom displacements. In particu-
lar, recoil nuclei, shedding considerable
energy as they do over a short distance,
result in atom displacement cascades,
thus breaking large numbers of chemi-
cal bonds. This is thus the main cause
of potential long-term damage. In such
conditions, matrices must exhibit ther-
mal stability, and irradiation-damage
resistance.
Stored waste packages will also be sub-
jected to the effects of water (leaching).
Container canisters may exhibit a deg-
ree of resistance to corrosion processes
(the overpacks contemplated for glas-
ses may thus delay by some 4,000 years
the arrival of water), and the confine-
ment matrices must be proven to exhi-
bit high chemical stability.

Between the containers and the ultimate
barrier provided, in a radioactive waste
deep disposal facility, by the geological
environment itself, there may further be
interposed, apart, possibly, from an over-
pack, other barriers, so-called engi-
neered barriers, for backfill and sealing
purposes. While these would be point-
less as backfill in clay formations, they
would have the capability, in other envi-
ronments (granite), of further retarding
any flow of radionuclides to the geo-
sphere, notwithstanding degradation of
the previously mentioned barriers.

C
EA

Technological demonstrators
of ILW-LL packages for

bituminized sludges.
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The object of nuclear waste storage
and disposal is to ensure the long-

term confinement of radioactivity, in
other words to contain radionuclides
within a definite space, segre-
gated from humankind and the
environment, as long as requi-
red, so that the possible return
to the biosphere of minute
amounts of radionuclides can
have no unacceptable health or
environmental impact.
According to the Joint Con-
vention on the Safety of Spent
Fuel Management and on the
Safety of Radioactive Waste
Management, signed on 5 Sep-
tember 1997, “storage” means
“the holding of spent fuel or of
radioactive waste in a facility that
provides for its containment,
with the intention of retrieval.”
This is thus, by definition, an
interim stage, amounting to a
delaying, or wait-and-see solu-
tion, even though this may be for
a very long time (from a few
decades to several hundred
years), whereas disposal may be
final.
Used from the outset of the nuclear
power age, industrial storage keeps
spent fuel awaiting reprocessing, and
conditioned high-level waste (HLW), or
long-lived intermediate-level waste

(ILW-LL) in conditions of safety, pen-
ding a long-term management mode
for such waste. Retrieval of stored pac-
kages is anticipated, after a period of
limited duration (i.e. after a matter of

years, or tens of years).
Long-term storage (LTS) may be
contemplated, in particular, in the event
of the deferred deployment of a dispo-
sal facility, or of reactors to carry out

recycling–transmutation, or simply to
turn to advantage the natural decay of
radioactivity (and hence the falling off
of heat release from high-level waste),
before putting the waste into geologi-

cal disposal. By “long term” is
meant a timespan of up to 300
years. Long-term storage may
take place in a surface or sub-
surface facility. In the former
case, the site may be protected,
for instance, by a reinforced-
concrete structure. In the latter
case, it will be located at a depth
of some tens of meters, and pro-
tected by a natural environment
(for instance, if buried in a hill-
side) and its host rock.
Whichever management stra-
tegy is chosen, it will be impe-
rative to protect the biosphere
from the residual ultimate waste.
The nature of the radioelements
the latter contains means a solu-
tion is required that has the abi-
lity to ensure their confinement
over several tens of thousand
years, in the case of long-lived
waste, or even longer. On such
timescales, social stability is a
major uncertainty that has to be

taken on board. Which is why disposal
in deep geological strata (typically, 500
m down) is seen as a reference solu-
tion, insofar as it inherently makes for
deployment of a more passive techni-
cal solution, with the ability to stand,
with no increased risk, an absence of
surveillance, thus mitigating a possible
loss of memory on the part of society.
The geological environment of such a
disposal facility thus forms a further,
essential barrier, which does not exist
in the storage case.
A disposal facility may be designed to
be reversible over a given period. The
concept of reversibility means the design
must guarantee the ability, for a variety
of reasons, to access the packages, or
even to take them out of the facility, over
a certain timespan, or to opt for the final
closure of the disposal facility. Such
reversibility may be envisaged as a suc-
cession of stages, each affording a
decreasing “level of reversibility.” To
simplify, each stage consists in carrying
out one further technical operation brin-
ging the facility closer to final closure,
making retrieval more difficult than at
the previous stage, according to well-
specified criteria.

From storage to disposal

ANDRA design for the disposal of standard vitrified waste packages in horizontal galleries,
showing in particular the packages’ various canisters, and some characteristics linked 
to potential reversibility of the disposal facility.

CEA design study for a common container for 
the long-term storage and disposal of long-lived, 
intermediate-level waste.
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1.30m to 1.60 m

0.57 m 
to 0.64 m

primary package

disposal packages
lining

intercalary

excavated diameter: 0.7 m approx.

length: 40 m approx.

steel overpack
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Transmutation is the transformation
of one nucleus into another, through

a reaction induced by particles with which
it is bombarded. As applied to the treat-
ment of nuclear waste, this consists in
using that type of reaction to transform
long-lived radioactive isotopes into iso-
topes having a markedly shorter life, or
even into stable isotopes, in order to
reduce the long-term radiotoxic inven-
tory. In theory, the projectiles used may
be photons, protons, or neutrons.
In the first case, the aim is to obtain, by
bremsstrahlung,(1) through bombardment
of a target by a beam of electrons, pro-
vided by an accelerator, photons able to
bring about reactions of the (γ, xn) type.
Under the effects of the incoming gamma
radiation, x neutrons are expelled from
the nucleus. When applied to substan-
ces that are too rich in neutrons, and
hence unstable, such as certain fission
products (strontium 90, cesium 137…),
such reactions yield, as a rule, stable sub-
stances. However, owing to the very low
efficiency achieved, and the very high
electron current intensity required, this
path is not deemed to be viable.
In the second case, the proton–nucleus
interaction induces a complex reaction,
known as spallation, resulting in frag-
mentation of the nucleus, and the release

of a number of particles, including high-
energy neutrons. Transmutation by way
of direct interaction between protons is
uneconomic, since this would involve, in
order to overcome the Coulomb barrier,(2)

very-high-energy protons (1–2 GeV),
requiring a generating energy greater
than had been obtained from the process
that resulted in producing the waste. On
the other hand, indirect transmutation,
using very-high-energy neutrons (of
which around 30 may be yielded, depen-
ding on target nature and incoming proton
energy), makes it possible to achieve very
significantly improved performance. This
is the path forming the basis for the
design of so-called hybrid reactors, cou-
pling a subcritical core and a high-inten-
sity proton accelerator (see Box F, What
is an ADS?).
The third particle that may be used is thus
the neutron. Owing to its lack of electric
charge, this is by far the particle best sui-
ted to meet the desired criteria. It is “natu-
rally” available in large quantities inside
nuclear reactors, where it is used to trig-
ger fission reactions, thus yielding energy,
while constantly inducing, concurrently,
transmutations, most of them unsought.
The best recycling path for waste would
thus be to reinject it in the very installa-
tion, more or less, that had produced it…

When a neutron collides with a nucleus,
it may bounce off the nucleus, or pene-
trate it. In the latter case, the nucleus,
by absorbing the neutron, gains excess
energy, which it then releases in various
ways:
• by expelling particles (a neutron, e.g.),
while possibly releasing radiation;
• by solely emitting radiation; this is
known as a capture reaction, since the
neutron remains captive inside the
nucleus;
• by breaking up into two nuclei, of more
or less equal size, while releasing concur-
rently two or three neutrons; this is known
as a fission reaction, in which considera-
ble amounts of energy are released.
Transmutation of a radionuclide may be
achieved either through neutron capture
or by fission. Minor actinides, as elements
having large nuclei (heavy nuclei), may
undergo both fission and capture reac-
tions. By fission, they transform into
radionuclides that, in a majority of cases,
are short-lived, or even into stable nuclei.
The nuclei yielded by fission (known as
fission products), being smaller, are only
the seat of capture reactions, undergoing,
on average, 4 radioactive decays, with a
half-life not longer than a few years, as
a rule, before they reach a stable form.
Through capture, the same heavy nuclei
transform into other radionuclides, often
long-lived, which transform in turn
through natural decay, but equally
through capture and fission.

What is transmutation?

(1) From the German for “braking radiation.” High-energy photon radiation, yielded by accelerated
(or decelerated) particles (electrons) following a circular path, at the same time emitting braking
photons tangentially, those with the highest energies being emitted preferentially along the electron
beam axis.

(2) A force of repulsion, which resists the drawing together of same-sign electric charges.
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The probability, for a neutron, of causing
a capture or a fission reaction is evalua-
ted on the basis, respectively, of its cap-
ture cross-section and fission cross-sec-
tion. Such cross-sections depend on the
nature of the nucleus (they vary consi-
derably from one nucleus to the next, and,
even more markedly, from one isotope
to the next for the same nucleus) and
neutron energy.
For a neutron having an energy lower
than 1 eV (in the range of slow, or ther-
mal, neutrons), the capture cross-sec-

tion prevails; capture is about 100 times
more probable than fission. This remains
the case for energies in the 1 eV–1 MeV
range (i.e., that of epithermal neutrons,
where captures or fissions occur at defi-
nite energy levels). Beyond 1 MeV (fast
neutron range), fissions become more
probable than captures.
Two reactor pathways may be conside-
red, according to the neutron energy
range for which the majority of fission
reactions occur: thermal-neutron reac-
tors, and fast-neutron reactors. The ther-

mal neutron pathway is the technology
used by France for its power generation
equipment, with close to 60 pressurized-
water reactors. In a thermal-neutron
reactor, neutrons yielded by fission are
slowed down (moderated) through colli-
sions against light nuclei, making up
materials known as moderators. Due to
the moderator (common water, in the
case of pressurized-water reactors), neu-
tron velocity falls off, down to a few kilo-
meters per second, a value at which neu-
trons find themselves in thermal
equilibrium with the ambient environ-
ment. Since fission cross-sections for
235U and 239Pu, for fission induced by
thermal neutrons, are very large, a
concentration of a few per cent of these
fissile nuclei is sufficient to sustain the
cascade of fissions. The flux, in a ther-
mal-neutron reactor, is of the order of
1018 neutrons per square meter, per
second.
In a fast-neutron reactor, such as Phénix,
neutrons yielded by fission immediately
induce, without first being slowed down,
further fissions. There is no moderator in
this case. Since, for this energy range,
cross-sections are small, a fuel rich in
fissile radionuclides must be used (up to
20% uranium 235 or plutonium 239), if the
neutron multiplication factor is to be equal
to 1. The flux in a fast-neutron reactor is
ten times larger (of the order of 1019 neu-
trons per square meter, per second) than
for a thermal-neutron reactor.

Figure.
Simplified representation of the evolution chain of americium 241 in a thermal-neutron reactor
(shown in blue: radionuclides disappearing through fission). Through capture, 241Am transforms
into 242mAm, this disappearing predominantly through fission, and into 242Am, which mainly decays
(with a half-life of 16 hours) through beta decay into 242Cm. 242Cm transforms through alpha decay
into 238Pu, and through capture into 243Cm, which itself disappears predominantly through fission.
238Pu transforms through capture into 239Pu, which disappears predominantly through fission.
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An ADS (accelerator-driven system) is
a hybrid system, comprising a

nuclear reactor operating in subcritical
mode, i.e. a reactor unable by itself to sus-
tain a fission chain reaction, “driven” by
an external source, having the ability to
supply it with the required comple-
ment of neutrons.(1)

Inside the core of a nuclear reactor,
indeed, it is the fission energy from
heavy nuclei, such as uranium 235
or plutonium 239, that is released.
Uranium 235 yields, when under-
going fission, on average 2.5 neu-
trons, which can in turn induce a
further fission, if they collide with a
uranium 235 nucleus. It may thus
be seen that, once the initial fission
is initiated, a chain reaction may develop,
resulting, through a succession of fis-
sions, in a rise in the neutron population.
However, of the 2.5 neutrons yielded by
the initial fission, some are captured, thus
not giving rise to further fissions. The
number of fissions generated from one
initial fission is characterized by the effec-
tive multiplication factor keff, equal to the
ratio of the number of fission neutrons
generated, over the number of neutrons
disappearing. It is on the value of this coef-
ficient that the evolution of the neutron
population depends: if keff is markedly
higher than 1, the population increases
rapidly; if it is slightly higher than 1, neu-
tron multiplication sets in, but remains
under control; this is the state desired at
reactor startup; if keff is equal to 1, the
population remains stable; this is the state

for a reactor in normal operating condi-
tions; and, if keff is lower than 1, the neu-
tron population dwindles, and becomes
extinct, unless – as is the case for a hybrid
system – an external source provides a
neutron supply.

From the effective multiplication factor,
a reactor’s reactivity is defined by the ratio
(keff –1)/keff. The condition for stability is
then expressed by zero reactivity. To sta-
bilize a neutron population, it is sufficient
to act on the proportion of materials exhi-
biting a large neutron capture cross-sec-
tion (neutron absorber materials) inside
the reactor.
In an ADS, the source of extra neutrons
is fed with protons, generated with an
energy of about 100 keV, then injected
into an accelerator (linear accelerator or
cyclotron), which brings them to an energy
of around 1 GeV, and directs them to a
heavy-metal target (lead, lead–bismuth,
tungsten or tantalum). When irradiated
by the proton beam, this target yields,
through spallation reactions, an intense,
high-energy (1–20 MeV) neutron flux, one
single incoming neutron having the abi-
lity to generate up to 30 neutrons. The lat-

ter then go on to interact with the fuel of
the subcritical neutron multiplier
medium, yielding further neutrons (fis-
sion neutrons) (see Figure).
Most hybrid system projects use as a core
(of annular configuration, as a rule) fast-

neutron environments, since these
make it possible to achieve neu-
tron balances most favorable to
transmutation, an operation that
allows waste to be “burned,” but
which may equally be used to yield
further fissile nuclei. Such a sys-
tem may also be used for energy
generation, even though part of
this energy must be set aside to
power the proton accelerator, a
part that is all the higher, the more

subcritical the system is. Such a system
is safe in principle from most reactivity
accidents, its multiplication factor being
lower than 1, contrary to that of a reac-
tor operated in critical mode: the chain
reaction would come to a halt, if it was
not sustained by this supply of external
neutrons.
A major component in a hybrid reactor,
the window, positioned at the end of the
beam line, isolates the accelerator from
the target, and makes it possible to keep
the accelerator in a vacuum. Traversed
as it is by the proton beam, it is a sensi-
tive part of the system: its lifespan
depends on thermal and mechanical
stresses, and corrosion. Projects are moo-
ted, however, of windowless ADSs. In the
latter case, it is the confinement cons-
traints, and those of radioactive spalla-
tion product extraction, that must be taken
on board.

What is an ADS?

(1) On this topic, see Clefs CEA, No. 37, p. 14

Principle schematic of an ADS.
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The characteristics of the major part of the radioactive waste generated in France are determined by those of the French nuclear
power generation fleet, and of the spent fuel reprocessing plants, built in compliance with the principle of reprocessing such fuel, to
partition such materials as remain recoverable for energy purposes (uranium and plutonium), and waste (fission products and minor
actinides), not amenable to recycling in the current state of the art.
58 enriched-uranium pressurized-water reactors (PWRs) have been put on stream by French national utility EDF, from 1977
(Fessenheim) to 1999 (Civaux), forming a second generation of reactors, following the first generation, which mainly comprised 8 UNGG
(natural uranium, graphite, gas) reactors, now all closed down, and, in the case of the older reactors, in the course of decommis-
sioning. Some 20 of these PWRs carry out the industrial recycling of plutonium, included in MOX fuel, supplied since 1995 by the
Melox plant, at Marcoule (Gard département, Southern France).
EDF is contemplating the gradual replacement of the current PWRs by third-generation reactors, belonging to the selfsame pres-
surized-water reactor pathway, of the EPR (European Pressurized-Water Reactor) type, designed by Areva NP (formerly Framatome–ANP),
a division of the Areva Group. The very first EPR is being built in Finland, the first to be built in France being sited at Flamanville
(Manche département, Western France).
The major part of spent fuel from the French fleet currently undergoes reprocessing at the UP2-800(1) plant, which has been opera-
ted at La Hague (Manche département), since 1994, by Areva NC (formerly Cogema,) another member of the Areva Group (the UP3
plant, put on stream in 1990–92, for its part, carries out reprocessing of fuel from other countries). The waste vitrification workshops
at these plants, the outcome of development work initiated at Marcoule, give their name (R7T7) to the “nuclear” glass used for the
confinement of long-lived, high-level waste.
A fourth generation of reactors could emerge from 2040 (along with new reprocessing plants), a prototype being built by 2020. These
could be fast-neutron reactors (i.e. fast reactors [FRs]), either sodium-cooled (SFRs) or gas-cooled (GFRs). Following the closing
down of the Superphénix reactor, in 1998, only one FR is operated in France, the Phénix reactor, due to be closed down in 2009.

The industrial context 1

(1) A reengineering of the UP2-400 plant, which, after the UP1 plant, at Marcoule, had been intended to reprocess spent fuel from the UNGG pathway.
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